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ABSTRACT.

A fast method of calculation of the flux surfaces and magnetic fields external to a tokamak plasma
in air-core tokamaks is presented. The plasma is represented by a set of wires with given current
and position. Central solenoid, stray field compensation and shaping coils are represented by sets
of wires with given current and location. Radial and vertical field coils are represented by wires
with fixed location but variable total current. The radial and vertical force balances are satisfied
by fitting the currents in the vertical and radial field coils, to obtain correct values for the force
integrals over a fixed boundary, external to the plasma. The calculation was implemented in a
code which is suitable for general design work on magnetic configurations, divertor geometry,

and poloidal field systems. The code is interactive, and has a turnaround time of about 2 minutes.



1 INTRODUCTION

The objective of this work was to develop a fast, interactive, code for the prediction of the magnetic
geometry external to the plasma in an air core tokamak, when currents in the central solenoid and in the
shaping coils are given. The main application is in the initial design of the poloidal circuits and divertor
geometries, where large numbers of configurations may have to be assessed, and where parametric studies

are necessary.

There are two general approaches to the problem. The first is to solve the vacuum Grad—Shafranov
equation in the region external to the plasma, and the complete Grad—Shrafanov equation in the internal
region, and to iteratively match the solutions at the plasma boundary. This approach is implemented in
the large equilibrium prediction codes, such as INVERSX [1], ODIN [2] and PROTEUS [3]. In these

codes, the value of the poloidal ﬂp, and a prescription for the profile of the kinetic pressure, are provided

by the user. In general, these codes use a large amount of CPU time, and have long turn—around times.
In addition, it is often difficult to find convergence, in particular for plasma geometries that are not

symmetric around the 2=0 plane, eg. single null divertor plasmas.

The second approach is to represent the plasma current and the external currents by a set of wires,
and simply to calculate the total field due to the wire distribution. For an air core machine, the
Biot—Savart law can be used to calculate the field. For a machine with an iron yoke that is not
saturated, the Greens function for a wire in any position can be found by matching the coefficients of a
series of special functions, which are general solutions of the Laplace equation over the domain bounded
by the iron. This method is applied in the Jakob [4] code. This code, however, contains no calculation of

the force balance. The magnetic configuration obtained is therefore not necessarily an equilibrium.

Clearly, when one is interested in the fields external to the plasma it is not necessary to carry out the
integration of the Grad—Shrafanov equation inside the plasma. For such problems, one would be better
served with a wire code, provided that this could be extended so that the radial and vertical force
balances are satisfied. In this note, we describe how these force balances can be satisfied by fitting the
currents in the vertical and radial field coils respectively. The fit is a two parameter minimisation (the
coil currents) with two residuals, ie. the two fixed boundary integrals (eg. over the vacuum vessel)
representing the radial and vertical forces. The calculation was implemented in a code. Details of this

code, and information about input requirements and output facilities, are given in a document by Gaze

[5).




2 NOTATIONS AND THE FORCE BALANCES

In this section, we follow the notation and definitions given by Braams [6]; exceptions are indicated. T
is the volume of the vacuum vessel, §T is the surface bounding T, § is a poloidal cross—section of the
vacuum vessel and 6Q is the contour bounding Q. dV is the volume element of T, dS the area element of
2, dA the area element of §T and ds is the line element of 6. Hence we have dV = 27r dS and dA =
27r ds. r is the radial coordinate of a cylindrical system r, ¢, z. The normal and tangential derivatives on

6§ are written as §/6n and 6/8s resp. Vectors, and tensors, are bold—faced.
The basic force balance equation, in terms of the stress tensor T, is V.T = 0, where

T =pl + v}p(')l (B2 1 2BB) (1)

where p is the kinetic pressure, o is the vacuum permeability, B is the total magnetic field and 1 is the

unit tensor. The pressure is assumed to be isotropic, and there is no plasma rotation. Taking the
divergence of (1), multiplying by an arbitrary axi—symmetric vector function Q, separating toroidal fields

Bt and poloidal fields Bp’ and integrating over the volume of the torus, gives (eqn. 43 in [6]):
. 1,1 (B2 _ B2 2 -2 — -1 —d
3 V.Q+ fug) (82— B2)) 12962 Q) — 4 B_(VQ — 4(V.QID.B JaV
= 15 ] gp BB2 (Qm) — (Q.B )(B,m)ldA (2)

where n is the normal to the integration contour, and BLO is the vacuum toroidal field.

Substituting different functions for the vector Q results in different expressions relating volume
integrals of internal plasma pressures to surface integrals of external fields. In particular, there are the

following well—known cases: Q = e, (where e is the radial unit vector) produces the radial force balance
equation (also known as the 2nd Shafranov integral S2); Q= e produces the vertical force balance
equation; Q = re + ze, produces the first Shafranov integral Sl’ and Q = ze, produces the third

Shafranov integral (note that for the third integral S, we follow the definition by Lazzaro [7] rather than
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Braams [6], who uses rer).




Explicitly writing the radial force balance, and using dA = 27rds to obtain a contour integral, yields:

def
— 1,1 (B2 _-RB2 1,-1RB2] 71
Sz = fT [p 2/‘0 (Bt BtO) + 2!‘0 Bp] rtdv

= 2r /L(')l J §T [%Bg e.n— '(er'Bp)(n'Bp)] rds (3)

The L.h.s. represents the internal kinetic and magnetic pressures, the r.h.s. represents the force exerted by
the field on the plasma boundary. The plasma is in radial force balance if eqn (3) is satisfied. (Note that
if the integral is taken over the plasma boundary instead of the vacuum vessel, the second term on the
r.h.s. disappears).

In the equation for the vertical force balance the Lh.s. of eqn (2) vanishes. Hence the vertical force

balance equation is:
— -1 1B2 _
0= 2 p, faT [,Bp e, 0 (eZ.Bp)(n.Bp)] r ds (4)

The plasma is thus in vertical force balance if eqn (4) is satisfied.

Hence, both the radial and the vertical force balances are now formulated as contour integrals over a
fixed - contour lying outside the plasma. Force balance is achieved if the value of the contour integral (3)

-equals a pre—deterrnined value of 82 — representing the internal pressures — and the contour integral (4)

equals 0. In the code the values of the current in sets of vertical field coils and radial field coils
respectively are iterated in a lsast squares routine so as to minimise the sum of squares of the deviation

between the contour integrals and their desired values.

The desired value for S,,, called S2

9 is obtained as follows. The integral quantities, representing the

,est’

internal plasma pressures, ie. normalised kinetic pressure ﬂp, the internal inductance li and the

diamagnetic parameter py are defined as follows [6], with a normalisation parameter c:




— 1 [ 1,1R2
li_c fT THy Bp dv,
— 1 [ 1,-1(R2_ R2
m=— [t (B — B dV , (5)

where r, is the plasma current centre, determined by the current moment integral over the external
contour and Ip is the total plasma current. We note that the volume integral in equation (3) contains a

factor 1’1, which is not present in the definition equations (5). Hence, following [7] with an adapted

notation, we write:
— -1 ;
52 =c Rt (ﬂp + # + li) (6)
where Rt. is defined as
—_ -1
Rt-—ngdV/fTr g dV

=p— 4471 (B2 - B2 1,-1 B2
E=P 2#0 (Bt Bt0)+ 20”’0 Bp (7)

For the purpose of obtaining an estimate S2 it 1s thus necessary to provide values for Rt’ ﬂp’ K and

,est’

li' Lazzaro [7] gives a relation between 'Hp and H for the case of elongated plasmas:

#I=ﬁp_2E/(1+192) 8)

where E is the elongation. Furthermore, because Rt R, we approximate Rt =1 , where 7

r 18
rest ¢ r,est




normally set to 1. 82 est is then calculated as:

—epl 1 — 2
S2,est ¢ 77r,est Te ( 2ﬂp,est + li,est 2Eest’. [ A+ Eest) ©)
where nr,est’ ﬁp,est’ li,est and Eest are input parameters for the code, Eest represents the expected

elongation. We note that in principle it is superfluous to provide input values for ﬂp and li separately,

because they appear only in combination in the radial force balance. Ie. the fit will ensure that the sum

ﬂp + %li is approximately correct, but the values of ﬂp and li individually may still differ from the

desired values. The individual values depend on the distribution of the current carrying wires that

represent the plasma.

3 PRACTICAL IMPLEMENTATION

The above force balance calculation is implemented in a code. The plasma is represented by a set of
wires at fixed positions and with fixed currents. The central solenoid of the tokamak, the stray field
compensation coils, divertor coils and shaping coils, are also represented by wires or sets of wires at fixed
positions with fixed currents. The set of coils that provides the vertical field is set at fixed positions, and
has a fixed ratio of currents between the coils, while the total current in the set is a free parameter in the
least squares routine that calculates the radial force balance. The radial field coils are treated in the same

manner.

The fields and flux due to each of the wires, on the grid points of the 'machine grid',is obtained via
geometrical scaling and interpolation in look—up tables. There are three look—up tables, containing
respectively the radial and vertical components of the magnetic field and the flux for a single wire loop of
unit radius. The look—up tables are made by numerically integrating the Biot—Savart equation, and the

equation for the vector potential (note flux ¢ = 27 r Acp) around the unit wire loop for every point of a

fine grid. This is a lengthy calculation, but it has to be performed only once.




4 DETERMINATION OF X—POINTS AND LAST CLOSED FLUX SURFACE

After the force balance calculation has been performed (the relevant contour integrals are taken over
the vacuum vessel), the currents in all the coils of the machine, for the particular equilibrium, are known.
The code then proceeds by calculating the components of the magnetic field and the flux on the machine
grid, by summing the contributions from all the wires.

The code searches for X—points by executing a search for a minimum in the absolute value of the
field in the top and bottom divertor areas. Usually two X—points are found, and their flux values are
determined.

An (optional) input to the code is a file containing coordinates of a toroidal field coil and a vacuum
vessel. The vacuum vessel coordinates should describe the inner surface of the vessel, including internal
elements. The code calculates the flux and poloidal ﬁ'eld on the vessel and deterrnines whether the plasma

is bounded by the vessel or by one or both of the X—points. The last closed flux surface is determined.

5 FURTHER CALCULATIONS ON THE LAST CLOSED FLUX SURFACE

After the last closed flux surface has been found, a number of further calculations is performed in

order to extract the following information: elongation E, ﬁp, li’ safety factor qCyl and a5 and poloidal

magnetic field perpendicular to the toroidal field coil.

The elongation is found by finding the inner (R_. ) and outer (R__ ), and top (z_ ) and bottom
min max max

(z_. ) points of the surface. The major radius is calculated as R_ . = (R
min maj

max T Rmin) / 2, and the

horizontal and vertical minor radii as a2 = (R )/ 2and b = (z —z_. )/ 2 The
m max min

— R
ax min
elongation is E = b / a, and the aspect ratio € = a / Rmaj' ﬂp, li and Rt are found by evaluating the

Sl’ 52 and S3 integrals over the last closed flux surface. We have — in addition to equation (3) for 52 —

the following relations (the equations are given here, for generality, for integration over a surface outside
the plasma that does not necessarily coincide with a flux surface. In the actual application here, where

the surface of integration coincides with a flux surface, the terms containing Bp.n vanish):




def
- 1,1 (B2 _ B2 i,-1p2
Sl - fT [3p + 2/“0 (Bt BtO) + 2/‘0 Bp] dv

=27 /L(-)l f §T [J;Bg rn — (r.Bp)(n.Bp)] rds
=c (3ﬂp + 1 — ) (10)

def

— 1,71 (B2 — B2 1,-1 R2

— -1 1B2 —
=2r #a f&T [2Bp zen—32 (ez.Bp)(n.Bp)] rds
=ﬂp—(a-—-1) li——/L'[ (1)
— 2 2
wherea—-2fT Bp,zdv/fT Bp dv

To solve for ﬂp, li and Rt from Sl’ S2 and 53, we need an approximation for the volume dependent

parameter a. In references [7] and [8], the following expression is used:
a=2E/(1 +E?) (12)

Using this, the quantities follow as:

L = (2E — ¢l Sq (1+ E2)) / (E2 — 1) (13)
ﬁp = (¢! S, —L—2E/(+ E2)) / 2 (14)
Rt=(81—4cE/(1+E2))/S2 (15)




Values for the engineering safety factor q, and an approximation for the true MHD q value at the

yl
95% flux surface are calculated as follows:
4 =@reaEB )/ (1) (16)
agy = 9y (1 # E?) (1 4+ 1.5¢%) / (2E) (17)

As mentioned, an input to the code is a dataset of coordinates of a toroidal field coil (neutral fibre,
inner and outer contour) and a vacuum vessel. These elements will be shown in the plots of flux surfaces
and magnetic field magnitude. The code will produce an output file containing the values of the poloidal
magnetic field component perpendicular to the toroidal field coil. This file can be interfaced to a

calculation of the out—of—plane bending stresses and the overturning moment on the coil.

Optionally, the fitting of the radial and vertical field currents can be omitted, and fixed currents can
be supplied for these coils. The code can then be used for calculations of the fluxes provided by the
central solenoid and other coils, as well as the external flux required for the plasma. Together with an

estimate for the plasma internal flux (eg. hi = li + 0.5), the available resistive flux can be estimated.

6 RESULTS

The code is easy to use and is run interactively on an IBM mainframe. A typical calculation,
including graphics display, for a configuration with a plasma represented by 10 wires and about 40 wires

external to the plasma (mainly in the central solenoid) can be done in about 2 minutes.

The results are illustrated in figures 1 to 4. Figure 1 shows flux surfaces and the separatrix for a
hypothetical tokamak with a plasma current of 12MA. In figure 2 the positions of wires representing the
plasma and the external coils are listed. In figure 3 the flux in the midplane z=0 is shown as a function
of radius. In figure 4 the poloidal field component perpendicular to the TF coil is shown versus the coil

arc length, for the neutral fibre and the inner and outer contours of the TF coil.




7 CONCLUSIONS

A code has been developed to predictively calculate plasma boundary and external fields for a given
plasma current and position and for given currents in shaping coils, in air core tokamaks. The currents in
sets of vertical and radial field coils are adjusted iteratively so as to obtain radial and vertical force

balance respectively. The plasma and the external coils are represented by wires or sets of wires.

The code can be run interactively, and has a turn—around time of about 2 minutes. The fast
turn—around makes it ideal for initial design work in several areas of tokamak design. Examples are the
design of plasma configuration and divertor geometries (including divertor sweeping), design of poloidal

coil sets and stray field compensation coils, calculations of flux consumption, and calculations of

out—of—plane bending forces on TF coils.
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Figure 1. Graphics output of the flux surfaces and separatrix. The text output has the following meaning:

— the plasma position given is the position of current centre I, 2,88 determined from the usual current

moment integrals, eg. [6]. Units are [m].

— the plasma current given here is the sum of the currents in the plasma wires.

— the radial and vertical position of the X—points is given. Units are {m)].

— Flux at X—points: the value of the flux function at the two X—points (top/boitom). Unit is [Wb).

— 81, S2, S3 are the Shafranov integrals as per eqns. 10,3,11. SV is the vertical force integral as per eqn.
4 (hence it is a small residual value). Units are [N] for 82 and Sv’ [Nm] for S1 and 53'

~ Elongation from b / a.

— Rsur is the major radius of the flux surface, as defined in section 5. Unit is {m].

— Asur is the horizontal minor radius, as defined in section 5. Unit is [m].

— RT is the radius Rt’ as per eqn. 15. Unit is [m].

— BETA, LI and MU as per eqns. 14,13 and 8.
— Q95B and QCYI as per egns. 17 and 16.
— B0 is the toroidal field. This is an input parameter and is the vacuum field at the radius RSUR. Unit

is [T).




TYPE

VERTICAL
VERTICAL

RADIAL
RABIAL
RADIAL
RADIAL
SHAPING
SHAPING
SHAPING
SHAPING
SHAPING
SHAPING
SHAPING
SHAPING
PLASMA
PLASMA
PLASMA
PLASMA
PLASMA
PLASMA
PLASMA
PLASMA
PLASMA
PLASMA

Figure 2. List of the wire currents for the calculation shown in figure 1. Major radius, height and current
in each of the wires is shown. Not shown on the list is the central solenoid, which for this calculation

consists of a set of 29 wires, located at R = 1.2m, z from —2.8m to 2.8m, every 0.2m, carrying 1.2MA

each.
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Figure 3. The flux in the midplane z = 0 as a function of major radius. Note that the flux is meaningless

inside the plasma.
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Figure 4. The component of the poloidal field perpendicular to the toroidal field coil, as a function of arc

length along the coil. This is given for the neutral fibre of the coil and for the inner and outer contour.






