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Theoretical studies of MHD flows in support to HCLL design activities

L. Bühler, C. Mistrangelo
Karlsruhe Institute of Technology, Postfach 3640, 76021 Karlsruhe, Germany

Abstract

Theoretical studies are performed to predict magnetohydrodynamic flow pattern and pressure drop in typical geometric
components of the liquid metal manifold for a HCLL blanket module. The interaction of the flow with the strong
magnetic field that confines the fusion plasma is analyzed by asymptotic techniques and by numerical simulations.
The flows in feeding and draining manifolds are electrically coupled to each other via leakage currents which may
cross the common wall that hydraulically separates both channels. This results in complex flow paths in the manifold
and in additional pressure drop.

Key words: HCLL blanket, magnetohydrodynamics (MHD), liquid metal manifolds, asymptotic analysis, numerical simulations
PACS:

1. Introduction

In support of design activities for a helium cooled
lead lithium (HCLL) blanket module for a DEMO
reactor [1] and for development of the liquid metal
ancillary system it is necessary to estimate pressure
losses caused by electromagnetic forces. The latter
ones are due to the interaction of the electrically con-
ducting liquid breeder lead lithium (PbLi) with the
magnetic field that confines the fusion plasma. Pre-
vious experimental and theoretical analyses of mag-
netohydrodynamic (MHD) flows in simplified HCLL
blanket geometries suggest that the major fraction
of pressure drop arises in the distributing mani-
fold [2]. Even if velocity and pressure drop in sin-
gle breeder units are small they may become much
larger in the manifold, since it has to feed and drain
up to 8 breeder units. Moreover, the geometry of the
manifold is quite complex as can be seen in Fig.1.
Before entering the breeding zone the PbLi follows
a tortuous path, since the manifold is periodically
changing its cross-section. In addition, ducts are
partly occupied by the helium distributing cham-
bers. As a result 3D current loops are induced that

lead to significant 3D MHD effects with associated
additional pressure losses. The latter ones have to
be determined by appropriate experiments and by
numerical simulations for developing a reliable de-
sign of a HCLL blanket module and for predicting
its operating conditions and performance.

In order to support ongoing design activities and
to get an overview of MHD phenomena in manifolds
of a HCLL blanket a numerical study is performed to
simulate flow conditions in typical geometric com-
ponents of a manifold. Pressure distribution and oc-
currence of flow recirculation are investigated. Re-
sults depend on the position and conductivity of the
wall that separates distributing and collecting man-
ifolds and on the electromagnetic flow coupling be-
tween neighboring fluid regions.

2. Problem description

In the following we consider MHD flows in a
generic model geometry which has typical features
of the liquid metal manifold foreseen in a HCLL
blanket module [1] (see Fig.1). The geometry is
shown in Fig.2. It consists of two ducts which are
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Fig. 1. MHD test section for studying the pressure drop in

one PbLi manifold of a HCLL blanket module.

electrically connected across a step-shaped divid-
ing wall. As a result the flow undergoes periodic
expansions and contractions and due to the elec-
tromagnetic coupling at the common separating
wall the flow in one duct influences the one in the
neighboring channel. The overall dimensions of the
cross section are 4a and 2a in magnetic field direc-
tion y and in transverse direction z, respectively,
where the Hartmann length a is used to define later
the nondimensional parameters. The half-length of
one period in axial direction x is L and the alter-
nating position of the dividing wall measured from
the middle of the manifold is ±∆y. In the limiting
case when ∆y = 0 we have two electrically coupled
straight square channels. In general the flow rates
q1 and q2 in the two ducts may differ, depending on
applied pressure differences.

Fig. 2. Sketch of a generic manifold geometry. Two ducts
with expansions and contractions are electrically coupled at

a step-shape dividing wall.

3. Mathematical formulation

In the following coordinates are scaled by the
Hartmann length a. Inertialess pressure driven
MHD flows, as considered in the present study,
are governed by the non-dimensional Navier-Stokes
equation and by mass conservation

∇p =
1

Ha2
∇2v + j×B, ∇ · v = 0, (1)

where p, v, andB denote pressure, velocity and mag-
netic field scaled by σau0B

2, u0 and B, respectively.
As a characteristic velocity we choose the average
value in both ducts, i.e. u0 = (q1 + q2) /

(
8a2
)
.

The electric current density j is determined by the
dimensionless Ohm’s law and conservation of charge

j = −∇φ+ v ×B, ∇ · j = 0, (2)

where j stands for current density normalized by
σu0B and φ represents the electric potential scaled
by au0B.

The dimensionless parameter in (1) is the Hart-
mann number

Ha = aB

√
σ

ρν
,

which quantifies the relative importance of electro-
magnetic forces to viscous forces. The inertialess as-
sumption is justified if the interaction parameter is
very high, N = σaB2/ (ρu0) → ∞, when electro-
magnetic forces dominate over inertia forces. The
physical properties of the liquid metal, the density
ρ, electric conductivity σ and kinematic viscosity ν
are assumed to be constant.

When the flow is inertialess and periodic, it is
sufficient to consider only a representative part of
length L as shown in Fig. 2 with given inlet and
exit pressure values for each channel. Periodicity im-
plies that at x = ±L/2 velocity and potential do
not change along the axial direction, ∂v/∂x = 0,
∂φ/∂x = 0. At the fluid wall interface the flow sat-
isfies the no-slip condition, v = 0. Since the wall
thickness tw is much smaller than a we may apply
the thin-wall condition to describe closure of cur-
rents along duct walls,

∂φ

∂n
= ∇w · (c∇wφ) , where c =

twσw

aσ
(3)

is the wall conductance parameter and∇w stands for
the gradient in the plane of the wall [3]. Both ducts
are electrically coupled at the common dividing wall
where we have φ1 = φ2.

For strong magnetic fields, i.e. for Ha � 1 vis-
cous effects are confined to very thin boundary lay-
ers while the core of the flow behaves practically as
being inviscid. This property is exploited by apply-
ing an inviscid core-flow analysis for the solution of
equations (1)-(3) with viscous boundary layer cor-
rection at the walls [4]. In this code sudden expan-
sions and contractions are approximated by contin-
uous but steep transitions. In addition complete nu-
merical simulations for inertial MHD flows are per-
formed using a numerical code based on the open
source package OpenFOAM [5]. A more realistic ge-
ometry close to the one shown in Fig.1 with walls of
finite thickness and conductivity is considered.
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4. Results

4.1. Asymptotic analysis

In the following, results will be shown first for a
reference case with nondimensional length l = L/a
= 4, which is close to the geometry proposed in [1].
As reference expansion ratio we choose ∆y = 0.5,
which is close to the one foreseen in the design (∆y =
0.64). As a result of the assumed equal pressure dif-
ferences in the two channels, ∆p1 = ∆p2, both flow
rates become equal as well, q1 = q2. The wall con-
ductance parameter has been chosen as c = 0.1 and
results are presented forHa = 1000. The electric po-
tential is plotted in Fig.3 on the surface of the chan-
nels. In the narrow parts of the ducts the velocity is
larger. This yields higher values of induced poten-
tial on the side walls at z = ±1 (see dark red areas).
Where the cross sections are larger the magnitude
of induced potential difference remains smaller.

3D effects at expansions and contractions lead to
modifications in the velocity distribution compared
to fully developed conditions. This can be seen in
subplots of Fig.3 where profiles of axial velocity com-
ponent u are displayed at several axial positions. The
profile at x = −1.59 corresponds to almost fully de-
veloped conditions with core velocities of the order
one and the well known side layer jets along walls
parallel to the magnetic field. At x = −0.2, shortly
before the expansion of CH1 (contraction of CH2),
we observe already significant modifications in the
side layers of CH2 where now a fraction of flow moves
in reversed direction. Immediately behind the ex-
pansion of CH1 (contraction of CH2) at x = 0.2 the
highest velocities are observed in CH2 and a partly
reserved flow occurs in the layers of CH1. Further
downstream at x = 1.59 we observe again almost
fully developed conditions with highest jet velocity
in CH2.

In the small parts of the ducts the induced cur-
rents are large and as a result we find here the
strongest pressure gradients. This can be seen in
Fig. 4, e.g. for CH1 in the regions −2 < x < 0 and
4 < x < 6 or for CH2 in the range 0 < x < 4. Near
the expansions and contractions the magnitude of
pressure gradients is further increased due to addi-
tional Lorentz forces caused by 3D electric currents
as explained in [6] or in [7]. In the small channels
where the velocities are high, mechanical energy is
transformed into electrical energy, transferred via
the conducting walls to the neighboring larger ducts

Fig. 3. Magnitude of surface potential plotted on the walls

of the ducts for c = 0.1, Ha = 1000, ∆p1 = ∆p2, and profiles
of axial velocity at different axial positions.

and released there partly as mechanical energy to
drive the slower flow in the larger cross section. The
small ducts act as local electric MHD generators
while the larger ducts function as electromagnetic
pumps. This can be seen by the increasing pressure
with respect to the mean value when moving along
the streamwise direction in CH1 in the range 0 <
x < 4 and for CH2 in the regions −2 < x < 0 and
4 < x < 6.
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Fig. 4. Pressure along a full length of a period, plotted along
a center line at z = 0 and along a line near the side wall at

z = 1 for channels CH1 and CH2.

The pressure drop ∆p over a half length of a
period as indicated in Fig.4 has been investigated
by a parametric study for different expansion ra-
tios ∆y. Results are shown in Fig.5. For ∆y = 0
we observe the pressure drop of a fully developed
flow in two straight, electrically coupled channels
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of length l = 4. With increasing ∆y the pressure
drop increases for two reasons. First the flow has to
pass through smaller cross sections. This leads to
increased velocity and higher pressure drop. On the
other hand, larger expansion ratios increase the in-
tensity of 3D MHD effects associated with additional
pressure drop [6]. For small ∆y the additional pres-
sure drop appears moderate but already at ∆y =
0.6, which is still a bit smaller than that in the blan-
ket, the increase in ∆p is already 91% compared to
a flow in two parallel channels.
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Fig. 5. Pressure drop ∆p along half of a period as a function

of the expansion ratio ∆y.

Finally, it is worth to mention that in the real
manifold the flow rates in CH1 and CH2 differ, de-
pending on the axial positions along the manifold
since CH1 feeds the breeder units while CH2 collects
the flow from the breeder zone. This leads to differ-
ent pressure drops in both channels of the manifold.
To get an impression how pressure drops and flow
rates are related to each other a parametric study
has been performed in which the ratio of applied
pressure differences is varied in a wide range. Fig.6
shows the flow rates in CH1 and CH2 as a function
of the pressure ratio ∆p1/∆p2 between both ducts.
For ∆p1/∆p2 = 1 we observe equal flow rates in
both channels as a result of perfect symmetry of the
problem. When ∆p1 is increased compared to ∆p2
the flow rate q1 increases and q2 decreases. For van-
ishing ∆p2, i.e. for ∆p1/∆p2 → ∞ both flow rates
approach finite asymptotic limiting values which are
indicated at the right border of Fig.6. There remains
a finite flow rate in CH2 even if the pressure drop in
this channel vanishes. The reason for this is the elec-
tromagnetic coupling according to which the flow is
driven by the energy supplied from CH1. Same rea-
soning holds for ∆p1/∆p2 → 0.
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Fig. 6. Flow rates q1 and q2 depending on the pressure ratio

∆p1/∆p2 in both ducts.

It has been shown that in the extreme case a fi-
nite flow rate exists in CH2 even if ∆p2 = 0. The
structure of this flow can be observed in two cross
sections shown in Fig. 7. At x = −1.59 we observe
relatively high side wall jets in CH1 and a core ve-
locity larger than one. Due to electromagnetic cou-
pling the flow in CH1 pulls that in the core of CH2 in
same direction. This leads to a build up of pressure
along the axial direction that drives the backward
oriented jets in CH2 as shown in Fig. 8. In the region
0 < x < 4 the pressure gradients in both channels
point in same direction and as a result here the side
walls jets have same streamwise orientation.

Fig. 7. Magnitude of surface potential plotted on the walls

of the ducts for c = 0.1, Ha = 1000, ∆p2 = 0 and profiles of
axial velocity at different axial positions.

4



2 0 2 4 6
x

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

p

CH1 z=0
CH1 z=1
CH2 z=0
CH2 z=1
mean∆p1

Fig. 8. Pressure along a full length of a period, plotted along

a center line at z = 0 and along a line near the side wall at

z = 1 for channels CH1 and CH2 when ∆p2 = 0.

4.2. Numerical simulations

While results shown so far have been obtained for
a model geometry using an inertialess asymptotic
theory and assuming that the walls are very thin,
the real geometry has walls of finite thickness and
inertia effects could have an influence on pressure
drop [8]. This is studied by ongoing 3D numerical
simulations where the geometry is modelled with
more details and with the real finite wall thickness.
In these simulation all boundary layers are well re-
solved with finer grid spacing near the walls. In total
9 millions of grid points have been used inside the
fluid domain and about 11 millions inside the solid
structure. First results have been obtained and one
example is shown in Fig.9, where contours of elec-
tric potential are plotted on the fluid-wall interface.
A qualitative comparison with results obtained with
the asymptotic theory (Fig.3) shows that the simple
model geometry provides reasonable solutions.

Fig. 9. Contours of potential plotted on the fluid-wall inter-
face of the ducts for Ha = 1000, N = 1000, ∆p1 = ∆p2.

The axial distribution of pressure obtained by the
3D numerical simulations is displayed in Fig.10 and
Fig.11. The contours presented in Fig.10 show only
deviations from an assumed mean linear pressure
distribution p = −kx for a better visualization of 3D
effects near expansions and contractions. The varia-
tion of pressure in CH1 and CH2 along the red and
blue lines indicated in Fig.10 can be seen in Fig.10.
We observe here the same behavior as in our model
geometry with steeper gradients in narrow channels
and pressure recovery in larger ducts, compared to
mean linear pressure distribution. The magnitude of
pressure drop is larger than in previous model cal-
culations since the walls here are much thicker and
better conducting.

Fig. 10. Conturs of pressure deviations from a mean linear
distribution p = −k at z = 0 for Ha = 1000, N = 1000,

∆p1 = ∆p2.
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Fig. 11. Pressure along two periods, plotted along a center

line at z = 0. Results are obtained by numerical simulation

for realistic HCLL geometry (without helium manifolds).

5. Conclusions

Basic MHD phenomena in a model geometry
for a HCLL manifold have been investigated by
an asymptotic analysis of 3D flows in electrically
coupled domains and by numerical simulations. It
has been found that electromagnetic flow coupling
across the common wall that divides the manifold
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in two sub-channels has a strong influence on flow
distribution and pressure drop. Mechanical energy
lost in smaller channels by large pressure drops is
transfered via leakage currents to the larger ducts
where partial pressure recovery is observed. Never-
theless, due to Joule dissipation in 3D current loops,
a significant fraction of flow energy is dissipated
which increases the mean pressure drop along the
manifold. Periodic expansions and contractions of
similar size, as foreseen in the design of the HCLL
blanket module for a DEMO reactor, may lead to
an increase of pressure drop by more than 90%
compared to flows in straight ducts.

First 3D numerical simulations have been per-
formed which confirm the results obtained by the
asymptotic analysis. Further numerical studies are
ongoing for investigation of inertia effects. The influ-
ence of partial blocking of PbLi channels by the he-
lium manifolds will be also analyzed in future stud-
ies.
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