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Abstract.  Building the scientific foundations needed to develop fusion power in a timely way can be 
facilitated not only by familiar “hypothesis-driven”/ first principles approaches but also by engaging modern big-
data-driven statistical methods featuring machine learning (ML) -- an exciting R&D approach that is 
increasingly deployed in many scientific and industrial domains.  An especially time-urgent and very 
challenging problem facing the development of a fusion energy reactor today is the need to deal reliably with 
large-scale major disruptions in magnetically-confined tokamak systems such as the Joint European Torus (JET) 
today and the burning plasma ITER device in the near future.  Significantly improved methods of prediction 
with better than 95% predictive capability are required to provide sufficient advanced warning for disruption 
avoidance or mitigation strategies to be effectively applied before critical damage is done to the machine.  The 
supervised machine learning classification technique featured in Support Vector Machines (SVM’s) has been 
further advanced to this end and will be presented in this paper together with early results from ML studies 
utilizing multi-dimensional signal data to initiate the development of cross-machine-portable predictors. 
Working on it’s repository of the most important and largest (nearly a half petabyte and growing) data base of 
fusion-grade plasmas, JET’s statistical scientists have successfully deployed ML software interfaced with the 
large JET data base over the course of the past 7 years.  This has produced encouraging results involving 
primarily the application of the SVM approach.  The goals for the present investigations are to:  (i) achieve 
greater predictive reliability by improving the physics fidelity of the classifiers within the “supervised” ML 
workflow; and (ii) establishing the cross-machine portability of the associated software beyond JET to other 
current tokamak systems and to ITER in the future.  In order to so, it will be necessary to address the more 
realistic multi-dimensional, time-dependent, and much larger complex data instead of the simpler zero-
dimensional, temporal data considered at present in all of the JET ML studies.  

1.  Introduction 
The deployment of modern big-data-driven statistical methods featuring machine learning 
(ML) provides a powerful and exciting complement to traditional “hypothesis-driven”/ first 
principles approaches to delivering the scientific foundations needed to develop fusion power 
in a timely way. An especially time-urgent and very challenging problem facing the 
development of a fusion energy reactor today is the need to reliably mitigate and avoid large-
scale major disruptions [1-3] in magnetically-confined tokamak systems including the Joint 
European Torus (JET), which achieved near-breakeven (0.8) conditions and the burning 
plasma ITER device currently under construction with the goal of exceeding breakeven by a 
factor of 10 or more.  Disruptions are major macroscopic events generating massive thermal 
and electromagnetic loads as the plasma's thermal energy and current dissipate in a time on 
the order of tens of milliseconds (ms). The potential damage from severe impulsive heat loads 
to the surfaces of the machine can cost the ITER project hundreds of millions of dollars to 
remediate.  Avoiding or at least mitigating them is critical because this device can sustain at 
most a very small number of full current disruptions.  The international fusion mission must 
accordingly accelerate progress toward achieving the capability to reliably avoid such events 
with better than 95% predictive capability [2]. 
Promising tools from advanced ML methods for successfully preventing damage from 
disruptions come from the two associated categories: (i) avoidance as the plasma evolves 
toward an unstable state where a disruption would occur; and (ii) mitigation to minimize 
damage to the machine as the plasma heads toward a disruption that cannot be controlled to 
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entirely avoid it.  For example, mitigation techniques include ejecting large quantities of 
impurities into the plasma to radiate away some of the energy before it is expelled from the 
core onto the walls [4]. Of course, avoidance and mitigation strategies are only effective if an 
oncoming disruption is predicted enough in advance for the appropriate action to be taken. 
While a large quantity of experimental disruption data exists, no “hypothesis-based”/first-
principles models can currently capture the complex evolution of a disruption with sufficient 
accuracy and early enough warning (at least 30 ms before the event).  In addressing this 
formidable challenge, increasing attention is being directed toward modern methods of 
statistical prediction via Machine Learning (ML) which have become increasingly prominent 
in many domains of science and industry. The ML Support Vector Machine (SVM) approach 
in particular has exhibited significant promise with analysis of zero-D time traces of the very 
large disruption-relevant JET data base [5,6].  In the current paper, we initiate for the first 
time consideration of multi-dimensional profile information as a predictor input.  Initial 
results utilizing the 1D electron temperature profiles from electron-cyclotron emission (ECE) 
measurements from JET are provided.  In addition, progress is reported from the testing of 
dimensionless parameters to assess the potential for developing a cross-machine-portable 
predictor. 

More generally, this paper will present results from new developments in the testing of ML-
based-methodologies – an exciting R&D approach that is increasingly deployed in many 
scientific and industrial domains -- to help provide much-needed guidance for disruption 
avoidance with focus on JET.  Working on this repository of the most important and largest 
(nearly a half petabyte and growing) data base of fusion-grade plasmas, JET statistical 
scientists have successfully deployed ML software interfaced with the large JET data base 
over the course of the past several years [5,6].  This has produced encouraging results 
involving primarily the application of the support vector machine (SVM) approach [7,8].  
The goals for the present investigations are to:  (i) achieve greater predictive reliability by 
improving the physics fidelity of the classifiers within the “supervised” ML workflow; and 
(ii) establishing the portability of the associated software beyond JET to other current 
tokamak systems and to ITER in the future.  In order to so, it will be necessary to address the 
more realistic multi-dimensional, time-dependent, and much larger complex data instead of 
the simpler zero-dimensional, temporal data considered at present in all of the JET ML 
studies.  Associated challenges in delivering higher physics-fidelity classifiers needed to 
enable establishing portability of the predictive software when applied to MFE systems 
different than JET will be presented.  In addition, it is expected that deployment of such 
improved ML software will need to be accordingly upgraded from current modern clusters to 
much more powerful leadership class supercomputers.  This paper will include:  (i) a 
description of a new workflow developed for our “supervised” ML SVM approach; (ii) results 
from associated applications – including profile information -- to the increasingly larger JET 
disruption-relevant data base; and (iii) highlights of current progress as well as key obstacles 
for this major big-data machine-learning problem.  Scientific/technical progress achieved 
that will be discussed include: 

• Systematic exploration (via MDS+ tree) of the JET disruption data base of associated 
signal and video data – enabled by formal approval of the EUROfusion JET leadership; 
• Rewrite of SVM cross-validation routines now self-contained within Matlab, eliminating 
excessive file I/O and improving performance time by 100x; 
• Description of PPPL’s SVM software “Disruption Predictor Feature Developer (DPFD)” 
that is interfaced with the JET data base, including positive results from benchmarking vs. 
results obtained using JET’s “Advanced Predictor of Disruptions (APODIS)” for zero-D time 
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traces of both Carbon-wall and ITER-like-wall (ILW) cases.  

• Description of collaborative studies with the CS/Applied Math experts at ORNL and Stony 
Brook University in exploring alternative methods for improving the selection of classifiers 
that have indicated: (i) clustering based on deterministic annealing is a promising approach in 
that it does not require a pre-determined number of clusters; and (ii) systematic examination 
of multi-dimensional image data (e.g., from ECEI measurements and also fast cameras) can 
provide additional information that improves prediction results since it contains spatial 
information that should be exploited.  

• Discussion of new results from initial ML studies that include electron temperature profile 
information indicating that since latent patterns emerge when additional signals (different 
from the set used to date), significant improvements to the algorithms can be achieved. 

2.0  SVM Model 

The classification methodologies of “supervised” (as opposed to “unsupervised”) machine 
learning provide an attractive interdisciplinary connection between advanced statistical 
analysis and an important domain physics application such as the problem of disruption 
prediction.  A supervised ML approach is a natural choice because our plasma physics 
knowledge base provides us with insights into the development of appropriate classifiers for 
the ML workflow. For supervised classification we start with a set of data that we know 
corresponds to a disruptive plasma and another set of data that we know corresponds to a non-
disruptive plasma. When combined, the data forms our training set. This training set in turn is 
used to generate a model that can classify new data as being either disruptive or non-
disruptive.  In the context of our disruption problem, the disruptive or non-disruptive state of 
a plasma can be described by a combination of signals known as a “feature vector.”  The 
objective of classification is to determine a decision function that will tell us whether a 
particular feature vector represents a disruptive or non-disruptive plasma. After using the 
training set to generate the decision function, a testing set is then used to assess the function's 
ability to classify new data.  The SVM approach provides a very suitable methodology to 
tackle such a problem [7,8]. In a simple case the decision function is a hyper-plane which 
separates the disruptive and non-disruptive points in the feature space. However, this would 
only be appropriate if the data were linearly separable.  Since this is clearly not the real-
world situation, a mapping function is used to transform the data to a higher dimensional 
space where it theoretically can be linearly separated.  The goal here is to find the hyper-
plane that evenly divides the widest margin of separation between the disruptive and non-
disruptive points. To do this, the SVM optimization process identifies a set of support vectors, 
which bound the maximized margin between the two states. Since it is still unlikely, even in 
this higher dimension, that there exists a hyper-plane capable of perfectly separating the data, 
a penalty is placed on points near the boundary. Decreasing the penalty allows a larger 
number of points to exist inside the margin, but is potentially more robust in making 
predictions with larger amounts of new data. Multiple values of this so-called “box 
constraint” parameter need to be tested to find the most accurate model. 

3.0  Previous Work 

The use of SVM’s for tokamak disruption prediction by Cannas et al, [9] was motivated by 
the aim of identifying a statistical method more robust than neural networks at that time [10]. 
This involved 9 diagnostic signals from JET that included: plasma current, locked mode 
amplitude, radiated power, plasma density, input power, internal inductance, safety factor, 
poloidal beta, and plasma centroid vertical position. As a standard, each signal is normalized 
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individually over the entire data set to the interval [0,1] so that no particular signal plays a 
more significant role in the analysis to be completed. The SVM training was carried out only 
with signals from disruptive shots in these investigations – working under the premise that a 
non-disruptive shot would look the same as the stable phase of a disruptive shot.  These 
initial investigations of the application of SVM methodology were subsequently improved in 
the research carried out at CIEMAT for predicting disruptions in JET by Rattá et al. [11] who 
increased the set of diagnostic signals from the original nine to include time derivatives of the 
poloidal beta, the plasma internal inductance, and the stored diamagnetic energy. 
Additionally, instead of including the radiated power, the net power (total - radiated) was 
used. They examined 30 ms time windows of signal data with a 1 ms (interpolated) sample 
rate “as a compromise between time resolution and capability to show plasma tendencies,” -- 
thereby forming feature vectors with 390 attributes each. The data set used included an equal 
number (220) of disruptive and non-disruptive shots, which were randomly sampled for the 
training and the remainder used for the testing. It is also significant to note that these studies 
introduced the idea of considering the time evolution of the feature vectors in the prediction; 
i.e., separate SVM models were trained to identify consecutive time intervals preceding a 
disruption. For example, a set of three models would be trained to identify disruptions [-120,-
90] ms, [-90,-60] ms, and [-60,-30] ms before the disruption. After sequential data analysis by 
this first tier of SVM, the output of each was fed to a second tier SVM model. This second 
tier then gives a final decision on whether the plasma is disruptive or not. While the first-tier 
models are trained using the radial basis function (RBF) kernel, the second-tier model is 
trained with a linear kernel. After testing in sequences of up to 8 first-tier models, it was 
decided that a sequence of 3 predictors is optimal. This new predictor proved to be a 
significant advance since it was shown to outperform the mode-lock sensor on JET and can be 
considered the foundational step for the current Advanced Predictor of Disruptions (APODIS) 
software [11,12]. Genetic algorithms were employed as a method of feature extraction, and it 
was determined that in addition to the FFT representations used in earlier work, the mean of 
the signal samples on each 30 ms interval was also useful.  
At present, APODIS [12,13] feature vectors now contain 14 elements with the signal set  
reduced to seven signals including plasma current, mode lock amplitude, plasma internal 
inductance, plasma density, time derivative of stored diamagnetic energy, radiated power, and 
total input power – with each signal having two representations [i.e., the mean value and the 
standard deviation of positive FFT components (excluding the first)]. The time interval of the 
feature vectors was also changed to 32 ms (still with 1 ms sampling).  APODIS has reported 
that ~90% of disruptions are correctly identified and 5% of non-disruptive shots giving false 
alarms – all at 30 ms before an observed disruptive event.  
4.0  Disruption Predictor Feature Developer (DPFD): A New Development Tool 

In order to help efficiently assess the ability of diagnostic signals to enhance the SVM 
prediction of disruptions, a new code has recently been developed at PPPL. This Disruption 
Predictor Feature Developer (DPFD) is a set of Matlab scripts which amount to about 2000 
lines of code, and therefore is very accessible for new developers and users and has recently 
been made available to those interested. These scripts can be used for everything from 
producing feature vectors from raw signal data to actually training and testing a two-tiered 
SVM disruption predictor. Since DPFD can be used to quickly evaluate whether or not the use 
of new features improves the performance of a predictor, there are two simplifications made 
to the APODIS approach. DPFD offers a reduced training time compared to APODIS by 
training with a much smaller data set. By selecting 3 disruptive and 3 non-disruptive training 
samples from each of several hundred disruptive shots, DPFD uses approximately 1000 
samples for disruptive and non-disruptive classes each. APODIS uses about 1000 disruptive 
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samples and 2 million non-disruptive samples from non-disruptive shots [12]. The SVM 
training process is very compute-intensive, and training with such a large data set requires a 
cluster to work on. The use of a small training set allows DPFD to be run on a personal 
computer in a few minutes.  Positive results from benchmarking DPFD vs. results from 
APODIS are illustrated on Fig. 1. 

FIG. 1: New DPFD ML Software trained with ~2,000 data samples from JET with similar prediction 
performance to JET’s APODIS code trained with ~2,000,000 data samples. Increased “false” alarms 
allow associated chains to be analyzed for useful additional information on disruption precursors. 
5.  Analysis of Dimensionless Parameters 
To develop a machine-portable predictor, it is important to work with dimensionless 
quantities. Toward this objective, prediction performance comparisons are were initiated 
between the 5 normalized (N5) signals listed in Table 1 vs. the original 7 (O7) signals used by 
APODIS.  We began with the O7 signals and tested 189 combinations of the two SVM free 
parameters. Selecting a combination with reasonable performance, we then used these 
parameters with the N5 signal set. In all cases, we trained with data from the Carbon-Fiber 
Composite (CFC) campaigns and tested with data from the ITER-like wall (ILW) campaigns. 

Overall, it was observed that there was a degradation in the disruption prediction rate by about 
20% in going from the original (O7) to the normalized N5 results -- and also a small increase 
in the false alarm rate. As a first test, this could be expected, since in moving from 7 signals to 
5 signals, some of the important disruption features were likely to have been lost. To assess 
this more carefully, we began with the O7 signals and replaced them individually by their 
normalized counterparts. In doing so we were able to acquire a number of useful “lessons 
learned” conclusions about the normalization choices made in developing the N5 signals. 

 
TABLE 1: Normalized parameters used as inputs to DPFD 

First, the mode lock normalization proved a poor choice that significantly degraded the 
predictor’s ability to identify disruptions. In follow-on work, a more appropriate 
normalization based on the poloidal field will be investigated. Regarding the choice of 
normalization for the plasma current, neither significant improvement nor degradation of 
predictive performance was observed -- thereby suggesting that this may be an 
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adequate/benign choice. Using the Greenwald density fraction as a substitute for both the 
density and plasma current proved to be a very favorable filter for disruptions. While the 
overall disruption prediction rate decreased by 25% (due to some of the other normalization 
choices just noted), the false alarms were strongly suppressed. Finally, results of these tests 
indicated that the radiated power fraction was not a good substitute for the three power signals 
used previously. This is not particularly surprising since the information from the previously 
used three signals is now contained in one. However, when we substituted the radiated power 
fraction for each of the three power signals individually, it was still found that important 
features of those signals are not captured by the fraction. This suggests that the radiated power 
fraction is not a viable substitution for the radiated power and that other dimensionless 
normalization choices need to be considered for selection.  

6.  1D ECE Temperature Profile Studies 
Since previous work in disruption prediction had only utilized 0D “time trace” signals as 
inputs, one of the key objectives in our work is to explore enhancing the physics content of 
the supervised ML classifiers via possible incorporation of higher dimensional profile 
information into a predictor. We began by examining 1D radial profiles of electron 
temperature obtained form the JET data base. In order to systematically develop features from 
this profile information for every shot examined, we used the temperature projected onto the 
major radius ranging from just inside the magnetic axis to about half the plasma radius. This 
radial domain was then split into 13 individual temperature measurements from which to 
produce features. In the same way as the previous signals were examined, we took the mean 
of the signal and also the standard deviation of the positive FFT components. This was done 
both for the temperature as well as the temperature gradient computed at 11 points in this 
domain.  
Using this temperature information, we performed two types of tests. For the first type, we 
took the O7 signals and added a temperature and a temperature gradient measurement for all 
13 temperatures and all 11 gradients. The second test was to take the O7 signals and add all 
13 temperature and/or all 11 gradients at the same time. In the first attempt with the 
temperature measurements, it was found that none of the individual temperatures had any 
significant affect on the prediction performance. However, when all 13 measurements were 
added at once the false alarm rate spiked considerably. This is evidence of the so-called 
“curse of dimensionality,” where the addition of many new dimensions to a problem can 
decrease the statistical significance of any given data point and make it extremely challenging 
for the predictor to create a meaningful model. After this first attempt, a stricter box constraint 
parameter was applied and the test redone. With these new parameters it was found that in 
certain specific radial locations, the temperature and/or the temperature gradient improved the 
prediction performance as evidenced by increased suppression of alarms. Near future 
investigations will target more careful examination of the significance of these radial 
locations in terms of disruption characteristics.   

7.0  Alternative Approaches 

In addition to improving the SVM-centric R&D advances discussed in this paper, our overall 
work-scope for predictive disruption investigations, will increasingly engage very promising 
alternative approaches including the following: (i) Deep Learning [14]: Promising new results 
that use the recurrent neural net (RNN) version of deep learning have now been achieved with 
comparable success level to SVM -- with the associated progress benefiting from cross-
benchmarking results against those from extensive SVM-based investigations based on the 
same set of scalar signals as used in our on-going SVM DPFD studies; (ii) Deterministic 
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Annealing Generative Topographic Mapping [15]: As a complementary approach to SVM 
and convolutional neural networks, DA-GTM has been developed as a method to reduce 
dimensionality and enable discovery of the abstract or hidden structures of high-D 
observational data. Progress made in applying DA-GTM to fusion disruption data have 
already yielded improved understanding of clustering features and accordingly provide 
insights into building improved classifiers dealing with higher-D signals. This provides an 
alternative approach whereby the outputs from DA-GTM can be used as an input for SVM; 
and (iii) Large-Scale Image Analysis [16]: Fast-image recognition statistical methods have 
been applied to fast camera JET data that have produced some promising early results that 
were enabled by leveraging successful R&D carried out by our collaborators on challenging 
biomedical imaging tasks.  A more detailed discussion of these results from the three 
stimulating alternative approaches described here will be included in planned future reports. 
8.  Concluding Comments 

Exciting opportunities involving the application of advanced statistical techniques such as 
machine learning (ML) hold great promise for accelerating progress in dealing with some of 
the biggest challenges facing fusion energy development – highlighted at present by 
disruptions. The combination of the increasing variety of ML methodologies enabled by 
modern technology together with the huge amount of experimental data (~ petabyte and 
beyond globally) clearly suggest that proper utilization of current and future supercomputing 
facilities is an exciting resource to leverage.  Within the context of progress highlighted in 
this paper, there exist very promising physics-based classification opportunities in identifying 
higher dimensionality features to improve predictive capability as well as portability of the 
associated software.   While previous work based on a combination of intuition and basic 
statistics have fuelled the existing development of features used for predicting disruptions via, 
for example, SVM methodology, there is significant head-room for improvement in 
delivering physics-based disruption identification methods to help provide a much-needed 
highly reliable toolset for ITER -- which can only tolerate a small number of disruptions 
during high-performance DT operation [17].  Looking into the near future, we believe that 
advances in disruption prediction should include the R&D goal/vision of leading to 
development of new experimental control paradigms that will be needed to monitor and 
maintain large-scale thermonuclear plasma stability in fusion reactors.  
References 
[1] FC Schuller. Disruptions in Tokamaks. Plasma Physics and Controlled Fusion, 37(11A):A135, 1995. 

  
[2] PC DeVries, Survey of Disruption Causes at JET, Nuclear Fusion 51: 053018, 2011. 

[3] TC Hender, JC Wesley, J Bialek, A Bondeson, AH Boozer, RJ Buttery, A Garofalo, TP Goodman, RS 
Granetz, Y Gribov, et al. MHD stability, operational limits and disruptions. Nuclear Fusion, 47(6):S128, 
2007.   

[4] EM Hollmann, PB Aleynikov, T Fülöp, DA Humphreys, VA Izzo, M Lehnen, VE Lukash, G Papp, G 
Pautasso, F Saint-Laurent, et al. Status of research toward the ITER disruption mitigation system. Physics 
of Plasmas (1994- present), 22(2):021802, 2015.  

[5] GA Rattá, J Vega, A Murari, G Vagliasindi, MF Johnson, PC De Vries, and JET EFDA Contributors. An 
advanced disruption predictor for JET tested in a simulated real-time environment. Nuclear Fusion, 
50(2):025005, 2010. 

[6] S Dormido-Canto, J Vega, JM Ramírez, A Murari, R Moreno, JM López, A Pereira, JET-EFDA 
Contributors, et al. Development of an efficient real-time disruption predictor from scratch on JET and 
implications for ITER. Nuclear Fusion, 53(11):113001, 2013. 



8  EX/P6-47 

[7] William H Press. Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge 
University Press, 2007.   

[8] Chih-Chung Chang and Chih-J Lin. LIBSVM: A library for support vector machines. ACM Transactions 
on Intelligent Systems and Technology, 2:27:1– 27:27, 2011.  

[9] B Cannas, RS Delogu, A Fanni, P Sonato, MK Zedda, JET-EFDA contributors, et al. Support vector 
machines for disruption prediction and novelty detection at JET. Fusion Engineering and Design, 
82(5):1124–1130, 2007.   

[10] C.G. Windsor, G. Pautasso, C. Tichmann, R.J. Buttery, T.C. Hender, JET EFDA Contributors and the 
ASDEX Upgrade Team.  A cross-tokamak neural network disruption predictor for the JET and ASDEX 
Upgrade tokamaks. Nuclear Fusion 45(5): 2005.  

[11] GA Rattá, J Vega, A Murari, JET-EFDA Contributors, et al. Improved feature selection based on genetic 
algorithms for real time disruption prediction on JET. Fusion Engineering and Design, 87(9):1670–1678, 
2012. 

[12] J Vega, S Dormido-Canto, JM López, A Murari, JM Ramírez, R Moreno, M Ruiz, D Alves, R Felton, 
JET-EFDA Contributors, et al. Results of the JET real-time disruption predictor in the ITER-like wall 
campaigns. Fusion Engineering and Design, 88(6):1228–1231, 2013.  
 

[13] J Vega, A Murari, S Dormido-Canto, R Moreno, A Pereira, A Acero, JET-EFDA Contributors, et al. 
Adaptive high learning rate probabilistic disruption predictors from scratch for the next generation of 
tokamaks. Nuclear Fusion, 54(12):123001, 2014. 
 

[14] Y LeCun, Y Bengio, and G Hinton. Deep Learning. Nature 521.7553, 436-444, 2015. 
 

[15] JYChoi, J. Qiu, M. Pierce, and G. Fox. Generative topographic mapping by deterministic annealing. 
Procedia Computer Science, 1(1):47--56, 2010. 
 

[16] G. Teodoro, T. Kurc, T. Pan, L. Cooper, J. Kong, P. Widener, et al., "Accelerating Large Scale Image 
Analyses on Parallel, CPU-GPU Equipped Systems," in 26th IEEE International Parallel and Distributed 
Processing Symposium (IPDPS), 2012, pp. 1093-1104. 2012. 

[17] PC De Vries, G Pautasso, D Humphreys, M Lehnen, S Maruyama, JA Snipes, A Vergara, and L Zabeo. 
Requirements for triggering the ITER disruption mitigation system. Fusion Science and Technology, 
69(2):471–484, 2016 

 
Acknowledgements:  The authors express their gratitude for the support provided for our 
research efforts at PPPL by the DOE-SC contract DE-AC02-09CH11466.  This work has 
been carried out within the framework of the EUROfusion Consortium and has received 
funding from the Euratom research and training programme 2014-2018 under grant 
agreement No 633053. The views and opinions expressed herein do not necessarily reflect 
those of the European Commission.  


