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Abstract:

Diamagnetic MHD equations and the corresponding Frieman-Rotenberg (F-R) equation
were derived to analyze MHD stability with the ion diamagnetic drift effect in rotating
tokamak plasmas. The MINERVA-DI code was developed to solve the F-R equation to
analyze the edge localized mode (ELM) stability in JT-60U and JET-ILW. It is found that
rotation in both toroidal and poloidal directions can destabilize ELMs, and this destabilizing
effect can minimize the stabilization effect due to the ion diamagnetic drift. These rotation
effects are indispensable for discussing the pedestal stability when the toroidal mode number
of the ELM is high as predicted in JT-60U and JET-ILW.

1 Introduction

In H-mode regime in tokamak plasmas, a large ELM, called type-I ELM, sometimes in-
duces large heat load to divertor periodically. Since the heat load is unacceptable for ITER
and DEMO reactors, it is necessary to predict precisely the threshold pedestal pressure
triggering the ELM. The threshold pressure has been predicted with ideal MHD stability
analysis, but recently, the type-I ELM in JET with ITER like wall (JET-ILW) can appear
even when the pedestal pressure gradient is about half of the numerical prediction[1, 2].
The toroidal mode number n of the ELM in JET-ILW is higher than that in JET with

∗See the author list of “Overview of the JET results in support to ITER” by X. Litaudon et al.
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carbon wall (JET-C), though such high-n MHD modes can be stabilized by the ion dia-
magnetic drift (ω∗i) effect[3]. On the other hand, it was identified that plasma rotation
in toroidal and poloidal directions can destabilize such high-n ELMs, and improves the
reliability of numerical analysis of ELM stability in JT-60U[4].

In this study, we revisit the ELM stability of the plasmas by paying attention to
not only deuterium rotation but also the ω∗i effects. To realize this objective, we have
developed a new MHD model, named a diamagnetic MHD model, and the corresponding
extended Frieman-Rotenberg (F-R) equation, which can be solved numerically with the
MINERVA-DI code[5]; the details are written in Sec. 2. With this code, we analyze
the rotation and ω∗i effects on type-I ELM stability in JT-60U and JET-ILW in Sec. 3.
Section 4 presents a summary and discussion of this study.

2 Diamagnetic MHD equations and extended Frieman-

Rotenberg equation

To investigate the ω∗i effect on MHD stability in rotating plasmas, we revisit the basic
equations based on the ordered fluid equations[6]. A well-known ideal MHD model can
be obtained by assuming that λ = V0/Vthi ∼ O(1) and ν = ω0/Ωi = O(δ), where Ωi

is the ion cyclotron frequency, Vthi is the ion thermal velocity, δ = ρi/L, ρi is the ion
Larmor radius, and Ω0, V0, L are the characteristic values of frequency, velocity and
length, respectively. This model can identify ideal MHD stability in both static and
rotating plasmas, but cannot discuss the ω∗i effect. Another well-know “drift model” can
be derived by assuming λ ∼ O(δ) and ν ∼ O(δ2) and realizes to take into account finite
Larmor radius effects, including the ω∗i effect, in the stability analysis[7]. However, since
λ ∼ O(δ) means that the E × B drift velocity is much smaller than Vthi, the plasma
rotation velocity should be kept much smaller than Vthi.

To overcome these restrictions, we introduce the ordering parameter by λ = δα with
0 < α ≤ 0.5. After some manipulations with this parameter, the diamagnetic MHD
equations can be derived from the ordered fluid equations as[5]

∂N

∂t
+∇ · (NV MHD) = 0, (1)

miN

[

∂V MHD

∂t
+ (V MHD · ∇)V MHD + (V ∗i · ∇)V E

]

= J ×B −∇P, (2)

∂P

∂t
+ (V MHD · ∇)P + ΓP∇ · V MHD = 0, (3)

∂B

∂t
= ∇×E, (4)

E + V MHD ×B = 0, (5)

∇×B = µ0J . (6)

Here N is the ion number density, mi is the ion mass, J is the plasma current, B is the
magnetic field, P is the plasma pressure, Γ is the ratio of specific heat, E is the electric
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field and µ0 is the permeability in the vacuum. The definitions of velocity vectors are

V MHD = V E + V‖
B

|B|
, (7)

V E =
E ×B

|B|2
, (8)

V ∗i =
1

eZeffN |B|2
B ×∇pi, (9)

where V‖ is the velocity parallel to B, V E is the E × B drift velocity, V ∗i is the ion
diamagnetic drift velocity, e is the quantum of electricity, Zeff is the effective charge, and
pi is the ion pressure. By introducing the Lagrangian displacement vector ξ and assuming
the incompressible condition ∇ · ξ = 0, we can derive the extended Frieman-Rotenberg
equation, which is the linearized equation of motion of Eqs. (1)-(6), as

ρ0
∂2ξ

∂t2
+ 2ρ0(V 0,MHD · ∇)

∂ξ

∂t
+ ρ0(V 0,∗i · ∇)

∂ξ⊥
∂t

= FMHD + F ∗i, (10)

FMHD = (∇×∇× (ξ ×B0))×B0 + J0 ×∇× (ξ ×B0)

+∇ [ξ · ∇P0 + ΓP0∇ · ξ] + ρ(V 0,MHD · ∇)(V 0,MHD · ∇)ξ

+∇ · [ρ0ξ(V 0,MHD · ∇)V 0,MHD − ρ0V 0,MHD(V 0,MHD · ∇)ξ]

+∇⊗ ρ0 [ξ ⊗ (V 0,MHD · ∇)V 0,MHD −V 0,MHD ⊗ (V 0,MHD · ∇)ξ] , (11)

F ∗i = ∇⊗ [ρ0ξ ⊗ (V 0,∗i · ∇)V 0,MHD − ρ0V 0,∗i ⊗ (V 0,MHD · ∇)ξ]

+
ρ0

eZeffN0B2

0

[{(∇ · (ξ ×∇P0))B0 − (B0 · ∇P0)∇× ξ} · ∇]V 0,E. (12)

Here ρ0 = miN0 is the mass density, and the subscript 0 expresses the equilibrium quantity.
Note that the flute approximation (B0 · ∇)ξ << 1 is applied for deriving Eq.(10).

In this study, we assume the isothermal condition on each magnetic surface T0 =
Ti(ψ) + Te(ψ) = T0(ψ) due to strong parallel heat conductivity[8], and hence, the pro-
files of equilibrium pressure and density should depend on not only the radial but also
poloidal directions[5]. Here, Ti (Te) is the ion (electron) temperature, and ψ is the poloidal
magnetic flux normalized as 0 (1) on axis (surface).

3 Impact of rotation and ion diamagnetic drift effects

on ELM stability in JT-60U and JET-ILW

In this section, we analyze the stability to a peeling-ballooning mode in JT-60U and JET-
ILW type-I ELMy H-mode plasmas. To take into account both the rotation and the ω∗i

effects on the stability, Eq.(10) is solved with the MINERVA-DI code[5].

3.1 Results in JT-60U

The shot number of the JT-60U plasma is E49229 whose ELM frequency is ∼ 45[Hz]. In
this discharge, the toroidal magnetic field on axis and the plasma current are Bt0 = 4.0[T]
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FIG. 1: Profiles of the JT-60U E49229 plasma; (a) Ti and Te, (b) Ne and P , (c)
〈j · B〉/〈B2〉 and q, (d) Ωφ of impurity (carbon), and (e) Ωφ and Ωθ of bulk plasma
(deuterium), respectively.

and Ip = 1.6[MA], and the plasma rotates in the direction counter to the plasma current
due to the external momentum input by neutral beam injection (NBI). The profiles of
Ti and rotation velocity of impurity (carbon) were measured with modulation charge
exchange recombination spectroscopy (MCXRS), those of Te and Ne were measured with
Thomson scattering (TS), and in addition, the Ne profile near edge pedestal was measured
with lithium beam probe (LiBP)[9]. Unfortunately, the spatial resolution of TS is not
enough, and hence, the Te profile used in this study is determined to be Te = 0.6Ti; this
coefficient is determined to follow the TS measurement data at ψ ≥ 0.8. The impurity
rotation profile is determined by overlaying the MCXRS data just before ELM crashes[10].
The ion density is determined by N = Ne(Z − Zeff/(Z − 1)), which is derived from the
definition of Zeff and charge neutrality condition with the assumption that an impurity
contains only one type of atom, where Z is the charge of the impurity. The main impurity
in JT-60U is carbon with Z = 6, and Zeff = 2.8 in the E49229 plasma. The current
density near pedestal is determined based on the neoclassical theory with the ACCOME
code[11]. The profiles of Ti, Te, Ne, P , 〈j · B〉/〈B2〉, q and toroidal rotation frequency,
Ωφ, of impurity are shown in Fig. 1 (a)-(d).

The rotation profile of bulk plasma (deuterium) is estimated based on the neoclas-
sical theory with measured impurity toroidal rotation by the CHARROT code. The
CHARROT code has been developed to estimate rotation and the radial electric field by
extracting the modules from an integrated simulation code TOPICS[12]. It has already
been confirmed that the neoclassical transport solver implemented in CHARROT success-
fully reproduces profiles of poloidal rotation and the radial electric field in the edge region
of the JT-60U L- and H-mode discharges[13]. Figure 1 (e) shows the profiles of deuterium
rotation frequency in the toroidal and poloidal directions, Ωφ and Ωθ; these are estimated
by CHARROT. It should be noted that MINERVA-DI is coded in right-handed system
and ω∗i is negative near pedestal in JT-60U (and JET-ILW) whose toroidal magnetic field
and plasma current are clockwise from the top.

The ELM stability diagram is identified by analyzing the stability of the equilib-
ria which have different pedestal pressure gradient and edge current density. These are
changed by adjusting the height of pressure pedestal and the amount of bootstrap cur-
rent near the pedestal; the details are written in [14]. We scan a range of toroidal mode
number 1 ≤ n ≤ 60 of MHD modes with the boundary condition that JT-60U vacuum
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FIG. 2: Stability diagrams of the JT-60U E49229 plasma in (a) the static and (b) rotating
cases on the (〈jped,max〉/〈j〉, αmax) plane; the width of error bars on the operation point
(O.P.) are determined to be ±20% in α and 〈j〉. In the static case, the O.P. exists in
the stable region, and the ω∗i effect pushes the stability boundary away from the O.P..
In the rotating case, the diamagnetic stability boundary becomes close to the ideal one,
and the both stability boundaries are within the error bars; ∆αmax determined with the
diamagnetic MHD model is reduced from 40% in the static case to 20%.

vessel acts as ideal conducting wall.

Figure 2 shows the ELM stability diagrams in (a) the static and (b) rotating cases
on the (〈jped,max〉, αmax) plane. Here jped is the current density in pedestal region, 〈x〉
is the flux averaged value of x, α ≡ −(µ0/2π

2)(dPa0/dψ)(dV/dψ)(V/2π
2R0)

0.5 is the
normalized pressure gradient, Pa0 is the axisymmetric part of the equilibrium pressure,
V is the volume, R0 is the major radius on axis, and the subscript max expresses the
maximum value in pedestal region. The numbers shown in the diagrams are the n number
of the most unstable mode on the boundary near them. In the static case, the αmax

value on the stability boundary determined with the ideal MHD model (ideal stability
boundary) is about 25% larger than that on the operation point (O.P.); hereafter, we
measure the difference in αmax between the O.P. and the stability boundary, ∆αmax,
under the condition that 〈jped,max〉 is the same as that on the O.P.. The ω∗i effect pushes
the stability boundary away from the O.P., and ∆αmax increases to 40%. These results
show that the ω∗i effect has large impact on the stability to the peeling-ballooning mode
when plasma rotation is neglected, and this impact increases the discrepancy between the
experimental and numerical results of ELM analysis.

However, by taking into account rotation effects on MHD stability, the stability bound-
ary becomes closer to the O.P., and in particular, the ideal stability boundary is almost
on the O.P.. More than anything else, the diamagnetic stability boundary becomes al-
most the same as the ideal one in the range 0.6 < 〈jped,max〉/〈j〉 < 1.5. In fact, ∆αmax

determined with the diamagnetic MHD model is about 20%, which is about half of that
in the static case. The results in this section evince that rotation of the bulk plasma
estimated based on the neoclassical theory can have large impact on the stability to the
peeling-ballooning mode. The stability boundary on the (〈jped,max〉, αmax) stability dia-
gram tends to be affected by rotation in the region where 〈jped,max〉 is much smaller than
that of current driven kink/peeling boundary. These results show that plasma rotation
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FIG. 3: Profiles of the JET-ILW 89709 plasma; (a) Ti and Te, (b) Ne and P , (c)
〈j · B〉/〈B2〉 and q, (d) Ωφ of impurity (carbon), and (e) Ωφ and Ωθ of bulk plasma
(deuterium), respectively.

has potential to resolve the discrepancy between the experimental result and the numer-
ical prediction of ELM stability, because the rotation destabilizes the peeling-ballooning
modes and minimizes the ω∗i stabilizing effect on them.

3.2 Results in JET-ILW

The shot number of the JET-ILW plasma is #89709 whose ELM frequency is ∼ 40[Hz].
In this discharge, Bt0 = 2.6[T] and Ip = 2.5[MA], and the plasma rotates in the direction
same as the plasma current; namely, all of them are clockwise from the top. The profiles
of Ti and impurity (carbon) rotation velocity were measured with CXRS, those of Te and
Ne were measured with TS. All the profiles just before ELMs are obtained with ELM
synchronization technique to improve the spatial resolution[15]. The main impurity of
this plasma is beryllium with Z = 4, and Zeff = 1.5. The profiles of bootstrap current
and deuterium rotation are estimated by CHARROT. Note that the rotation profile of
beryllium is assumed as the same as the measured one of carbon. The profiles of Ti, Te,
Ne, P , 〈j ·B〉/〈B2〉, q, Ωφ of impurity, and Ωφ and Ωθ of deuterium are shown in Fig. 3.

The ELM stability diagram is identified in the same manner introduced in the JT-
60U case except the range of toroidal mode number 1 ≤ n ≤ 100, and ideal conducting
wall is located at d/a = 1.3 as the boundary condition. Figure 4 shows the ELM stability
diagrams in (a) the static and (b) rotating cases on the (〈jped,max〉, αmax) plane. Note that
since the bootstrap current in this JET-ILW plasma is small compared to that in the JT-
60U plasma shown in the previous subsection, the n number of the most unstable mode
becomes larger. In the static case, the αmax value on the stability boundary determined
with the ideal MHD model (ideal stability boundary) is about 30% larger than that on
the O.P., and the ω∗i effect widens ∆αmax up to 45%.

However, as in the JT-60U case, deuterium rotation bring the stability boundary close
to the O.P., and the ideal MHD stability boundary is within the error bars determined to
be ±20% in α; this error bar is usually used to roughly reflect the measurement errors in
the stability diagram. Though the diamagnetic MHD stability boundary is still outside
the error bars, ∆αmax ∼ 27% becomes less than two-thirds of that in the static case. These
trends are qualitatively the same as those in the JT-60U case, and show that deuterium
rotation plays a role on determining the ELM stability boundary in JET-ILW.
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FIG. 4: Stability diagrams of the JET-ILW 89709 plasma in (a) the static and (b) rotating
cases on the (〈jped,max〉/〈j〉, αmax) plane; the width of error bars on the operation point
(O.P.) are determined to be ±20% in α and 〈j〉. In the static case, the O.P. exists in the
stable region, and the ω∗i effect pushes the stability boundary away from the O.P.. In the
rotating case, the ideal stability boundary is within the error bar, and the diamagnetic one
shifts to the lower αmax side; ∆αmax is reduced from 25% (45%) in the static case to 15%
(27%) with the ideal (diamagnetic) MHD model.

4 Summary

Diamagnetic MHD equations have been derived with the ordered fluid equations in order
to investigate the ion diamagnetic drift (ω∗i) effect on ideal MHD stability in rotating
plasmas. The corresponding extended Frieman-Rotenberg (F-R) equation was obtained
from these equations under the incompressible assumption, and a linear extended MHD
stability code MINERVA-DI has been developed to solve this equation.

With MINERVA-DI, the stability to the peeling-ballooning mode in type-I ELMy
H-mode plasmas in JT-60U and JET with ITER like wall (ILW) was analyzed. The
deuterium rotation in both toroidal and poloidal directions are determined based on the
neoclassical theory with the CHARROT code. When the plasma is assumed static, the ω∗i

effect increases the threshold pressure gradient triggering the ELM due to stabilizing the
peeling-ballooning mode. This trend increases the discrepancy between the experimental
result and the numerical result of ELM stability analysis, because the operation point
just before ELM crash exists in the stable region of the stability diagram. However, by
rotating the plasma, the peeling-ballooning mode becomes more unstable, and as the
result, the threshold pressure gradient determined with the ideal MHD model approaches
to the operation point. In addition, the rotation can minimize the ω∗i stabilizing effect on
the mode, and reduce the discrepancy between the experimental result and the numerical
prediction of ELM stability. These physics trends have been observed in both JT-60U
and JET-ILW.

In comparison with the result in JT-60U, the result of stability analysis in JET-ILW
shows that the stability boundary determined with the diamagnetic MHD model is still
different from that with the ideal MHD model even when plasma rotation is taken into
account. The reason of this difference is still under discussion, but one possibility is the
difference in temperature at pedestal. The temperatures of both deuterium and electron



TH/8-1 8

in the JET-ILW plasma analyzed in this study are less than half of those in the JT-60U
one, and in such a low temperature case, the impact of plasma resistivity on MHD stability
will become no longer negligible. To address this issue, we will extend the physics model
to include the resistivity in Ohm’s law, and will investigate the importance of resistivity
on the ELM stability in rotating plasmas in future.
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