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Abstract. The electron fishbone modes are internal kink instabilities induced by suprathermal electrons. Ion fish-
bones were first observed experimentally (PDX) [1], opening the path to full theoretical understanding of these
phenomena [4]. Stimulated by experimental evidence of electron fishbones (DIII-D, Compass-D, FTU, Tore-
Supra), theoretical analysis has also been extended to the case of modes excited by fast electrons [5]. It is well
known that additional heating of a plasma produces suprathermal particles which, under certain conditions, could
destabilize symmetry breaking modes. Moreover, the dynamics of suprathermal electrons in present days exper-
iments has analogies to that of alpha particles in future burning plasma devices; and resonant excitation by fast
electron precession resonance may provide a good test bed for understanding the similar mechanism induced by
fusion alphas. For these reasons, it is important to get insights into the underlying physics processes involved in
these phenomena. In this work, numerical simulations with the HMGC code [6] are systematically carried out
in tokamak equilibria. On the one side, theoretical and experimental results are confirmed, while, on the other
side, numerical simulations give a deeper insight into the e-fishbones dynamics. Linear and non-linear studies
of e-fishbone instability have been performed for standard (peaked on-axis) [7] and inverted (peaked off-axis)
suprathermal electron density profile, with moderately hollow q-profile. It is worth noting that the two situations
are significantly different in terms of the characteristic resonance frequency as well as the fraction of suprathermal
particles involved in the destabilization of the mode, confirming theoretical expectations. The study of e-fishbone
nonlinear saturation mechanisms uses the test particle Hamiltonian method (TPHM) package [8], illuminating the
complicate and unexplored dynamics of these modes.

1. Introduction

The electron fishbone modes are internal kink instabilities induced by fast electrons (suprather-
mal electrons). It is known that, in tokamaks, suprathermal electrons are produced during ad-
ditional heating such as lower hybrid heating or current drive (LHH, LHCD) and electron cy-
clotron heating or current drive (ECRH, ECCD). In the present study, the suprathermal electrons
resonates with the MHD internal kink mode at the precession frequency of the suprathermal
electrons thus destabilizing symmetry breaking modes and degrading the good confinement of
the energetic particles itself. Such dynamic in present days experiments has analogies to that of
alpha particles in future burning plasma devices; as it is known in fact, the interaction of alpha
particles with the MHD instability would happen at the toroidal precession frequency, which
depends on the energy of the particles involved and not their mass. Moreover they are also
characterized by a very small ratio between the resonant particle orbit width and the extension
of the plasma region affected by the radial kink displacement; the same feature would be found
for alpha particles in burning plasma devices. Thus, the resonant excitation of modes at the pre-
cession frequency, depending only on the energy of the fast particles, may provide a good test
bed for understanding the similar mechanism induced by fusion alphas. For these reasons, it is
important to get insights into the underlying physics processes involved in these phenomena.
Ion fishbones were first observed experimentally in PDX [1]. It was claimed that the observed
mode frequency was comparable to the precession frequency of deeply trapped energetic par-
ticles. Such observation opened the path to full theoretical understanding of these phenomena
[4], emphasizing that the source of instability is the radial gradient of the energetic particle
distribution function. Experimental evidence of electron fishbones, instead, was found first in
DIII-D [2] and Compass-D [3] and, as a consequence, theoretical analysis was extended to the
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case of modes excited by fast electrons as well [5]: the same physical mechanism of ion fish-
bones modes was confirmed. Two peculiar cases can be distinguished: first, the suprathermal
electron, namely energetic electron (EE), density profile is peaked on axis- such situation shows
a negative radial gradient- and, second, the EE density profile is peaked off axis with an inverted
(positive) radial gradient. The resonance frequency is in both cases the precession frequency.
Anyway, to have an unstable mode [4], the following relationship has to hold ω∗hot/ωd > 0
that is the diamagnetic frequency (ω∗hot) and the precession frequency ( ωd) must have the same
sign. It means that the precession frequency has the electron diamagnetic direction for the
peaked on axis profile and the reversed one, that is ion diamagnetic direction, in the other case.
Deeply trapped particles drive the mode for the peaked on axis profiles because they are able
to give a precession frequency in the electron diamagnetic direction, whilst, for the peaked off
axis case, the particles contributing to the mode are the barely trapped/ circulating ones which,
indeed, experience a drift reversal, giving a precession frequency rotating in the ion diamagnetic
direction [5].
Previous work [7] has numerically analyzed the case of EE with a peaked on axis density pro-
file. It was the first numerical experiment involving electrons that poses the numerical challenge
of properly handing the extremely fast parallel electron motion along equilibrium magnetic field
lines. A peaked on axis case was chosen to simplify the physical processes involved in the sim-
ulations thus avoiding the mixture of circulating and magnetically trapped particles; at the same
time the work confirmed the same physical processes supposed for ion fishbones.
In this paper linear and non-linear studies of e-fishbone instability have been performed and
compared for both standard (peaked on-axis) and inverted (peaked off-axis) EE density profile,
with moderately hollow q-profile. As already underlined, the two situations are significantly
different in terms of the characteristic resonance frequency as well as the fraction of EE in-
volved in the destabilization of the mode; on the one side, theoretical and experimental results
are confirmed, while, on the other side, numerical simulations give a deeper insight into the
e-fishbones dynamics. Numerical simulations with the HMGC code are systematically carried
out in tokamak equilibria whilst the study of e-fishbone nonlinear saturation mechanism uses
the test particle Hamiltonian method (TPHM) package [8].

2. Numerical simulations set up

The HMGC code is based on a hybrid MHD-gyrokinetic model [6]. It was originally devel-
oped at the Frascati ENEA laboratories and it has been already applied successfully to stud-
ies of energetic particles driven modes (such as TAE -toroidal Alven eigenmodes- or EPMs
-energetic particles modes) and to existing devices (JT-60, DIII-D). In the code, the thermal
plasma is described by a O(ε3) reduced-MHD equations in the zero pressure limit with circular
shifted magnetic surfaces whilst the energetic particles dynamic is described by Vlasov equa-
tions in the drift kinetic limit with a particles-in-cell technique. For simplicity, the analysis is
restricted to the case in which fluid non linearities are neglected whilst the particles are treated
non-linearly. Simulations are self-consistent because energetic particles contribute to MHD
equations through the divergence of the pressure tensor.
The code is able to evolve up to three independent kinetic populations assuming different equi-
librium distribution functions (for example bulk ions, energetic ions and/or electrons). In this
work a bulk ion (deuterium) and an EE populations are considered. The EE temperature radial
profile is constant with Te0 = 50keV ; the bulk ion population temperature is Ti/Ti0 = (1− ψ)
with Ti0 = 2keV the on axis value. Here ψ is the normalized poloidal flux ranging from ψ = 0
on axis and ψ = 1 at the plasma boundary. The on axis magnetic field is B = 5.4T . The nor-
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malized Larmor radius of the EE is ρe/a = 3.5× 10−4 and of thermal ions ρi/a = 4.27× 10−3

where a is the minor plasma radius. The inverse aspect ratio of the tokamak is ε = 0.1. With
these characteristics, the normalized EE thermal velocity is vthe0/vA0 ≈ 12 and the ion thermal
velocity is vthi0/vA0 ≈ 4× 10−2 where vA0 = B/

√
µ0ni0mi is the on axis Alfvn velocity with

ni0 the on axis density of the bulk ions population and mi its mass. The safety factor q profile is
slightly inverted and above unity with q ' 2.7 at the external radius and q ' 1 for r/a ' 0.35.
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FIG. 1.: Energetic particles’
density profiles.

This equilibrium is used for the two cases considered, namely
the peaked on-axis as well as for the peaked off-axis profile of
the EE population. The two profiles are illustrated in Fig. 1.
where ne(ψ) = ne0e

−10ψ2 for the peaked on axis case and
ne(ψ) = ne0e

−10(ψ−0.5)2/e−10(−0.5)2 for 0 < ψ < 0.5, ne(ψ) =
ne0e

−10(−0.5)2/e−10(−0.5)2 for ψ > 0.5 for a peaked off axis pro-
file; for the last case, a flat profile was chosen in the external part
of the poloidal section to avoid the occurrence of modes induced
in the external region of the plasma column. In fact the paper fo-
cus its attention on the internal kink mode m = 1, n = 1 where
m and n are, respectively, the poloidal and toroidal mode num-
ber. The bulk ions, treated kinetically, assumes a Maxwellian
distribution function; in this way the effective plasma inertia and
thermal ion Landau damping are properly account [5]. Concern-
ing the electrons, they are loaded in the code with an anisotropic distribution function given by:

felectrons ≡
(me

2π

)2/3 ne(ψ)

Te(ψ)3/2
Θ(α;α0,∆)e−E/Te(ψ) (1)

Θ(α;α0,∆) ≡ 4

∆
√
π

exp
[
−
(

cosα−cosα0

∆

)2
]

erf
(

1−cosα0

∆

)
+ erf

(
1+cosα0

∆

) , (2)

E =
1

2
meu

2 + µΩce , cosα ≡ u√
2E/me

, sin2 α ≡ µΩce

E

Here me is the electrons mass, u is the electrons parallel (to the magnetic field) velocity ,
µ = meu

2/2Ωce the conserved magnetic momentum, α is the pitch angle, Ωce = −eB/(mec)
the cyclotron frequency where c is the speed of light and B the local equilibrium magnetic
field. Θ(α;α0,∆) models the anisotropy of the distribution function through two parameters:
the cosα0 which gives the angle in the (u, µ) phase space plane where the distribution function
lies and ∆ which represents the width of the distribution function in the (u, µ) phase space
plane. In the following analyses, it is assumed that cosα0 = 0. The choice of the width ∆
of the distribution function is very important and different for a peaked on axis density or a
peaked off axis density. It is worth noting that the parabolas on the graphics of Fig. 2., represent
an approximate boundary between the trapped and the circulating particles. It is known that
in the case of a peaked on axis density, contributions from deeply trapped particles has to be
enhanced. For this reason a thin width ∆ of the distribution function is chosen thus increasing
the trapped particles and decreasing the barely trapped/circulating ones. Instead, for a peaked
off axis study, it is expected barely trapped/circulating particles will destabilize the mode [5];
thus a larger ∆ width for the distribution function with respect to the previous case, well besides
the parabolas, will be considered. Such situation is represented in Fig. 2., where a contour plot
of the distribution function, in the (u, µ) phase space plane, is given for the two cases.

3. Linear Dynamics



4 P28

!"

#" !"

#"

FIG. 2.: Contour plots of Θ(α;α0,∆)e−E/Te(ψ) . On the left hand side ∆ = 0.04 and it is used for a
peaked on axis density profile; on the right hand side ∆ = 0.5 and it is used for a peaked off axis case.

When EE are excluded, no growing modes are noticeable and the considered equilibria are
MHD stable. The analysis takes into account the n=1 toroidal mode number and m=1,...4
poloidal mode numbers. On the contrary, when EE are turned on, with a proper choice of
their density profile (Fig. 1.), unstable modes are observed, experiencing a linear growth phase
and a subsequent saturation state. This is represented in Fig. 3.. For the peaked on axis density,

FIG. 3.: Volume integrated total (magnetic and kinetic) energy content for the different Fourier compo-
nents used in the simulation for a peaked on axis density (left hand side) and for a peaked off axis density
(right hand side)

ne0/ni0 ≈ 0.025 has been chosen, whilst the peaked off axis one uses ne0/ni0 ≈ 0.018, where
ni0 is the bulk ion density value on axis. For both cases, the EE induces an (m,n) = (1, 1)
internal kink mode, that is the electron fishbone, with a growth rate γ = 0.035 for the peaked
on axis density and a growth rate γ = 0.038 for the peaked off axis case, Fig. 3.. The mode lies,
in the frequency plane (ω/ωA0 , r/a), around the q ≈ 1 rational surface (Fig. 4.) and it exhibits
a mode frequency ω/ωA0 = −0.05 and ω/ωA0 = +0.012 for the peaked on axis and peaked
off axis case, respectively; ωA0 is the Alfven frequency. Note that the mode frequencies are
obtained from the code using a standard FFT; this assumption is opposite to the one generally
considered in analytical papers.
The two scenario, are quite different because of the opposite sign of the radial density gradient;

thus the mode is expected to rotate in the bulk electron diamagnetic direction in the peaked on
axis case whilst it rotates in the opposite direction, that is, in the bulk ion diamagnetic direction,
in the peaked off axis one. The energy exchange between particles and the mode should be quite
different, as well. In fact for a standard (on axis) gradient, deeply trapped particles are expected,
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FIG. 4.: Power spectrum of the electrostatic field at a chosen time tωA0, during the linear dynamics, for
a peaked on axis density (left hand side) and for a peaked off axis density (right hand side). Solid curves
show the upper and lower shear Alfven continua.

from theory, to destabilize the mode, whilst barely trapped/circulating particles play the role in
the case of a peaked off axis density. As can be seen from Fig. 5., on the left hand side ( Fig. 5.a)
and Fig. 5.c) ), the mode is represented in the poloidal plane and the arrow represents the direc-
tion of rotation which is counterclockwise for peaked on axis profile and clockwise for peaked
off axis profile; on the right hand side ( Fig. 5.b) and Fig. 5.d) ), the exchange of energy between
the mode and the EE is shown. The red colors represents the maximum amplitude exchange,
thus deeply trapped are visible for the peaked on axis case whilst barely trapped/circulating
particles are evident for the peaked off axis profiles, being the parabolas an approximate es-
timation of the boundary between trapped (inner area) and circulating particles (outer area).
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FIG. 5.: On the left hand side, poloidal structure of the EE driven
mode (electrostatic component of the fluctuating electromagnetic field)
for peaked on axis density a) and peaked off axis density c). On the right
hand side, power exchange between EE and the mode for peaked on axis
density b) and peaked off axis density d) at the radial position of the max-
imum power exchange.

Such statements are fur-
thermore confirmed in the
following numerical ex-
periment. In fact the con-
tribution of deeply trapped
particles can be artificially
turned off in the peaked
on axis simulation; as the
system becomes stable,
one can claim that deeply
trapped EE actually drive
the mode. Moreover, if
barely trapped/circulating
particles are turned off
for the peaked off axis
profiles, the mode be-
comes stable assuring that,
in this case, energetic
barely trapped/circulating
electrons cause the mode
to grow. For all these rea-
sons, the choice of the distribution function anisotropy is very important as well. In fact chang-
ing the width ∆ of the distribution function, the portion of particles, involved in the drive of the
mode, changes, including initially deeply trapped particles (small ∆) and then also circulating
and well circulating particles( large ∆) (as already depicted in Fig.2.). In the case of peaked on
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axis density, the situation is depicted in Fig. 6. (left hand side) where the growth rate is repre-
sented vs ∆. When ∆ deviates from the optimum value (∆ = 0.04), the growth rate decreases.
On the other hand, for the peaked off axis density case Fig. 6. (right hand side), decreasing
∆ means decreasing the barely trapped/circulating particles as well, thus decreasing the mode
drive; on the contrary, increasing ∆ means including a larger fraction of barely circultating
particles, which contributes to the mode, giving an increase of the growth rate.
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FIG. 6.: On the left hand side, growth rate behaviour γ as a function of the width ∆ for a peaked on
axis density profile. On the right hand side,γ behaviour as a function of the width ∆ for a peaked off axis
density profile.

4. Nonlinear Dynamics

The HMGC code can also be used to follow a set of test particles; the fields are computed and
stored in a previous self consistent simulation and test particle coordinates are evolved in these
fields. The advantage is that this kind of simulation allows for subsequent investigation of spe-
cific phase space regions [8]. The phase space coordinates of the test particles can be chosen
such that they belong to the region where particles resonantly interact with the mode, that is,
where the mode is driven unstable. To this aim, we refer the mode-particle power exchange
to the µ,C velocity space, with C ≡ ωPφ − nE (where Pφ = meRu − eψ/c is the toroidal
canonical momentum). The magnetic momentum µ is a constant of motion; the quantity C is a
constant as well, provided that the perturbed field is characterized by a single toroidal number
n and a constant frequency ω. In the following, the analysis will be limited to a time interval
in which the latter conditions are satisfied (long enough, however, to allow for the investigation
of the saturation process). Once identified a point in the velocity space (µ0, C0), representative
of the resonant phase space region to investigate, test particles are initialized with such values
of µ and C, at different radial positions, in order to sample the whole region where the mode-
particle dynamics takes place. Each radial coordinate r corresponds to a certain value of parallel
velocity u = u(r, µ0, C0), and a certain resonance frequency. This frequency is given [9] by
ωres = nωd + [(nq̄ −m)σ + k]ωb for circulating particles; by ωres = nωd + kωb, for trapped
particles. Here, ωd is the precession frequency, ωb is the transit/bounce frequency, the integer k
identifies the bounce harmonics, σ = sign(u), and the average safety factor q̄ is calculated as
q̄ ∝

∮
qdθ over the particles orbit. Note that, the constancy of µ and C make the time evolution

of the specific resonance considered self contained: none of the considered particles can leave
or get the surface (µ = µ0, C = C0), and no gradients orthogonal to such surface can have
relevance in the mode-particle dynamics.
In this paper, the analysis of the non linear evolution is carried on with reference to an equilib-
rium slightly different from that adopted for the linear stability analysis of the previous section
; namely, while the safety factor still shows a moderately hollow profile around r/a = 0.35, it
reaches the value q ' 5 at the external radius. In this way the resulting mode frequency is larger,
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in magnitude, for both peaked-on-axis and peaked-off-axis EE radial profiles (ω/ωA = −0.06
and ω/ωA = 0.043, respectively), allowing for an easier analysis of the mode evolution (the
mode period observed in the previous section is so long that many particle properties would
be difficult to investigate in the nonlinear phase). All the important linear-phase features previ-
ously discussed, such as mode rotation direction and radial localization, are however confirmed
in this new case.
In Fig. 7. mode frequency and the resonance frequency, calculated numerically from test parti-
cle evolution, are compared for a peaked-on-axis density (left) and a peaked-off-axis one (right),
during the linear phase: plots show that power exchange is peaked around the radial position
where the resonance frequency crosses mode frequency. The hamiltonian mapping technique
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FIG. 7.: Comparison between mode frequency ω and the resonance frequency ωres computed for the test
particle set for a peaked-on-axis (left) and peaked-off-axis (right) EE density profiles. The mode-particle
power exchange profile is also represented.

[8] consists in mapping the test particles onto a (Pφ,Θ) Poincaré plane, with Θ being the wave-
phase seen by the particle. Particle quantities are gathered each time the particle complete a full
trapped or transit orbit, crossing the equatorial plane at its (radially) outmost θ = 0 position.
For unperturbed motion, Pφ would be a constant, and particles would be represented, in the
Poincaré plane, by markers drifting along Θ, in the positive (negative) direction for ω greater
(smaller) than ωres. Particles with ω = ωres are represented by fixed markers at Pφ = Pφres. In
the presence of a perturbed field, particles are displaced in Pφ, due, e.g., to theE×B drift. Even
a perfectly resonant particle is brought out of resonance, and it starts to drift. As the wave phase
seen by the particle is such that the perturbed field is seen with inverted sign, the Pφ excursion
is inverted, and the particle crosses the Pφ = Pφres line. Phase drift is then inverted too, and the
process tends to yield a (neary) closed orbit: such particles are captured in the wave. Particles
starting far from the resonance have their orbit in the Poincaré plane only undulated by the Pφ
displacement, maintaining a drifting (passing) character. The Pφ extension of the capture region
increases with increasing field amplitude.
In this study, two kind of plots are used: in the first one, markers are coloured according to
particle instantaneous power-transfer rate; in the second one, according to their initial Pφ value.
Fig. 8. shows the localization in the (Pφ,Θ) plane of the maximum power exchange for the
peaked-on-axis and peaked-off-axis EE density profile. It is worth noting that in the peaked-
off-axis case, two resonances, corresponding to Pφres ' 130 and Pφres ' 160, are apparent
(this is shown in Fig. 7. as well, where the particle resonance intercept the mode frequency at
two radial positions). In the peaked-on-axis case, a single resonance is instead observed, at
Pφres ' 15. The Pφres localization is taken into account in the second kind of plot by choosing
the (constant) colour of each marker on the basis of the particle initial Pφ coordinate, relative to
Pφres, as shown in Fig. 9. (single resonance, two colours) and Fig. 10. (double resonance, three
colours).
In the peaked-on-axis case (Fig. 9.), we observe the Pφ elongation of the red structure formed
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FIG. 8.: Poincare plots (Pφ,Θ) for peaked-on-axis (left) and peaked-off-axis EE density profile (right).
Each test particle is coloured according to its rate of power transfer to the mode.

by particles born with Pφ < Pφres and displaced by the perturbed field. This feature can be eas-
ily interpreted from Fig.7.(left): because of the flat nature of ωres, for r > rres, particles have
to undergo a radial displacement (that is a Pφ displacement) before getting a significant value
of |ω− ωres| and the corresponding Θ drift. The peaked-off-axis case (Fig. 10.) is instead char-

FIG. 9.: Poincare plots (Pφ,Θ). Each test particle is colored according to their position with respect
to the Pφres at t = 0. Blue when Pφ > Pφres and red otherwise. In the graphic the plots are shown at
different times.

acterized by sharper variation of ωres around each of the two resonances. This feature allows
for the formation of two captured-particle regions (cf. the frame corresponding to (tωA = 559).
As the mode amplitude further increases (tωA = 664), the two regions partially overlap: some
of the particles born out of the outer resonance (yellow) enter the region of the inner resonance
(originally red), and viceversa. As a conclusion, from the previous plots, it can be noticed

FIG. 10.: Poincare plots (Pφ,Θ). Each test particle is colored according to their position with respect
to the Pφres. Yellow when Pφ > Pφres2, blue when Pφres1 < Pφ < Pφres2 and red when Pφ < Pφres1.
In the graphic the plots are shown at different times.

that during the non linear dynamics, mutually penetrating structures are revealed; it means that
different density portions of the energetic particle population exchange their radial position,
yielding a density flattening. This phenomena is shown in Fig. 11. for peaked-on-axis (left)
and peaked-off-axis (right) density profile. Density flattening, reducing the free energy source,
contributes to the mode saturation.



9 P28

FIG. 11.: Density flattening for the peaked on axis (left) and peaked off axis profile (right).
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