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Abstract. Comparison of the ASDEX Upgrade 3-strap ICRF antenna data with the linear electro-

magnetic TOPICA calculations substantiates a reduction of the local electric field at the antenna 

radially protruding plasma facing elements as a relevant criterion for the minimization of the tungsten 

(W) sputtering in the conditions when the slow wave is strongly evanescent. Temporal and spatial 

fluctuations of the 3-dimensional plasma density distribution affected by local non-linear interactions 

are thought to be responsible for a less sensitive reaction of the time-averaged RF current at the 

antenna limiters to antenna feeding variations than predicted by the calculations. The 3-strap antenna 

with the W-coated limiters produces drastically less W sputtering compared to the W-coated 2-strap 

antennas. This is consistent with the non-linear asymptotic SSWICH calculations for RF sheaths. 

 

Introduction 

Operation of Ion Cyclotron Range of Frequencies (ICRF) antennas is often accompanied 

by parasitic processes such as impurity production and additional heat loads on plasma facing 

components (PFCs). These are thought to be to a significant part a consequence of the RF 

electrical fields near antenna, in particular the parallel field E||. The latter is responsible for 

formation of RF sheaths by driving more mobile electrons to the antenna PFCs and charging 

up the plasma, as the PFCs are usually grounded. The RF sheaths are characterized by an 

elevated time-averaged or a DC potential drop close to conductive surfaces. This leads to the 

enhanced physical sputtering by accelerated ions and to the increased heat loads. 

In all-tungsten ASDEX Upgrade (AUG), the ICRF specific W production had a strong 

influence on ICRF applicability due to increased radiation [1]. Whereas some aid to reduce 

the W production was found in tailoring the plasma properties in the scrape-off layer (SOL) 

by shifting the plasma radially away from the antenna [2] and by local gas injection [3], the 

installation of the boron (B)-coated limiters at the 2-strap antennas was the step to enlarge the 

ICRF operational window in AUG significantly. Although the root cause for the enhanced 

sputtering has not been removed by the use of the B-limiters, the ICRF operational window 

was enlarged significantly due to the fact that increase of content of the low-radiating low-Z 

boron is tolerable. In parallel, the antenna optimization was studied. As a first step, one of the 

2-strap antennas was modified with broad-limiters and optimized straps which showed up to 

40% reduction in W release [3]. A second, more advanced step was the installation of the new 

3-strap antennas [3] in 2015 which constitutes the main subject of this paper. 

This paper discusses the criteria for minimization of the RF sheath effects by 

optimization of the near-field distribution, considering the slow wave propagation in the 
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private antenna region in section 1 and a simplified approach used for the 3-strap antenna. 

Section 2 is devoted to the description of measurements, comparison to calculations and 

relations to the W sputtering. At the end the section summarizes the total effect of the 3-strap 

antennas on reduction of the W release. 

1. Minimization of RF sheaths effects 

1.1 Relevance of criteria for minimization of the effect of RF sheaths 

The approach to calculate the integral of E|| along a magnetic field line as an estimate of 

the sheath-driving RF voltage [4], 𝑉𝑅𝐹 𝑠ℎ𝑒𝑎𝑡ℎ = |∫ 𝐸||(𝑙) ∙ 𝑑𝑙| in the absence of the sheaths at 

the plasma-wall boundaries, was usually used in the past (see e.g. [5]) in order to characterize 

the effect of the RF near fields on the antenna-plasma interactions. This basic linear approach 

was simple to use, but its use is questionable from many points of view. Firstly, in contrast to 

[5], in many cases only the long field lines were considered which pass in front of an antenna 

[6, 7] without intersecting any conducting structure and are spatially limited just by the 

calculation frame. As a result, the calculated RF voltages, supposedly relevant for a local RF 

sheath formation deep in the private plasma region of an antenna, could strongly be 

influenced by the RF field excited in the remote locations not connected to this private region 

along the magnetic field lines. Secondly, the direct integration of E|| implies perfect parallel 

plasma conductivity, not describing the fact that on RF timescale the conducting properties of 

the plasma are typically dominated by the plasma polarization effects and the displacement 

currents. Experimental application of this criteria resulted in the absence of a positive effect 

after the Tore Supra Faraday Screen (FS) was modified [8] and in an inconsistency between 

the calculations and the experimental observations in monopole phasing at Alcator C-Mod [9]. 

At the same time, the field-aligned antenna in Alcator C-Mod showed a significant reduction 

of impurity sources during ICRF with local ICRF impurity sources effectively eliminated. 

Recent experimental observations of heat flux to antenna components in Tore Supra [8] and 

of RF image currents on the frame of the imbalanced 2-strap antenna in ASDEX Upgrade [10] 

show that quantities relevant for the antenna-plasma interactions cannot be described by a 

single value for a given magnetic field line, because strong asymmetries are observed on 

opposite ends of the field line. 

For the AUG antenna improvement, a different criterion was advocated in [2,3,11]. The 

reduction of the local E||-field values close to the radially protruding antenna side limiters, i.e. 

conducting structures, was targeted. Here magnetic field lines intersect the conducting 

surfaces and high E||-field can be excited if local RF currents exist. Presence of radially 

protruding structures also increases the electron losses with the resulting formation of RF 

sheaths. Far away from these structures along the magnetic field lines, electrons can show the 

oscillatory behaviour imposed by RF cycle. However the influence of the remote RF field 

excitation due to wave propagation was not taken into account in this approach. The recent 

work with the SSWICH code [12, 13] and an analytic formulation of the slow wave 

propagation and sheath boundary conditions [14] allow for further substantiation of the AUG 

approach. In [14], the weighted integration of E|| along the field lines 𝑉𝑅𝐹 𝑠ℎ𝑒𝑎𝑡ℎ(𝑟) =
∫ 𝐺(𝑟, 𝑟0)𝐸||(𝑟0) ∙ 𝑑𝑟0 is proposed, in order to take into account the propagation of the slow 

wave in the presence of the sheaths at the plasma-wall boundaries. The slow wave is assumed 

to be the dominant contributor to E||. Here, 𝐺(𝑟, 𝑟0) is the weighting function which depends 

on the position of the sheath boundary 𝑟 (in AUG case – the limiters) for which the sheath 

oscillating voltage  𝑉𝑅𝐹 𝑠ℎ𝑒𝑎𝑡ℎ is calculated and on the position  𝑟0 of every E|| wave emitting 

point on the aperture of the antenna (typically a toroidal-poloidal plane just in front of the 

antenna). Function 𝐺(𝑟, 𝑟0)  describes how the slow wave transmits the E||-field from its 

source to a point at the limiters where an RF sheath is formed. If this transmission is weak on 

a characteristic length of an antenna, the RF sheath is influenced by local E|| only. 



3 

 

 

 

 

 

 

 

Figure 1. Geometry of calculations and 

weighting factor G3D versus transverse 

coordinates (x,y), as evaluated numerically 

using parallel distances z=2 cm,z=10 cm, 

z=50 cm. 

We estimate the slow wave transmission of E||-field by calculating 𝐺(𝑟, 𝑟0)  for the 

relevant AUG parameters: parallel length of L|| = 1.05 m, perpendicular radial length (along x) 

of the protruding limiters L=0.012 m, plasma density in antenna private region ne=810
17

 m
-3 

and RF frequency of 36.5 MHz. Figure 1 describes the geometry of the calculations and the 

3D weighting function G3D which is a 3D Green’s function calculated according to [14]. 

Dimensions along y (mostly poloidal) in the calculation frame are assumed infinite. Values of 

G3D imply integration along y separately from integration along a field line (z). A single point 

RF emitter is defined at z=0, x=0. The main feature of the figure is the strong parallel decay 

of the weighting factor. This is explained by the evanescent propagation of the slow wave at 

the frequency well above the lower hybrid frequency in the frame limited by the sheath 

boundary conditions which strongly influence the propagation. Function G3D experiences a 

more than a factor of 10 decrease on a parallel distance of z=0.5 m which corresponds to 

about a half of toroidal dimension of the 3-strap antenna. The transverse poloidal distribution 

of the weighting function is about 1 cm broad and becomes more homogenous when parallel 

distance is increased. This is explained by a coupling of the slow wave field between 

neighbouring magnetic field lines. 

Thus for the relevant AUG parameters, due to the strong parallel decay of the slow wave 

field it indeed can be reasonable to assume that the effect of the local E||-field close to the 

locations where the RF sheaths are formed is dominant. At the same time the independent 

influence of the remote RF E||-field on local antenna-plasma interactions by DC-biasing of the 

field lines due to the rectified sheaths on the opposite antenna side should be considered. This 

effect was observed in many experiments when a DC footprint of an active antenna was 

measured by a reciprocating probe several meters away from the antenna along the magnetic 

field lines [15, 16]. For the 3-strap antenna the influence of one antenna side on the other due 

to this DC effect is lower than that for the 2-strap antenna due to fact that on both antenna 

sides the RF E||-field can be minimized simultaneously by the RF image current cancellation 

discussed next. 

1.2 RF image current cancellation and E||-field 

Figure 2 shows the principle of minimization of the RF sheaths at the limiters, and the 

W sputtering consequently, by cancellation of RF image currents at the antenna limiters of the 

3-strap antenna. Cases for a ratio of the power from the central strap to the power from the 

outer straps of Pcen/Pout=0.1, Pcen/Pout=2, Pcen/Pout=10 are shown from the left to the right 

accordingly. At Pcen/Pout2, the RF image currents of these straps on the side limiters 

approximately cancel each other. The cancellation is achieved at both left and right sides of 

the antenna simultaneously, as opposed to the 2-strap antenna where only on one antenna side 

the cancellation is possible and was experimentally observed in [10]. 
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Figure 2. Upper row: RF image current cancellation close to power ratio of 2:1 (middle) in dipole 

phasing, compared to power ratio of 1:10 (left) and 10:1(right). The 3-strap antenna is shown using 

CAD view with every second FS rod removed. Lower row: corresponding TOPICA calculations of     

Re (E||) at 36.5 MHz, 0.5MW power, in a plane in front of a flat model of the antenna. 

The effect of the image current cancellation on E|| is shown in the lower part of Fig. 2 

by the calculations of Re (E||) (dominant part of the fields) in front of the antenna by the linear 

electromagnetic TOPICA code [17] for a flat AUG 3-strap antenna model. The coordinate 

system for Fig.2 is the same as in Fig.1, except that z corresponds to pure toroidal and y 

corresponds to pure poloidal directions. The antenna aperture, a boundary between the 

vacuum region of the antenna and the plasma region described by the FELICE code [18] 

embedded in TOPICA, was set radially closest possible to the antenna limiters, in order to 

minimize filtering of small-scale RF fields. The plasma conditions and antenna settings 

correspond to AUG discharges #32445 and #32002 discussed below. 

As implied in section 1.1, we consider the values of E|| at the side limiters to be 

dominant. The E|| maps in Fig. 2 suggest that this is a reasonable assumption in all the cases 

shown: the field at the limiters is typically higher than the field close to the outer straps 

(closest to the limiters) and the field close to the central strap is too distant to have a strong 

effect on RF sheath driving voltage on the side limiters, considering the parallel decay 

discussed above. 

It is important to note that the reduction of E|| by cancellation of the RF image currents 

on the antenna side limiters is location dependent. Whereas on the upper and on the lower 

sections of the limiters values of E|| close to zero are achieved in dipole phasing and 

Pcen/Pout=2, the regions around y=0 are characterized by a higher E||-field. Unique diagnostics 

which measures local measurements of the RF current at the limiters in AUG allows to check 

if a similar behaviour is observed in the experiments and if these RF currents indeed correlate 

with W sputtering. 

2. Experimental results and discussion 

2.1 Experimental setup 

ASDEX Upgrade experimental setup with toroidal arrangement of ICRF antennas 

starting from the 2015 experimental campaign is presented in Fig. 3a. Four ICRF antennas, 

named a1 to a4, are used with standard hydrogen-minority scheme in deuterium (D) or in 

helium (He). For this paper data from discharges with the toroidal magnetic field of Bt=2.5 T 

and the working frequency of 36.5 MHz is used. Two 2-strap antennas a1 and a3 constitute 

one antenna pair which is powered by the 3dB hybrid scheme [19]. Antennas a2 and a4 have 

3 straps which are powered using two 3dB splitters as shown in Fig. 3b. 



5 

 

 
Figure 3. a) Toroidal view of ICRF antennas and spectroscopy views at a4 ASDEX Upgrade. b) 3-

strap antenna connections; local spectroscopy (yellow circles) and the RF current measurements are 

shown on the antenna limiters; reflectometry locations I-III are indicated. 

Both a2 and a4 are equipped with local RF image current measurements arranged as 

shown in Fig.3b, six on the right limiter of a2 enumerated as a2-1…a2-6 and four on each 

side of a4, enumerated a4-1 to a4-8. At a fixed limiter geometry and loading conditions 

(plasma profiles), local amplitudes of electric field and of E|| can be assumed directly 

proportional to the RF current measurements. Antenna a4 has spectroscopic spots of 

observation in locations a4-1, a4-2, a4-5, a4-6 which measure intensities of W I, 400.9 nm at 

and D I, 410 nm line spectral lines. The intensities are converted into W influx and effective 

W sputtering yield. For three locations in front of a4, indicated as I, II, III in Fig.3b, 

reflectometry measurements are installed [20] which resolve electron density profiles with the 

time resolution of 100 s. 

2.2 Antenna power balance in dipole phasing 

Response of the RF current measurements at the limiters to a scan of the power balance 

between the central and the outer straps in dipole phasing for D H-mode discharge #32445, 

Paux=5 MW and an addition of constant PICRF=1 MW from both a2 and a4 during scans is 

shown in Fig.4a. This discharge configuration allows for the RF power to be a relatively small 

perturbation. Thus the influence of the non-linearities connected to the changes of the core 

plasma during scans of antenna feeding parameters is small. At the same time ELMs were 

mitigated using the saddle coils [21] to provide calm conditions in the SOL. RF voltage 

equivalent for a 50 Ohm load in vacuum estimated from the RF current measurements is 

plotted as a function of Pcen/Pout for the six locations on the a2 limiters. Every point 

corresponds to a time-average over 5 ms. Experimental data in Fig. 4a is compared to Fig. 4b 

with TOPICA calculations of the local E||-field averaged spatially over the corresponding 

locations of the limiters. The absolute values of RF amplitudes in the experiment and in the 

calculations are not equivalent, because only vacuum calibration can be done for the RF 

measurements and that does not take into account influence of plasma on local RF circuit. 

Nevertheless, the relative behaviour can be compared. The measurements are well described 

by the local field magnitudes from the calculations, at least qualitatively. The tendency of the 

RF amplitude in the lower and the upper corners of the antenna (a2-1,a2-2,a2-5) to have a 

well-distinguished minimum is seen both in the measurements and in the calculations, as well 

as the tendency to have a more flat reaction to the power balance closer to the antenna middle 

(a2-3,a2-3,a2-4). Thus the local RF measurements at the limiters are represented well by the 

locally excited RF field calculated by TOPICA without taking into account the slow wave  
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Figure 4. Dependency of RF amplitudes on a2 antenna limiters as a function of fraction of RF power 

from central strap: a) measured (5ms averages); b) calculated by TOPICA for flat antenna model. 

propagation. However we note that the measurements are less responsive to the power 

balance scan than suggested by the calculations. The possible reason for this is discussed in 

section 2.4. 

2.3 Phase-resolved amplitude balance and the W sputtering 

A more sophisticated analysis than that in Fig. 4 can be done using both the scan of 

power balance Pcen/Pout and a scan of phase deviation from dipole . Figure 5 illustrates 

such two-dimensional dependency of the RF amplitude on the limiters VRF of a4 when both 

parameters were scanned simultaneously in discharge #32002 which has the same conditions 

as #32445. Plots in Fig. 5a correspond to the left a4 limiter with locations from a4-1 to a4-4 

and plots in Fig. 5b correspond to the right a4 limiter with locations from a4-5 to a4-8. We 

note that RF measurements on the limiters of the two 3-strap antennas a2 and a4 during the 

scans of the feeding parameters are not exactly the same. Antenna a2 shows usually a more 

sensitive response, although main features of the dependencies remain similar. The reasons 

for this are likely related to small differences in alignment of the internal antenna geometry 

and to a diversity of the surroundings in the AUG vacuum vessel. 

 
Figure 5. RF voltage (equivalent to 50 Ohm in vacuum) measured at the limiters of a4 and correlation 

to the W effective sputtering yield in the locations close to the RF measurements; a) left limiter of a4, 

locations a4-1 to a4-4; b) right limiters of a4 with locations a4-5 to a4-8. 
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Figure 6. TOPICA flat-model calculations 

of spatially-averaged E|| as a function of 

Pcen/Pout and  in the eight locations of a4 

side limiters which correspond to the 

locations of RF measurements in Fig.5a 

(left column) and Fig. 5b (right column). 
 

In addition to VRF, Fig. 5 presents 

measurements of the effective W sputtering yield YW in locations a4-1, a4-2, a4-5, a4-6 to the 

right of Fig. 5a and of Fig. 5b. Although the phase resolution of the data is limited, the 

minima of VRF are visible which also approximately translate into regions with reduced YW. 

There is a good correlation between VRF and YW, although these two quantities are connected 

through highly non-linear mechanisms which involve the RF sheath rectification and the W 

sputtering by the light impurity ions of carbon, boron, oxygen and nitrogen [2] with a certain 

distribution of concentrations and charge states. This provides a strong indication that, in 

order to reduce the W sputtering, one needs to reduce local values of the RF image currents 

and thus the sheath-driving RF voltages. However, the DC effect of plasma biasing on the 

field lines connected to remote RF current-carrying antenna components on W sputtering can 

also play a role. This effect could explain a slightly weaker reaction of YW to VRF in locations 

a4-1, a4-2, a4-4 which connect along magnetic field lines to the limiter at the other side and a 

stronger reaction in a4-3 without a connection to the other side limiter. 

The RF quantities from Fig. 5 can be compared to those of the TOPICA calculations 

discussed in section 2.2 for the dependence on the antenna power balance. The TOPICA 

results, now as functions of both Pcen/Pout and , are presented in Fig.6 for the same 

locations as in the experiments. The experimental measurements (Fig. 5) and the numerical 

results (Fig. 6) agree well on the existence of minima of the RF quantities and on the shifts of 

these minima with Pcen/Pout. The exact values of Pcen/Pout and  for the minima show a less 

good agreement in some locations, especially in locations a4-2 and a4-6 where the qualitative 

behaviour of the dependencies experiences a change. 

Similarly to the data from Fig.4, the sensitivity of the RF response in the experiment is 

lower than that in the calculations. We hypothesize that, apart from the limited phase 

resolution of the data and deviations of the real geometry from the modelling geometry of the 

antenna, one of the main reasons are the strong temporal and spatial perturbations of the 

density profile in front of the antennas are present during the discharge. 
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Figure 7. Electron density in front of a4 in #33336 in three locations from Fig.3b and RF 

amplitude in location a4-4 with signal averaged over 100s shown by the black dotted curve. a) 

Pcen/Pout  0.1; b) Pcen/Pout  2.5. 

2.4 Decorrelation of the RF image currents by density fluctuations 

The previous analysis used time-averaged values from the experiment. However the 

time-resolved signals show significant fluctuations, as is illustrated in the example of the RF 

amplitude in location a4-4 in Fig. 7. The imbalanced dipole case with Pcen/Pout0.1 is plotted 

in Fig.7a and the balanced dipole case with Pcen/Pout2.5 is plotted in Fig.7b together with the 

density profiles measured by the reflectometry at the three locations (I, II, III) in front of a4 

(see Fig.3b) in discharge #33336 with the same scenario as #32445 and #32002. For the 

reflectometry location I, the radial position of the antenna limiter for a4-4 is shown by the 

dashed line. Although large ELMs are mitigated and only small intermittent events appear, the 

measured evolution of the density profile shows a high degree of spatial asymmetries. 

Figure 7 shows that the RF amplitude at a4-4 which is close to location I, does not 

clearly correlate with the density variation in I, despite the large variations. This seems to 

confirm that rather the asymmetric density distribution across the antenna influences the RF 

image current balance both globally and locally. Fluctuations of the toroidal and poloidal 

density distributions can decorrelate the contributions of the central and the outer straps and 

transiently make one of the contributions stronger. 

  Density distribution and asymmetries are also affected by the convective cells due to 

the DC biasing of the field lines induced by RF sheaths (see e.g. [22] and references therein). 

Indication of this phenomenon is observed in location I in the imbalanced case. Close to the 

radius of the antenna limiter, density in Fig.7a (Pcen/Pout0.1) is on average lower compared to 

the balanced case in Fig.7b (Pcen/Pout2.5). This complicates the situation even further and can 

enhance the density asymmetries. 
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Figure 8. Histogram of deviation of the phase between 

the a4 straps (black) and between antenna limiters a4-4 

and a4-8 for various Pcen/Pout. 

 

Another evidence of the decorrelation of the RF image current contributions is 

presented in Fig. 8, using the information on deviation of the RF phase measured between 

the antenna limiters a4-4 and a4-8. Despite the fact that the strap phasing is controlled within 

the small uncertainty of =2° ( is the standard deviation in the Gaussian distribution), a large 

phase uncertainty of =29° is observed on the antenna limiters even when the contribution 

from the outer straps on the RF image current is dominant at Pcen/Pout0.1. When the power 

ratio is increased towards the conditions of better RF local current cancellation, the 

intermittency of the plasma is accompanied by a more even competition between the strap 

contributions to the local RF current. This translates into a higher phase uncertainty with 

=39° for Pcen/Pout0.5 and with =50° for Pcen/Pout1. For the power ratio of Pcen/Pout2.5 

and higher, when the time-averaged local RF amplitude reaches a minimum, the phase 

uncertainty approaches 180°, because a small perturbation of the density profile can define 

whether the contribution from the outer straps or the 180°-phased contribution of the central 

strap is stronger. With this large phase uncertainty the net RF current is still relatively small. 

However zero cannot be reached on average, because the 3D density distribution needed for 

full RF current cancellation is very specific. This mechanism can explain why the modulation 

level of fluctuations of the RF amplitude in Fig.7b is larger than that in Fig.7a, as well as the 

fact that in sections 2.2 and 2.3 the TOPICA calculations for the homogenous plasma density 

profiles show the higher sensitivity to the variation of antenna feeding parameters than in the 

experiment. 

2.5 Reduction of total W release 

The local minima of the RF current and of the W sputtering yield discussed in sections 

2.2 and 2.3 contribute to a minimum of the total W source, although not all of those are 

aligned to each other. Fig. 9 shows the ICRF-specific change of the W concentration cW 

measured close to Te=1.5 keV as a function of the strap power ratio Pcen/Pout in dipole phasing 

in #32445 discussed in section 2.2. The minimum of the increment of the W content is 

observed for Pcen/Pout between 1.0 and 3.0. This is consistent with the values of Pcen/Pout 

expected from the minima of the local quantities which were in their turn to a large extent 

consistent with the TOPICA calculations (Fig. 5). Therefore the local W source modulation is 

likely responsible for the minimum of the W content. This also means that the role of 

modifications of the k||-spectrum during the scan of Pcen/Pout [23] is likely less important. 

However the k||-spectrum defines the RF power absorption and coupling – its modifications 

could affect the antenna-plasma interactions and in general should not be neglected. 

The W release of the 3-strap antenna at Pcen/Pout=0.1 is higher than that for Pcen/Pout=10. 

This is in a qualitative agreement with Fig. 2 which shows overall higher E||-field at the 

limiters for the former case than for the later. This can be explained by the cross-coupling 

between the antenna straps which is taken into account in TOPICA calculations. The 

configurations with high Pcen/Pout induce RF currents in the outer straps keeping the current 

distribution on the straps more favourable for the lower E||-field at the limiters than in the 

configurations with low Pcen/Pout. 
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Figure 9. Influence of power balance in dipole on 

ICRF-specific W content in the core plasma (at 

Te1.5keV). Every point is 20 ms average. 

 

The basic comparison between the 3-strap and the 2-strap antennas based on the 

electromagnetic calculations was done in [3]. In order to estimate a reduction of the W 

production by the 3-strap antenna compared to the original 2-strap antenna, the rectified 

sheath potential VDC sheath can now be estimated, as physically the closest electrical quantity to 

the W sputtering yield. The estimate is made by using the asymptotic version of the SSWICH 

code [12] which calculates VDC sheath on the basis of the RF field maps in front of the antennas 

from the RAPLICASOL code [24]. Figure 10 presents the calculations of a poloidal-radial 

distribution of VDC sheath on the leading edge of the antenna side limiter using the radial 

distance from the leading edge x, both for the original 2-strap (left) and for the 3-strap (right) 

antenna with Pcen/Pout=2.0. The 3-strap antenna is characterized by about a factor of 2 to 3 

reduced VDC sheath compared to the 2-strap antenna. This antenna improvement is roughly 

consistent with the experimental results which are presented in Fig. 11 where the antenna W 

release performance is compared relatively to the B-coated antennas in D-discharges. The 

figure shows the W content in the core plasma as well as the W influx W and the effective W 

sputtering yield YW averaged over the measurements on the upper half of the right limiter of 

a4 for the 2-strap antenna (2014, Fig.11a) and the 3-strap antenna (since 2015, Fig.11b) 

configurations with details of the measurements locations described in [3] and in [25] 

correspondingly. A broad range of parameters is covered during the scans of the plasma 

triangularity upper and the radial plasma position Rout (see details on the effect of upper and 

Rout on ICRF-specific sputtering in [2,26]) for Paux=5 MW and PICRF=1.5 MW, with the latter 

toggling between the antenna pairs. The relative differences with respect to the B-coated 

antennas in Fig.11a and in Fig11b help to estimate the improvement of the W-coated 3-strap 

antennas compared to the W-coated 2-strap antennas. In the whole range of the parameters, 

the use of the W-coated 3-strap antennas significantly reduced the W release. Around a factor 

of 2 or higher reduction of W and YW is observed, although these quantities are non-linear 

functions of VDC sheath and should be compared to the latter with care. 

 

 

 

 

 

 

 

 

 

 
Figure 10. SSWICH calculations of VDC sheath 

with flat models of 2-strap (left) and 3-strap 

(right) antennas for 1 MW per antenna. 
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Figure 11. Comparison of the B-coated antennas with the W-coated antennas during scans of plasma 

triangularity and radial position in deuterium. Every antenna pair PICRF=1.5 MW in highlighted time 

windows on top of Paux=6.3 MW. a) 2-strap antennas are W-coated (2014); b) 3-strap antennas are 

W-coated (since 2015, see Fig.3). 

It is interesting to look at the He-discharges, because these strongly expose the ICRF-

specific W sputtering and provide further information on the distribution of the W sources. In 

He, the W sputtering is amplified by a typically lower plasma density in the SOL and by the 

fact that He can sputter W directly in the range of ion energies in the SOL associated with the 

AUG ICRF operation [16]. The comparison of the W release between the 2-strap B-coated 

and the 3-strap W coated antennas in He characterized by cW at Te1.5 keV and by the 

increment of the total radiated power Pradtot is presented in Fig.12 for #32664 with Paux=4.8 

MW. The W release associated with the 3-strap antennas is lower and the energy content 

response of the plasma Wmhd is higher. This stands in contrast to the D-operation for which 

the plasma energy response [23] and cW (see [23] and above) are usually very similar for both 

types of the antennas. One of the possible interpretations of this is that the remote W source 

(i.e. the W source which is not at the antenna limiters), which is presumably higher for the 2-

strap antennas, becomes more important in the He-discharges. The increase of density of 

neutrals in the divertor shown in Fig.11 when the 2-strap antennas are active would be 

consistent with a stronger plasma-wall interactions leading to an outgassing. 

Finally, one has to note that the improvement by the 3-strap antennas comes with a price 

of about 20% higher maximum RF voltage in the antenna transmission lines compared to the 

2-strap antenna, although the radiating area was increased by about 20%. Moreover, the 

distribution of the RF power between the RF generators is uneven, because of the imposed 

Pcen/Pout> 1.0.  Addition of another RF generator to the circuit of the central straps, planned 

for implementation in ASDEX Upgrade, will provide the possibility to use all RF generators 

at full power. 
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Figure 12. Comparison of the B-coated 2-strap 

antennas with the W-coated 3-strap antennas in 

He-discharge #32664. 

Summary and Perspectives 

Agreement between RF measurements at the antenna limiters in ASDEX Upgrade and 

TOPICA simulations points to the local E-field at the limiters as one of the main drivers of the 

RF sheaths. This is the case when the slow wave is evanescent and experiences a strong decay 

along the parallel distances smaller than the characteristic parallel dimensions of the antenna. 

Using the antenna power balance ratio and the strap phasing as variables for the 3-strap 

antenna, local minima of the RF current at the limiters and of the W sputtering yield can be 

achieved in various locations of the antenna limiters. These minima do not always align with 

each other at the same values of the variables. A design of an antenna which would have 

location independent minima in a broad range of loading conditions is challenging. Additional 

complication is the uncertainty of reaching these minima imposed by intermittent density 

profile fluctuations and asymmetries which are also non-linearly linked with the local ICRF-

induced density convection. Nevertheless the 3-strap antenna with the W-coated limiters 

showed a significant reduction of the W release compared to the W-coated 2-strap antennas in 

a broad range of the plasma conditions. This reduction is approximately consistent with the 

non-linear estimates of the rectified sheath voltage in front of the antennas by the asymptotic 

SSWICH code which currently takes into account only the slow wave propagation in the SOL 

and in the future will implement the SOL fast wave propagation [27]. 

Thus, in order to reduce the plasma-wall interactions close to the antenna in the future 

ICRF antenna designs, the E-field needs to be reduced primarily on the radially protruding 

structures where the RF sheaths can form. This implies minimization of the RF currents on 

such structures. As a matter of fact, this can also mean a reduction of the antenna power 

launched per area as in the case of the 3-strap antenna. 

As has been estimated in the past [23], the local W source from the antenna limiters, 

mostly affected by the antenna RF near-fields, was responsible for about 2/3 of the W content 

in the plasma core. Once this has been eliminated by the boron coatings on the limiters and 

dramatically decreased by the 3-strap antennas, the remote W source and the far-field effects 

are becoming increasingly more important. Thus the area of the future studies should include 

the minimization of the remote W sources by affecting the global RF field structure [28] in 

the experiment using such actuators as, e.g. phasing between the antenna pairs. 
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