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Field line map approach

Field/flux aligned coordinates are routinely employed in codes for magnetic fusion to ex-

ploit the anisotropy of the plasma (k‖ � k⊥). However, due to the fact of being singular on

the separatrix/X-point(s) the region of closed magnetic flux surfaces, i.e. the edge, and the re-

gion of open field lines, i.e. the scrape-off layer (SOL), cannot be treated simultaneously and

on the same footing with field aligned coordinates. The flux-coordinate independent approach

(FCI) offers a promising solution in order to deal with a separatrix and X-point(s) in diverted

tokamaks [1, 2, 3]. A cylindrical grid, which is Cartesian within poloidal planes, is employed,

where discretisation of perpendicular operators is straight forward. The strong anisotropy of the

plasma is exploited computationally by coarsening the grid in the toroidal direction and dis-

cretising parallel operators via a field line map: For each grid point corresponding map points

in the adjacent poloidal planes are computed via tracing along magnetic field lines. With this

information discrete versions of parallel operators can be constructed based on finite differences

along magnetic field lines. An interpolation is required since the map points do in general not

coincide with grid points, and therefore numerical perpendicular diffusion/pollution becomes

a very important issue within the FCI approach. Based on the method of support operators a

numerical scheme was derived for the parallel diffusion which exhibits a highly reduced level

of numerical diffusion as compared to a naive discretisation [3, 4]. Further numerical subtleties,

i.e. distortion of the field line map and the treatment of boundaries are addressed in [5]. Besides

several codes [2, 3, 6, 7] the FCI is used in GRILLIX. In this paper we concentrate on the effect

of geometry on the propagation of blobs. The geometry affects the shape of the blob, whereas

the overall radial seems to depend only weakly on geometry.

Phyiscal model

Drift reduced Braginskii equations [8] with cold ions, isothermal electrons and neglect of

electron inertia, magnetic induction and parallel ion streaming are employed. The latter as-

sumption is justified if the radial propagation of the blob is dominant over its parallel propaga-

tion. The system is then described by the continuity equation and the quasi-neutrality condition,



which are coupled by Ohm’s law. In normalized form the equations are:
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with the vorticity Ω := ∇2
⊥φ , where additionally the Boussinesq approximation has been ap-

plied. For description of normalisation we denote dimensional quantities with subscript p in

the following. Plasma density np = n0n with n0 a reference density; electrostatic potential

φp = φTe/e; parallel current J‖p = csen0J‖; magnetic field Bp = B0B with B0 the magnetic

field strength on axis; perpendicular coordinates x⊥p = x⊥ρs0 with ρs0 :=
√

TeMi/(eB0); par-

allel coordinate x‖p = x‖R0 with major radius R0; time tp = t R0/cs. The bracket [φ , f ] :=

∂Rφ∂Z f − ∂Zφ∂R f represents E cross B advection and C( f ) := −2∂Z f is the curvature opera-

tor. The high order diffusion terms with coefficients νn and νv model perpendicular dissipation.

The dimensionless parallel conductivity is defined as σ‖ := 1.96 cs/R0
νei

Mi
me

with νei the electron-

ion collision frequency. Linearized sheath boundary conditions J‖
∣∣
b = ±nφ |b are applied at the

target plates [9]. Finally, eqs. (1)-(3) constitute a very basic model and many approximations

might certainly be questionable, but due to its simplicity it is well suited for the aim of this

work, which is the investigation of effects of the geometry on blob propagation.

Estimations for scaling laws for the radial blob velocity vb can be obtained from a closure

for the parallel current [10]. An important parameter is thereby the blob width δb as it controls

the relative magnitude of the different terms. A critical blob size of δ∗ = ρs

(
L2
‖/ρsR0

)1/5
is

found from a sheath current closure, where for blobs of δb� δ∗ the sheath current term can be

neglected against the inertial term. In this inertial regime the blobs develop the characteristic

mushroom-like shape and the blob velocity scales like vb ∝
√

δb. On the other hand for large

blobs of δb� δ∗ the inertial term can be neglected yielding as scaling vb ∝ δ
−2
b (sheath limited

regime). Blobs are found to propagate most stable at an intermediate scale δb ≈ δ∗.

Blob propagation in three geometries

We investigate the propagation of a blob in slab geometry, circular geometry with limiter

and in diverted geometry. The diverted geometry [11] (see fig. 1), resembling roughly AS-

DEX Upgrade, has a connection length from outboard midplane to the outer target of Lc ∼

4.5R0. In the circular geometry the limiter is put at the bottom and the safety factor is cho-

sen such that the connection length from outboard midplane to the outer limiter plate is simi-

lar to the connection length in diverted geometry. The slab geometry shall model a flux tube



ranging from the outer target to the inner target, and its axial length (along the magnetic

field line) is chosen correspondingly. However, due to technical reasons there is yet no de-

pendence of the curvature on the axial coordinate. The initial state is a ballooning structure

with perpendicular Gaussian width of δb and a Gaussian parallel structure of L‖ ∼ 5R0 ac-

cording to the magnetic geometry with its fanning. The maximum amplitude of the blob ex-

ceeds the background by 100%. We consider a deuterium plasma with flat background density

of n0 = 1 · 1019m−3 and other parameters as following: R0 = 1.65m, Te = 7eV , B0 = 1.5T ,

νei = 1.75 · 107s−1, which results in ρs0 = 2.5 · 10−4m, cs = 1.8 · 104ms−1 and δ∗ ∼ 10ρs.
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Figure 1: Diverted geometry with initial state

shown superimposed (32 poloidal planes).

Black line indicates separatrix.

A snapshot of the density contour of a blob with

initial width δb = 10ρs0 is shown in fig. 2 for the

three different geometries. 32 poloidal planes with

a perpendicular grid resolution of ∆x⊥ = ρs0 were

used and a dissipation acting on the grid scale with

νn = νv = 3.0 was employed. The overall radial

displacement in all three cases is similar. The blob

shape is very similar for slab and circular geometry,

where the characteristic mushroom shape emerges,

whereas in the diverted case the blob appears to be

more coherent and exhibit less poloidal drift.

Finally, we scan the radial blob velocity against

its initial blob width δb. In slab and circular geom-

etry we perform this scan by adapting the perpen-

dicular resolution to the blob width according to

∆x⊥ = δb/10 without applying dissipation. How-

ever, this approach might not be justified in diverted

geometry where the blob becomes strongly distorted due to magnetic fanning. Hence, in di-

verted geometry a blob encompasses many perpendicular scales and perpendicular dissipa-

tion should be present damping structures falling below the resolution threshold. Therefore,

in diverted geometry we fix the perpendicular resolution to ∆x⊥ = ρs0 and the dissipation to

νn = νv = 3.0. Due to computational costs a scan over a large range of δb in diverted geometry

was not possible.

In figure 3a the temporal development of the radial velocity of the center of mass of the

blob at outboard midplane is shown for various sizes δb in the three different geometries. Small
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Figure 2: Contours of density of blob with δb = 10ρs0 ∼ δ∗ at t = 0 (dashed) and t = 0.18 (solid) at

outer midplane. a) Slab geometry, b) circular limiter geometry, c) diverted geometry.
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Figure 3: a) Temporal evolution of radial velocity of center of mass of blob for widths δb = 0.5 (blue),

δb = 5 (green), δb = 20 (red) and δb = 100 (cyan) in slab (solid), circular limiter (dashed) and diverted

(dashed-dotted) geometry. b) Maximum radial velocity of center of mass versus δb. Black dashed lines

indicate inertial scaling (∝
√

δb) and sheath limited scaling (∝ δ
−2
b ).

blobs δb � δ∗ (inertial regime) decay quickly after having achieved their maximum velocity,

whereas large blobs δb� δ∗ propagate slowly. Only blobs of size δb ∼ δ∗ remain rather stable

and therefore propagate a larger radial distance. Overall there is not a strong dependence on the

radial propagation velocity on geometry. In fig. 3b the maximum radial blob velocity is plotted

against their initial width. Small blobs exhibit the inertial scaling vb ∝
√

δb and large blobs

the sheath limited scaling vb ∝ δ
−2
b , where the transition occurs roughly at δb = δ∗ ∼ 10ρs0, in

agreement to theory.
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