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Abstract— One of the major problems in present tokamaks is 

the presence of disruptions. If disruptions are not mitigated, they 

can produce serious damage to the device. Therefore, disruption 

predictors are needed in order to apply the mitigation techniques 

in time. In this paper, the real-time implementation in JET of a 

new type of disruption predictor is presented. The new predictor, 

Single signal Predictor based on Anomaly Detection (SPAD), 

does not require past discharges for training purposes. The 

implementation is based on the Multi-threaded Application Real-

Time executor (MARTe) framework. Analysis over all JET’s 

ITER-like Wall campaigns (C28-C34) show that SPAD was able 

to predict 83.57% of the disruptions with enough time to apply 

mitigation techniques. The average anticipation time was 389 ms. 

In this paper the real-time implementation will be discussed, as 

well as the optimizations developed to make the algorithm 

suitable for real-time processing. Performance results and 

possible improvements will also be analyzed.  

 
Index Terms—disruption predictors, fusion experiments, 

plasma disruptions, real-time processing.  

 

I. INTRODUCTION 

lasma disruptions are one of the major problems in present 

tokamaks. This phenomenon is currently unavoidable and 

it produces large thermal loads, strong electro-magnetic (EM) 

forces, and runaway electrons (RE) that can severely damage 

the machine components. Disruption detrimental effects scale 
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with the plasma stored energy, and that fact have to be 

carefully considered in the operation of current tokamaks (like 

JET, KSTAR, or DIII-D) as well as in the design and 

development of future tokamaks devices (ITER, DEMO). For 

example, ITER components are designed mechanically to 

withstand the EM loads of a certain number of full scale 

disruptions, but the thermal loads and RE must be properly 

mitigated to maintain the integrity and longevity of the 

machine. 

Several plasma disruption mitigation techniques have been 

developed and tested in current fusion devices, as massive gas 

injection [1, 2], killer pellet injection [3, 4] or Electron 

Synchrotron Resonance Heating injection [5, 6]. However, 

these techniques need to be triggered with enough time 

(>10ms in the JET case) prior to the disruption in order to be 

effective. This leads to the need of accurate and reliable 

disruptions predictors. In this context, accuracy and reliability 

can be defined in terms of detection success rate (>95% 

required for ITER) and false alarm rate (<5% for ITER). 

Nevertheless, the physical phenomena leading to plasma 

disruptions can be only partially explained using complex and 

non-linear models. This fact makes the development of such 

predictors very difficult.  

With the increase of computational capabilities available in 

the fusion facilities, different machine learning methods has 

been used to implement new generation predictors [7-14] with 

high detection rates. This kind of predictors take as input a set 

of features obtained from plasma quantities, control signals, or 

results of processing of the former two. This set is considered 

a point in a multi-dimensional space that will be divided into 

two zones: disruptive zone and non-disruptive zone. These 

predictors require of intense and computationally expensive 

training with samples of disruptive and non-disruptive 

discharges in order to effectively split the operational space, 

and such training samples might not be valid after big changes 

in the plasma operational space. The more drastic cases of this 

change are the upgrade of an existing machine and the 

construction of a new device. But in these cases mitigation 

techniques still need to be applied from early operation even 

there is not a discharge database to train the predictors. 

In this paper is presented the implementation of a real-time 

disruption predictor based on signal anomaly detection. The 

Single signal Predictor based on Anomaly Detection (SPAD) 

(formerly known as Predictor Based on Outlier Detection 

(PBOD)) [15-17] learns the normal behavior of a signal from 
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the beginning of the discharge, and it triggers the disruption 

alarm when abnormal behavior is detected. The predictor has 

been developed using the Multi-threaded Application Real-

Time executor (MARTe)[18] framework to be fully integrated 

into JET Real-Time Data Network (RTDN)[19]. SPAD 

presents good detection results, comparable with predictors 

based on machine learning but without the need of training 

process. 

The rest of the paper is organized as follows. First JET’s 

current predictors are presented and discussed. Secondly 

SPAD predictor is presented, explaining the fundamentals of 

the algorithm as well as the real-time implementation. Finally, 

the results are examined and compared to current predictors, 

followed by the possible enhancements and future work. 

II. JET DISRUPTION PREDICTORS 

JET is the largest operating tokamak at the moment, and the 

closest reference to ITER. Experiments taking place in JET 

will help in the development of ITER. With regard to 

disruptions, only two kind of disruption predictors are 

currently implemented in JET: the ones based on threshold 

cross detection and the Advanced Predictor Of DISruptions 

(APODIS), based on a Support Vector Machine classifier. 

A. Threshold predictors 

The threshold based predictors are used upon several 

plasma signals, as the plasma current, the locked mode (LM) 

signal, or the restraint ring loop signal. The latter two are used 

both normalized to the plasma current and non-normalized. 

This predictor triggers the disruption alarm when the any of 

the signals crosses a certain threshold. This threshold is set-up 

individually for each one of the signals. The value is manually 

chosen prior to the discharges, in a way that the threshold will 

be lower and more restrictive for discharges with greater 

potential danger of the possible disruptions produced. 

Currently these predictors conform the basic disruption 

predictor system used in JET, used to trigger the disruption 

mitigation system in all JET discharges. However, this 

predictor relies on a manually chosen threshold. This method 

could lead to miss the disruption or detecting it too late if the 

threshold was set to high, or also to trigger false alarms if the 

threshold was set too low. 

B. APODIS 

APODIS predictor is based on Support Vector Machine 

(SVM) approach. As explained before, machine learning 

methods, including SVM, are trained using data from past 

discharges. This training allows the predictor to split the 

multidimensional feature space formed by signals utilized in 

the training into safe zone and disruptive zone. APODIS was 

trained using the data of seven signals (including the LM) of 

almost 10,000 JET discharges between April 2007 and 

October 2009 (JET C wall). This training required more than 

900h of CPU time in a high performance computer. The 

success rate of APODIS in the campaigns from C28 to C34 is 

around 84%.  

III. SPAD PREDICTOR 

In this section the algorithm implemented will be briefly 

explained as well as MARTe, the framework used for its 

implementation and integration in JETs RTDN. After that, the 

implementation of each of the algorithm steps will be 

explained in detail, including the optimizations and 

parametrizations implemented. 

A. Algorithm description 

As mentioned before, SPAD predictor detects abnormal 

behavior in a signal to trigger the disruption alarm. More 

precisely, SPAD uses one of the signals also used for 

threshold based disruption prediction, the LM signal. This 

signal is closely related with the disruptive behavior and the 

predictor shows a good relation between anomalies in the 

Fig. 1 Representation of the two Haar Wavelet Transform Approximation coefficients for non-disruptive (a) and disruptive (b) discharge as a feature vector in 

a bidimensional space. Wavelet transform level 4 applied to Locked Mode signal sampled at 1 kHz in 32 sample windows updated every 2 ms. (a) During 

safe phases of a discharge the vectors are distributed in a compact cluster with positive covariance. (b) Disruptive phases presents outliers with respect the 
compact cluster. Due to the covariance among the members of the cluster, the outliers can be detected better using the Mahalanobis distance. 
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signal and the disruptions. The LM signal is read every 1ms 

and the latest 32 samples are processed every 2ms. The 

predictor uses the time and frequency information of the LM 

obtained by means of a wavelet transform. In particular, the 

approximation coefficients of the Haar Wavelet transform are 

used. These coefficients are used as a feature vector. The 

representation of this vector as a point in a multidimensional 

space shows that in non-disruptive discharges and in the non-

disruptive phases of a disruptive discharge the feature vectors 

are distributed in a compact cluster, while in the disruptive 

phase of a discharge this vectors are far from the original 

cluster. Fig. 1 shows the representation of these vectors for the 

case of two dimensional feature vectors. Due to the obvious 

positive covariance present among the feature points of the 

cluster, the Mahalanobis distance method was chosen to 

measure the distance of a point with respect to the centroid of 

the cluster. Finally, an outlier factor is calculated using 

statistical measures of the Mahalanobis distance during the 

discharge as standard deviation and mean. The disruption 

alarm will be raised when the outlier factor surpasses a certain 

threshold. Analysis over all JETs ITER-like Wall (ILW) 

campaigns show good detection results when setting this 

threshold to 10 for all the discharges. 

B. MARTe 

MARTe is a framework originally developed for JET real-

time applications and now in use in several fusion devices as 

RFX, COMPASS, ISTTOk, and FTU [20-22]. The main 

objective of MARTe is to abstract an implementation from the 

plant hardware and software interface with plant input/output 

system. It also provides tools for real-time thread scheduling, 

offline and online validation, and an architecture allowing 

code reuse and easy maintainability.  

MARTe applications consist of a set of Generic Application 

Modules (GAMs) connected by means of the Dynamic Data 

Buffer (DDB). Each GAM can read and write an arbitrary 

number of data from the DDB. Special GAMs might be used 

to perform Input/Output task, as sample signals from the 

RTDN or send the alarm value to the RTDN. GAMs are 

executed inside threads managed by the real-time scheduler. 

Communication and synchronization between the GAMs 

executed in different threads is also possible. An example of a 

MARTe application structure and how are they integrated with 

JETs RTDN and persistence system is depicted in Fig. 2. The 

number of threads, their timing, or the distribution of GAMs 

among the threads is completely configurable. In runtime, the 

real-time executor will run periodically the GAMs of each 

thread in the order specified.  

This architecture allows the modularization of an algorithm 

in a set of GAMs, each one of them can be easily reused in 

other application. Modifications of a specific GAM (e.g. for 

improve the performance) are also possible and can be done 

without modifying the rest of the GAMs as long as the 

interface (the DDB data read and write) still invariable. 

C. SPAD GAMS 

The implementation of the SPAD predictor for MARTe is 

depicted in Fig. 3. This implementation required the 

development of six GAMS: ThresholdGAM, 

Fig. 3 Diagram of SPAD implementation in MARTe. GAMs are executed in 
order from top to bottom. 

 

Fig. 2 Schema of typical MARTe application and its integration into JETs 

RTDN and persistence system. 
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SlidingWindowGAM, HaarAppCoef1DGAM, 

MahalanobisGAM, OutlierFactorGAM, and 

SPADAlarmGAM. It also uses standard MARTe GAMs for 

reading the plasma current and locked mode signals from the 

RTDN as well as writing the alarm value also in the RTDN. In 

the verification and validation phase these signals were read 

from JETs Pulse Files (JPFs). JPFs will be also used to store 

all the intermediate data used in the algorithm for future 

analysis of the predictor behavior. All these GAMs are 

executed sequentially in a single thread. As in the original 

algorithm the LM signal is read every 1ms, the thread and 

therefore all SPADs GAM must be processed in less than 1ms. 

One important thing to mention is that every GAM 

configuration detailed in the next sub-sections is done in the 

initialization phase, and it cannot be changed in runtime. That 

allows to perform some calculations and all the memory 

allocation in the start-up phase. 

1) ThresholdGAM 

This GAM controls that the rest of GAMs do not perform 

any operation until the initial phase of the plasma has finished. 

The reason behind this is that the value of the LM signal can 

have strange behavior at the beginning of a discharge. The 

startup phase is considered finished once the plasma current 

reaches a certain configurable threshold, typically 750kA. 

Therefore, this GAM just compare the input value with a 

configurable threshold and enable an output signal to the DDB 

when the condition is met. This output will be an input for the 

rest of the GAMS, which will do nothing but reset themselves 

to the initial status when the signal is disabled. 

2) SlidingWindowGAM 

This GAM will produce the input for the Haar Wavelet 

transform. The GAM stores the input internally, in this case 

the LM signal, and produces an output with a set of the latest 

values of the signal. This set of values will be called 

“window”. Both the size of the window (i.e. the number of 

latest values returned) and the update rate of the window (i.e. 

the slide) are completely configurable. A secondary output 

named “New Window” will be enabled when a new window is 

available. For the implementation of SPAD, the GAM is 

configured with a window size of 32 elements updated every 2 

cycles. Fig.4 shows an example of how the signal will be 

grouped in these sliding windows. As the thread is executed 

every 1ms, the SlidingWindowGAM will produce a new 

window every 2ms containing the latest 32 samples of the LM 

signal, or what is the same, the values of the LM signal during 

the last 32ms reading the latest value of the signal every 1ms. 

3) HaarApp1DCoefGAM 

This GAM will calculate the Haar Wavelet transform 

approximation coefficients of each new window returned by 

the SlidingWindowGAM. The application of the Haar 

Wavelet transform (H) to an even vector X of size n produces 

n coefficients, being the half of them approximation 

coefficients (HApp) and the other half detail coefficients (HDet) 

as shown in  the equation (1). 
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The same operation can be performed successively over the 

approximation coefficients to obtain the transform next level 

coefficients. Fig. 5 shows how the Haar Wavelet transform is 

applied to a vector of 32 elements to obtain the level 4 

coefficients. The HaarApp1DCoefGAM calculates the Haar 

Wavelet transform approximation coefficients for any even-

sized input array. The transformation level applied is 

configurable but it must be take into account that the next 

level of the transform can only be applied if the number of 

previous level approximation coefficients is even. This 

condition is checked at the GAM initialization phase. To 

reduce the computational effort, the details coefficients are not 

calculated, and the approximation coefficients are calculated 

in one step instead of applying consecutively (1). 
 

4) MahalanobisGAM 

This GAM calculates the Mahalanobis distance between the 

current feature vector and the centroid of all past feature 

vectors in a multidimensional space. The Mahalanobis 

distance (DM) is defined as (2).   

 

   

Fig. 5 Explanation of the process for obtaining Haar Wavelet Transform 

coefficients over several iterations of the transform. In SPAD, only the 
approximation coefficients will be used. 

 

Fig. 4 Explanation of packaging signal samples in sliding windows. Example 

of the distribution of samples in windows of 32 elements sliding each 2 

elements. 
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In this case, the feature vector used as input will be the 

vector containing the Haar approximation coefficients (HApp). 

This equation includes the mean (µ) and the covariance matrix 

(∑) of a set of feature vectors which number increase during 

the discharge. If the mean vector and the covariance matrix 

were calculated from scratch each cycle, not only the memory 

but also the computation time will increase each cycle, making 

the implementation not suitable for long discharges. Instead of 

that, partial sums and products are stored in such a way that 

both the computation time and the memory usage scale only 

with the size of the feature vector and remains bounded for all 

the discharge. This optimization was carefully reviewed and 

tested as this kind of operations can induce rounding errors. 

5) OutlierFactorGAM 

This GAM calculates the outlier factor (OF) of the current 

feature vector using (3). Similar to the MahalanobisGAM, the 

standard deviation (σ) and mean (µ) appearing in (3) must be 

calculated with respect to the set of all previous Mahalanobis 

distance values in the discharge. The approach implemented in 

this GAM is comparable with the one in MahalanobisGAM, 

consisting in the storage of partial sums and products in order 

to make the execution time independent of the number of 

Mahalanobis distances previously calculated. 
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6) SPADAlarmGAM 

This GAM triggers the alarm in case of anomaly detection. 

The anomaly is detected when the outlier surpasses a 

configurable threshold at the same moment that the LM signal 

reaches a global maxima. Therefore, this GAM must keep the 

current LM global maxima as well as compare the current 

outlier factor with the configured threshold. 

IV. RESULTS 

The presented implementation has been validated using the 

data from all JETs safe and unintentional disrupted discharges 

in the range of 82460-87918. These correspond to all JET 

campaigns with the ILW from 2011 to 2014. This set contains 

566 unintentional disruptive discharges and 1738 safe 

discharges. The comparison of the detection results of the real-

time MARTe implementation and an equivalent 

implementation in MATLAB free of optimizations showed 

that the optimizations did not affect the behavior of the 

triggered alarm. The test environment for the validation was a 

computer with an i7 4790 (4 cores, 2 threads/core, 3.6 GHz) 

CPU and 16 GB of RAM running a Red Hat Enterprise Linux 

6.5 with a Vanilla Linux Kernel. In the validation, each 

discharge was simulated using LM and plasma current data 

obtained from JPFs.  For all the discharges, the GAMs where 

configured as follows. The plasma current threshold to start 

the predictor was 750 kA. The latest available value of LM 

signal was read every 1 ms and processed every 2ms in time 

windows containing the latest 32 samples. Several Haar 

Wavelet transform levels were tested, including from level 1 

(16 approximation coefficients) to level 4 (2 approximation 

coefficients). The outlier factor threshold was set to 10 for all 

the discharges. 

A. Detection results 

Table I shows the detection results for the configuration 

described above. Disruption detections triggered 1.5 s before 

the disruption are considered “Premature alarms”, as they are 

not considered true predictions. “Valid alarms” are considered 

those which were triggered between 1.5 s and 10 ms, as 10 ms 

is the minimum time to apply properly the disruption 

mitigation techniques. “Tardy detections” are those triggered 

with less than 10 ms in advance, as is already too late to apply 

the mitigation techniques properly. If the alarm was trigger 

after the disruption or was not triggered at all in a disruptive 

discharge is considered a “Missed alarm”. Those cases where 

the alarm is triggered and no disruption occur are classified as 

“False alarms”. False alarms are an important issue, as the 

TABLE I 
SPAD DETECTION RATES COMPARISON USING DIFFERENT FEATURE VECTOR 

SIZE 

TABLE II 

SPAD, APODIS, AND LMPT DETECTION RATE COMPARISON 

Fig. 6 Representation of the accumulative fraction of detect disruptions with 

regard to total disruptions during all JETs ILW campaigns. 
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triggering of the mitigation techniques will end with the 

discharge. In that cases, if SPAD was directly connected to the 

disruption mitigation systems, this false alarms would have 

ended safe plasma discharges prematurely without reason, 

with the waste of time and resources that comes along. 

Table II and Fig. 6 represents the comparison of SPAD with 

Locked Mode Predictor based on a Threshold criterion 

(LMPT) and APODIS using the same classification criteria. 

With more than 83% of valid alarms, SPAD slightly 

outperforms APODIS detection results (79.15%), while LMPT 

remains with only 63.96% of valid alarms. 

Fig.7 (a) shows the evolution of the SPAD outlier factor for 

the disruptive discharge 82960. There can be observed that the 

outlier value remains very low until the very end of the 

discharge, when the disruption occurred. In Fig.7 (b) the 

values of the LM signal and the outlier factor are shown in 

detail, including SPAD and APODIS detection time. LMPT 

missed this disruption because the increase in the LM signal 

occur very close to the disruption and the threshold was set too 

high. 

B. Execution time and computational complexity 

The execution time was measured using MARTe tools. 

Fig.8 shows a breakdown by GAMs of the average cycle 

execution time for all the test set with a confidence level of 

97%. The confidence level is given by adding to the mean 

time value three times the standard deviation. The GAM 

requiring more execution time is the MahalanobisGAM, what 

is reasonable due to the calculation of inverse covariance 

matrix and the vector-matrix-vector multiplication needed to 

obtain the Mahalanobis distance. The maximum execution 

time measured during this analysis was 26.9280 us. This big 

difference between mean and maximum time can be explained 

with operative system interruptions, as the test platform was 

not running a real-time operative system. Other reason 

contributing to this difference is the calculation of the inverse 

covariance matrix in the MahalanobisGAM, as this is solved 

using the LUP-factorization. 

V. CONCLUSIONS AND FUTURE WORK 

A real-time disruption predictor has been successfully 

Fig. 7 Representation of the behavior of SPAD outlier factor in the discharge 82960. (a) shows the value of the outlier factor during the whole discharge. (b)    
depict the comparison between Locked Mode signal and the outlier factor moments before the disruption as well as the moment when SPAD and APODIS 

predict the disruption. LMPT missed this disruption. 

 

Fig. 8 SPAD GAM average cycle execution time for a confidence level of 97%. The execution time confidence level is given by adding three times the standard 

deviation to the mean. The test set was all JET safe and non-intentional disruptive discharges with ITER-like Wall (C28-34). The test computer consist of a i7 
4790 (4 cores, 2 threads/core, 3.6 GHz) with 16 GB of RAM running an Red Hat Enterprise Linux 6.5. In the chart can be observed that the total cycle 

execution time is far from the maximum allowed for the proper execution of the algorithm (1 ms). 
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implemented using MARTe framework. The use of this 

framework allows the easy integration in JETs RTDN. The 

validation of the algorithm against all JETs safe and 

unintentionally disrupted discharges with the ITER-like Wall 

reveal better prediction results (83.57% of valid alarms) than 

APODIS and LMTP. Several optimizations were developed 

with respect to the original algorithm for making the execution 

time dependent only of the dimensionality of the problem and 

not of the pulse duration. The implemented algorithm do not 

need data from previous discharges, what can be very useful 

for new devices, after an upgrade in an existing machine, and 

when the plasma operation parameter changes drastically. 

Other important fact is that there is no need of change the 

configuration depending on the discharge characteristics. The 

performance of the algorithm have been measured in a test 

environment, probing its suitability for a real-time system. 

Among the possible improvements for the predictor, one of 

the most important is to reduce the number of false alarms. 

Currently there is work been done to identify the causes of 

these false detections and decrease its number at least to the 

percentage estimated valid for ITER (<5%). However, 

disruptions can heavily damage the machine, and SPAD could 

have save the machine from numerous disruptions not 

detected by the LMPT.  

Other line of work currently active is the identification of 

more signals to be added in the SPAD algorithm. The addition 

of relevant signals related with the root causes of the 

disruption could improve the detection results or reduce the 

false alarm ratio. Other possible enhancement it is the 

estimation of the optimal threshold for the outlier factor 

dynamically during the discharge. 

With respect to the execution time, the current 

implementation is good enough for the process of one signal 

with the extraction of 8 Haar approximation coefficients. 

Nevertheless, the addition of a second or third signal with its 

corresponding approximation coefficients could make the 

dimensionality of the covariance matrix too big for the current 

implementation, not been able to process it in less than 1 ms. 

To solve this, better approaches for the calculation of the 

inverse matrix and the vector-matrix-vector product required 

by the Mahalanobis distance can be studied and implemented. 
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