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Introduction

The numerical simulation of nonlinear resistive MHD instabilities arising in the plasma of fu-

sion devices exhibits substantial resolution requirements, both in poloidal and toroidal direction,

demanding for parallelization and strong scaling of the MHD solver. In addition, with the up-

coming Wendelstein 7-X Stellarator experiments, numerical tools being able to simulate fully

three-dimensional, non-axisymmetric configurations are necessary.

To address these issues, we investigate the high order discontinuous Galerkin (DG) schemes.

They are conservative schemes, with a continuous polynomial representation locally within

each element. Elements couple only to direct face neighbors, and the discontinuous solution

at the element interface is resolved via numerical flux functions. Due to the locality of the

high order operator, the DG code exhibits high parallel efficiency [4] both for weak and strong

scaling. The DG method presented is using 3D unstructured hexahedral meshes, allowing to

discretize Tokamaks and Stellarators within the same framework. We briefly sketch the method

and the equations as well as the code framework, which involves the generation of 3D high

order meshes from MHD equilibria. Also a benchmark simulation of an internal kink MHD

instability is presented and compared to the the results with the MHD solver JOREK [1, 2, 3],

a well-established tool for Tokamak geometries.

DG method and MHD equations

The starting point for the Discontinuous Galerkin Spectral Element Method (DG-SEM) [5] is

the conservation form of the MHD equations

Ut +∇x ·F(U,∇U) = 0, (1)

where Ut is the time derivative of the vector of conserved quantities U = (ρ,v, Ẽ ,B), with total

energy Ẽ := ρe+ 1
2µ0
|B|2, and the flux has an advection and a viscous part: F = Fa−Fv

Fa = (ρv , ρvv+ p̃δ − 1
µ0

BB ,
(
Ẽ + p̃

)
v− 1

µ0
B(B · v) , vB−Bv ),

Fv = (0 , σ , σv−qh−
η

µ0
(J×B) , η

µ0

(
(∇B)T −∇B

)
)

(2)

with total pressure p̃ := p+ 1
2µ0
|B|2, viscous stress tensor σ , heat flux qh, current J := 1

µ0
(∇×B)

and resistivity η . The divergence constraint ∇ ·B = 0 is solved with a Generalized Lagrange



Multiplier, see [6]. The solution in each element is represented by a tensor product of 1-D

Lagrange polynomials of degree N vector

U(ξ ) =
N

∑
i jk=0

Ûi jkψ
N
i jk(ξ ) , ψ

N
i jk(ξ ) = `N

i (ξ
1)`N

j (ξ
2)`N

k (ξ
3) . (3)

The Galerkin approach and a spatial integration by parts yields the weak formulation of each

element E
∂

∂ t

∫
E

Uφ
N dx =−

∮
∂E

F∗n φ
N ds+

∫
E

F(U,∇xU) ·∇φ
N dx . (4)

where the volume integral acts only on element-local polynomials and the surface integral rep-

resents the coupling between elements, where the discontinuous solution at the interface is

resolved via the numerical flux function F∗n (U
−,U+,n), using a Riemann solver. The integrals

are solved with numerical quadrature. The DG-SEM is a ’collocation’ method, where we use

Gauss-Lobatto points for both integration and interpolation, leading to a diagonal mass matrix

and a highly efficient dimension-by-dimension operator, see [4].
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Figure 1: Mesh generation using VMEC equilibria and parallel code framework.

Mesh Generation and Code Framework

To start an MHD simulation, an MHD equilibrium, fulfilling ∇p = J×B , is needed on a given

mesh. Currently, the computational domain represents the plasma inside closed flux surfaces,

with the domain boundary following a flux surface. A 3D mesh is generated following the strat-

egy depicted in Fig. 1, where we start with a block-structured high order mesh of a cylindrical

domain (s,θ ,ζ ) with the radius as the flux coordinate s. The domain is mapped using VMEC

[7] equilibrium data, allowing for both Tokamak or Stellarator configurations. After the mesh

generation, the parallel work flow using the DG-SEM solver Flexi [4], together with parallel

post-processing tools, can be started.



Comparison with Jorek for an Internal Kink Instability

The computational domain is a torus with circular cross-section R0 = 10,a = 1. The input pro-

files for the Grad-Shavranov solver in JOREK to compute the ideal MHD equilibrium are given

as a function of the normalized poloidal flux ψn ∈ [0;1]

ρ/ρ0 = 1−0.9ψn , T/T0 = 1−0.8ψn , F2 = F2
0 −2

(
∂ψn

∂ψ

)
(2ψn−ψ

2
n ) (5)

with ρ0 = 1, p0 = T0 = 2×10−3,F0 = 10, leading to a B0 = 1 and β = 4×10−4. From the G-S

solve, the q-profile ranging between [0.74;1.6], and the poloidal flux at the edge ψedge−ψaxis =

0.4972 are obtained. Both are needed for the VMEC input together with the pressure profile.

Both the JOREK and the VMEC equilibrium agree up to numerical precision. We generate the

mesh using the VMEC data and interpolate density, pressure and magnetic field to the high

order mesh, to start the Flexi simulation. The Flexi mesh has a poloidal × toroidal resolution

of 832×16 elements of polynomial degree N = 4, resulting in ∼ 1.6 Mio. DOF. The mesh and

the input profiles are shown in Fig. 2.
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Figure 2: 1/4 Flexi mesh with R0 = 10,a = 1 and profiles for the equilibrium.
Internal kink η=10-5, μ=10-6,β=2×10-3    Flexi 832x16 N4 elems.
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Figure 3: Growth of toroidal kinetic energy modes over time, η = 10−5,µ = 10−6.

The simulation was running 13h on 1664 MPI ranks (104 nodes) on Helios, simulating 8500

Alfven time units. The resistivity, using the same normalization as JOREK, is set to η = 10−5

and the viscosity to µ = 10−6. The corresponding growth of the toroidal kinetic energy modes

are shown in Fig. 3. In comparison, the linear growth rate of the (0,1) mode in Flexi of γ =

0.00585 does not exactly match the one in JOREK with γ = 0.0071, and the difference must be



Figure 4: Solution comparison of Flexi (upper row) and JOREK (lower row). Left to right: density,

radial and vertical velocity.

further investigated. However, the eigenfunctions of the instability agree very well, as shown in

Fig. 4.

Conclusion

A new high order 3D MHD solver Flexi on 3D hexahedral meshes has been successfully applied

to a closed flux surface Tokamak scenario and compared to results from the JOREK code. It was

also already tested to strong anisotropic diffusion. The Flexi code exhibits high scalability on

HPC systems and supports general 3D geometries, thus we want to provide highly resolved

nonlinear MHD simulations for both Tokamak and Stellarator geometries. Future numerical

developments include implicit time integration, imposition of a strong divergence constraint

and mesh alignment techniques to reduce resolution requirements.
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