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Abstract

We compare the plasma sources (particle, parallel momentum and ion energy) due to
plasma-neutral interactions computed with different fluid neutral models with the sources
from a Monte Carlo simulation of the kinetic neutral equation. This is done for a fixed
background plasma, which is representative for an ITER detached case. We illustrate that
the reaction data from the AMJUEL-HYDHEL databases can be incorporated in the fluid
models. A pure pressure-diffusion equation gives already accurate results for the particle
source, but it is inaccurate for the momentum and energy source. A parallel momentum
equation has to be added to achieve predictions of the momentum and energy source within
30% of accuracy. Newly developed boundary conditions, based on the diffusion approxima-
tion for incident neutrals, show to be crucial for accurate results of the fluid models close to
the divertor target. The slight overestimation of the momentum and energy sources can be
further reduced by adding a separate neutral energy equation.

Keywords: plasma edge modeling, neutrals, fluid approximation

1. Introduction

Plasma edge codes are crucial for the design of the divertor, plasma-facing components,
and pumping systems of future fusion reactors. Most often, they are based on a kinetic
description for the neutral particle transport, which is solved with Monte Carlo (MC) codes
such as, e.g., EIRENE [1]. However, the statistical noise hampers the convergence of the
plasma boundary codes and the increased number of ion-neutral interactions in detached
regimes leads to exacerbated run times. Moreover, these issues make gradient-based opti-
mization calculations unfeasible thus far.

Therefore, there is a need for a (partially) deterministic description of the neutrals to
reduce both noise and calculation time. Multiple macroscopic fluid neutral models have
been developed over the last decades [2–6]. However, the fluid approach is only valid in
high-collisional regions of the simulation domain, where MC simulations become tedious.

∗Corresponding author
Email address: niels.horsten@kuleuven.be (N. Horsten )

Preprint submitted to Nuclear Materials and Energy July 14, 2016



Therefore, a so-called hybrid neutral model, where the fluid and kinetic descriptions are
combined, can be the solution [7], but the efficiency of such hybrid methods crucially depends
on the quality of the fluid models that are used.

In this paper, we compare fluid neutral models (solved in the entire domain) of different
degrees of complexity to the results of an MC simulation of the kinetic equation. To mimic
as much as possible the microscopic physics of the EIRENE code, we use the AMJUEL-
HYDHEL databases [8, 9] for the microscopic cross-sections and rate coefficients. The
conversion of the databases to a fluid description is already covered in Ref. [10] for a 1D
case. Here, we generalize it for the 2D plasma edge. We use a simplified model to describe
the reflection of the neutrals at the boundaries (no molecules and the fast reflected particles
get a fixed fraction of the energy of the incident particles) and we extend the 1D diffusion
approach from Ref. [11] to 2D for the treatment of the recycled or reflected neutrals in the
fluid models. This recycling/reflection model can easily be adapted for more sophisticated
models such as the TRIM code database [12].

The introduction of the advanced databases for cross-sections and rate coefficients and
the inclusion of the recycling/reflection model in the boundary conditions is new compared
to other fluid models from literature, where simplified expressions are used for the rate
coefficients and artificial boundary conditions are imposed. An example of a classic boundary
condition is the assumption that the parallel neutral velocity at the target plate is a (user-
defined) fraction of the parallel ion velocity [3, 4]. However, this fraction strongly depends
on the plasma state itself and there is no a priori knowledge of its value. In addition, the
traditional models contain even more user-defined fitting parameters for, e.g., flux limiters [3,
6] to match the fluid and kinetic models. The fluid models from this paper do not introduce
extra (user-defined) parameters compared to the kinetic model.

This paper is outlined as follows. In Section 2, the kinetic neutral model is described. The
fluid neutral models are elaborated in Section 3. We pay special attention to the boundary
conditions in Section 4. The newly developed boundary conditions are derived from the
underlying kinetic description and are key to achieve successful results. We compare the
fluid models with the results from an MC simulation in Section 5 for a detached ITER case.
We show that the fluid models perform well in this high-collisional case.

2. Kinetic neutral model

The neutral velocity distribution fn(v) satisfies the steady-state kinetic (Boltzmann)
equation:

v·∇fn(v) = f̃i(v)nineKr+ni

∫
σcx(Ec)||v−v′||f̃i(v)fn(v′)dv′−fn(v)(niKcx(v)+neKi), (1)

with v the particle velocity vector, ∇ = ∇x the gradient with respect to the position x and
f̃i(v) the normalized ion distribution (drifting Maxwellian) such that

∫
f̃i(v)dv = 1, where

the integral is taken over the whole velocity space. The ion, electron and neutral density
are respectively ni, ne and nn =

∫
fn(v)dv.
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Three processes are taken into account: volumetric (radiative and three-body) recom-
bination, electron impact ionization and charge-exchange (CX) collisions with respectively
rate coefficients Kr, Ki and Kcx. Because of the large thermal velocity of the electrons
compared to the ions and the neutrals, the recombination and ionization rate coefficients
are independent of the particle velocity and determined by polynomial fits with respect to
the electron density and temperature in the AMJUEL database (reaction 2.1.8 for recom-
bination and 2.1.5 for ionization [9]). The treatment of the CX collisions becomes more
complicated due to the almost equal thermal velocities of the two colliding species. The sec-
ond term on the right hand side of Eq. (1) corresponds to the source and −fn(v)niKcx(v) to
the sink of neutrals due to CX collisions, with σcx(Ec) the microscopic cross-section, which
is a function of the center-of-mass kinetic energy of the collision partners Ec = m

4
||v− v′||2,

with m the particle mass. The expressions for σcx(Ec) and Kcx(Ti, En) are determined by
reaction 3.1.8 of the AMJUEL-HYDHEL databases [8, 9], with Ti the ion temperature and
En the kinetic energy of the neutral particle. There is an immediate relation between the
microscopic cross-section and rate coefficient:

Kcx(v) =

∫
σcx(Ec)||v − v′||f̃i(v′)dv′. (2)

It should be noted that all distribution functions, densities and temperatures depend on the
spatial position.

3. Fluid neutral models

Taking moments of the Boltzmann equation (Eq. (1)) over velocity space leads to the
neutral continuity, momentum and energy equations:

∇ · (nnVn) = Snn , (3)

∇ · (mnnVnVn + Πn) = −∇pn + SmVn , (4)

∇ ·
((

5

2
Tn +m

||Vn||2
2

)
nnVn + Πn ·Vn + qn

)
= SE,n, (5)

with Vn = 1
nn

∫
vfn(v)dv the neutral drift velocity, Tn = 1

nn

m
3

∫
||c||2fn(v)dv the neutral

temperature, with c = v − Vn the deviation from the drift velocity, and pn = nnTn the
neutral pressure. Eqs. (3)-(5) are not a closed system of equations due to the presence of
the stress tensor Πn = m

∫
ccfn(v)dv−pnI and the heat flux vector qn = m

2

∫
||c||2cfn(v)dv.

Here, I is the identity tensor. For sufficiently small deviations of fn(v) from the equilibrium
(Maxwellian) distribution, the Chapman-Enskog method [13] can be used, giving

Πn = −ηn
(
∇Vn + (∇Vn)T − 2

3
(∇ ·Vn) I

)
, (6)

qn = −κn∇Tn, (7)

with viscosity ηn = nnTn
νcx

and heat conduction coefficient κn = 5nnTn
2mνcx

. νcx the CX collision
frequency.
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The corresponding moments of the right hand side of Eq. (1) lead to the particle source
Snn , momentum source SmVn and energy source SE,n for the neutral fluid flow, given by

Snn = nineKr − nnneKi, (8)

SmVn = mnineKrVi −mnnneKiVn + SmVn,cx, (9)

SE,n = nineKr

(
3

2
Ti +

m

2
||Vi||2

)
− nnneKi

(
3

2
Tn +

m

2
||Vn||2

)
+ SE,n,cx, (10)

with Vi the ion fluid velocity. The CX contributions (SmVn,cx and SE,n,cx) follow from[
STmVn,cx

SE,n,cx
]T

= mni

∫∫ [
vT ||v||2

2

]T
σcx(Ec)||v − v′|| . . .

. . .
(
f̃i(v)fn(v′)− f̃i(v′)fn(v)

)
dvdv′. (11)

Eqs. (8)-(10) are the exact expressions of the source terms due to neutral-plasma interactions,
at least if the real neutral velocity distribution is used in Eq. (11). However, for the fluid
approach we always assume that the neutrals have a drifting Maxwellian distribution for
the evaluation of the sources.

For many cases, this full Navier-Stokes model (Eqs. (3)-(5)) is computationally costly
and therefore, there is a need for reduced models. In addition, the numerical evaluation of
Eq. (11) is expensive and it is recommended to use alternative expressions. Three models
with increasing degrees of complexity are considered in the next subsections.

3.1. Model 1: pressure-diffusion equation

The difficulties for solving the Navier-Stokes model especially originate from the nonlinear
convective term in the momentum equation (Eq. (4)). However, if the transport is mainly
driven by the pressure gradient, we can neglect the convective and viscous terms in Eq. (4).
In addition, Fig. 1a shows that the momentum source due to CX collisions is approximately
linear with the ion-neutral fluid velocity difference, at least if the velocity difference remains
small compared to the thermal velocity and in case the neutral distribution is sufficiently
close to a Maxwellian. The CX poloidal momentum source Smunθ,cx is shown, but the
conclusions are the same for the other components (radial and toroidal). It can be seen that
the drift velocity difference in the other directions has an influence on the slope of the line,
especially for low temperatures. However, this influence is neglected by assuming that there
is no ion-neutral fluid velocity difference in the other directions.

The slope of the line in the origin is the momentum linearized CX rate coefficient Kcx,m,
which is a function of the average of the ion and neutral temperatures (Fig. 1b). With this
linearization, the CX momentum source can be approximated as

SmVn,cx ≈ mnnniKcx,m(Vi −Vn). (12)

Neglecting the convective and viscous terms and linearizing the momentum source leads
immediately to an expression for the particle flux density nnVn, which can be imposed in
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Figure 1: Determination of the momentum linearized CX rate coefficient. a) Poloidal CX momentum
source divided by mnnni as a function of the poloidal ion-neutral velocity difference for different averages
of the ion and neutral temperatures (solid lines for cases without drift velocity difference in radial and
toroidal directions; circular marks for a velocity difference of 1 · 104 m/s in radial and toroidal directions.
b) Momentum linearized CX rate coefficient.

the continuity equation (Eq. (3)). This combined continuity and momentum equation is
called the pressure-diffusion equation:

∇ ·
(
nn,eqVi −Dn

p∇pn
)

= Snn , (13)

with nn,eq = (nineKr + nnniKcx,m)/(niKcx,m + neKi) and Dn
p = (m (niKcx,m + neKi))

−1.
The first model consists of this single convection-diffusion equation, which is solved for the
neutral pressure. In addition, it is assumed that the neutrals are in thermal equilibrium
with the ions (Tn = Ti).

3.2. Model 2: pressure-diffusion and parallel momentum equation

The dominant ion-neutral friction parallel to the magnetic field requires accurate results
for the parallel neutral velocity. Due to the fact that a fraction of the neutrals is emitted
isotropically at the target, the magnitude of the parallel neutral velocity close to the target is
lower than the ion parallel velocity. Therefore, for the second model a momentum equation
parallel to the magnetic field is added. Thus, this model consists of the parallel component
of Eq. (4) and the continuity equation (Eq. (3)), where the pressure-diffusion approximation
is used for the transport in radial and diamagnetic directions. These equations are solved
for the neutral density and neutral parallel velocity again assuming that Tn = Ti.

To easily derive the CX collision frequency νcx, which is needed to determine the viscosity
ηn, the Boltzmann equation is approximated as

v · ∇fn(v) ≈ f̃i(v)nineKr − fn(v)neKi + (f̃i(v)nn − fn(v))niKcx,m, (14)

making use of the momentum linearized CX rate coefficient. This expression is verified in
Section 5.3. This way, the CX collision frequency can be approximated as νcx ≈ niKcx,m.
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3.3. Model 3: Pressure-diffusion, parallel momentum and energy equation

To take into account possible neutral-ion temperature differences, we add the energy
equation (Eq. (5)) for model 3. Thus, model 3 is an extension of model 2 where it is no
longer assumed that the ions and neutrals are in thermal equilibrium (Tn 6= Ti). Again, we
use Eq. (14) to simplify the CX energy source from Eq. (11). This leads to

SE,n,cx = nnniKcx,m

(
3

2
(Ti − Tn) +

m

2

(
||Vi||2 − ||Vn||2

))
. (15)

4. Treatment from the boundary conditions

The boundary conditions are of crucial importance to get accurate results for the fluid
models. In literature it is most often assumed that the neutral parallel velocity at the target
is a fraction of the ion parallel velocity [3, 4]. However, this fraction is a user-defined fitting
parameter, which is case dependent.

In this paper, we use physics based boundary conditions, which do not need any user-
defined fitting parameters. Particle, momentum and energy fluxes are imposed at all bound-
aries (at least if the fluid model contains the corresponding moment equation). These bound-
ary fluxes correspond to the moments of the total neutral distribution at a particular position
at a boundary fn,b(v), which can be written as

fn,b(v) =

{
fn,ν−,b(v) if v · ν ≤ 0,∫
v′·ν≤0(R

i
b(v′ → v)fi,ν−,b(v′) +Rn

b(v′ → v)fn,ν−,b(v′))dv′ if v · ν > 0,
(16)

with ν the inward pointing normal. fi,ν−,b(v) and fn,ν−,b(v) are respectively the distributions
of the incident ions and the incident neutrals. Based on sheath theory, we approximate the
incident ion distribution as a half-sided Maxwellian which is possibly accelerated by the
sheath potential (if the magnetic field lines are not parallel to the boundary). However, the
incident neutral distribution is unknown and the diffusion approach is used to estimate the
distribution:

fn,ν−(vφ, vτ , vν) =
niKcx,m

niKcx,m + neKi

f̃i(vφ, vτ , vν)

(
nn −

1

niKcx,m + neKi

(
vτ
∂nn

∂τ
+ vν

∂nn

∂ν

))
.

(17)
The distribution is expressed in the (φ, τ, ν) coordinate system, with φ the toroidal direction,
ν the inward pointing normal direction and τ the tangential direction perpendicular to φ.
vφ, vτ and vν are the particle velocity components in this coordinate system. A detailed
derivation of Eq. (17) can be found in Ref. [14]. It should be noted that the simplified
Boltzmann equation (Eq. (14)) is used to obtain Eq. (17).

Ri
b(v′ → v) and Rn

b(v′ → v) are the probabilities that an ion or neutral with velocity
v′ is recycled or reflected and gets a velocity v. In this paper, we make use of a simplified
reflection model. Half of the incident particles are recycled or reflected as fast neutrals, which
get half of the energy of the incident particle. The other half of the neutrals are emitted as

6



molecules (D2), which are assumed to dissociate immediately by the Franck-Condon process.
All neutrals (fast and dissociated) are emitted isotropically.

The particle flux density Γn
b, the parallel momentum flux density Γn

m,||,b and energy flux
density Qn

b follow from the moments of Eq. (16):

[
Γn

b Γn
m,||,b Qn

b

]
=

∫ [
1 mv||

m
2
||v||2

]
vfn,b(v)dv, (18)

and are imposed as boundary fluxes for the corresponding equations, with v|| the parallel
component of the particle velocity.

5. Results

5.1. Description of the test case

We compare the fluid neutral models with an MC solution of the kinetic equation for a
fixed background plasma. This background plasma is extracted from a SOLPS simulation
for a typical ITER relevant (partially) detached case with an F12 geometry [15]. We only
simulate the outer divertor leg as shown in Fig. 2.

Inner
target

Outer
target

X-point

R

Z

PF
boundary

Wall
boundary

Upstream
boundary

Separatrix

Figure 2: Location of the simulation domain (green shaded area).

In next subsections the plasma sources due to interactions with the neutrals are compared
for the different fluid neutral models. These source terms are only significant in a thin region
near the target plate. Therefore, only this region is shown in the figures below.

We compare the plasma sources, which are the opposite of the neutral sources given by
Eqs. (8)-(10), i.e., Sni

= −Snn , Smu|| = −[SmVn ]|| and SE,i = −SE,n. The kinetic solution is
based on an MC evaluation of the CX momentum and energy source (Eq. (11)), while the
approximate expressions with the momentum linearized rate coefficient are used for all fluid
models (Eq. (12) for the momentum and Eq. (15) for the energy source).

7



5.2. Sources from the MC simulation

Fig. 3 shows the sources from the MC simulation of the exact Boltzmann equation
(Eq. (1)). The peak magnitude of the sources is located at the target plate. To make a
quantitative assessment of the different models, we will compare the sources in the flux
tubes indicated with colors. The global shape of the sources is similar for all models. The
peak particle source is located in the blue flux tube, the ion density peaks in the green
flux tube and the momentum and ion energy source peak in the red tube. Due to the high
temperature the ionization is dominant in the blue flux tube, whereas the low temperature
in the red tube gives rise to a high number of CX collisions, which leads to the maximum
magnitude of the momentum and ion energy source.
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Figure 3: Sources from the MC simulation of the exact Boltzmann equation (Eq. (1)). The red, green and
blue lines indicate the sources in the flux tubes which are used for the comparison in next subsections.
a) Particle, b) parallel momentum and c) ion energy source.

5.3. Verification of the simplified Boltzmann equation

First, we check the accuracy of the approximate Boltzmann equation (Eq. (14)), which
makes use of the momentum linearized CX rate coefficient Kcx,m, by comparing the results
of the source terms with the solution of the exact Boltzmann equation (Eq. (1)). As can
be seen in Fig. 1b, Kcx,m is a function of the average ion-neutral temperature. However,
the neutral temperature resulting from an MC simulation is very susceptible to noise and
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therefore, we assume Tn = Ti for the evaluation of Kcx,m. This approximation is valid
for sufficiently small ion-neutral temperature deviations. Fig. 4 shows the results. θt is
the poloidal distance from the target. It is clear that the simplification has only a minor
influence on the results in the region with large sources. In Ref. [16] a detailed derivation is
made for the so-called thermal force and diffusion thermoeffect resulting from the velocity
dependence of the CX rate coefficient. However, for this CX dominated case the velocity
dependence can be neglected if the momentum linearized rate coefficient is taken. This leads
to a momentum source that is linear with respect to the ion-neutral velocity difference. This
justifies the use of the pressure-diffusion equation (Eq. (13)).
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Figure 4: Sources from the exact Boltzmann equation (Eq. (1)) (solid lines) and simplified Boltzmann
equation (Eq. (14)) (dashed lines). a) Particle, b) momentum and c) ion energy source.

5.4. Comparison of fluid models

The sources from the different fluid models are compared to the MC solution in Fig. 5.
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Figure 5: Comparison of sources from fluid models with the MC solution: MC (solid line), pressure-diffusion
equation (model 1) (dashed line), pressure-diffusion and parallel momentum equation (model 2) (circles) and
pressure-diffusion, parallel momentum and energy equation (model 3) (pluses). a) Particle, b) momentum
and c) ion energy source.

All fluid models provide accurate predictions of the particle source with a maximum
relative error of about 8% in the cell adjacent to the target of the blue flux tube. The
relative differences between the fluid and kinetic models remain smaller than 1% further
away from the target. So, even the simple pressure-diffusion model (model 1) can be used
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to predict the particle source. The decreased number of CX collisions due to the high
temperature in the blue flux tube leads to a decreased validity of the fluid approach (larger
deviation from the equilibrium (Maxwellian) distribution).

To not overload the figures, Figs. 5b-c show only the red flux tube where the peak
momentum and energy source magnitudes are located. The pure pressure-diffusion equation
is totally inaccurate for these sources. At least a parallel momentum equation has to be
added to capture the ion-neutral parallel velocity difference in the vicinity of the target. The
results are further improved by adding an energy equation. The results for the momentum
and ion energy source are extremely sensitive to the boundary condition at the target plate.
The new boundary condition from Section 4 performs very well without the use of any fitting
parameter.

6. Conclusions

In this paper, we have derived a number of fluid neutral models, fully consistent with
the underlying kinetic transport equation. The pressure-diffusion model is a simple model
that gives accurate predictions of the particle source (maximum error of about 8%), but
fails in (even qualitatively) predicting the momentum and ion energy sources. To obtain
qualitatively correct predictions of these sources a parallel momentum equation has to be
added with boundary conditions incorporating the underlying physics of the recycling and
reflection of the neutrals used in the kinetic description. This is accomplished by imposing
boundary fluxes (particle, momentum,...), which result from an estimate of the total neutral
velocity distribution at this particular boundary. The diffusion approximation is used for
the distribution of the incident neutrals. The parallel momentum in combination with the
pressure-diffusion equation gives a slight overestimate of the peak momentum and ion energy
source at the target (relative errors of respectively 24 and 27%). This overestimate is reduced
by adding a separate neutral energy equation (relative errors of respectively 14 and 1%).

We have shown that it is justified to simplify the CX source/sink term in the Boltzmann
equation for this detached case. Although the CX rate coefficient depends on the neutral
particle velocity, the use of the so-called momentum linearized CX rate coefficient, which
is independent of the particle velocity, gives almost the same results. This is mainly due
to the fact that the neutrals obtain the Maxwellian equilibrium distribution already a few
mean free paths away from the target. This simplifies the derivation of the fluid models.

The model with the parallel momentum equation is a good starting point for the hybrid
model, because it gives already accurate results for all sources. This means that the MC
part in the hybrid model can be reduced significantly. The MC part can be further reduced
by adding an energy equation, but this leads to an additional cost of the fluid model for
solving an extra equation. It has to be investigated whether it is worth the effort.

In future research it is planned to study the coupling of the neutral models with the
plasma equations. Given the accuracy of the present results for the source terms, we expect
also these simulations to perform well. Nevertheless, it is important to assess the influence
of the slight deviations of the fluid from the kinetic solution on the results for the plasma
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state. Further, additional physics such as molecules and neutral self-collisions have to be
added to the neutral models.
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