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ABSTRACT
Due to the good off-line results (in terms of high learning rate, high success rate, low false alarm 
rate and high prediction probability) provided by Venn machines as adaptive disruption predictors 
in JET, this article assesses their use under real-time requirements. Venn machines predictions can 
be expensive from a computational point of view but they can be used in JET in a deterministic way. 
The JET characteristic time to take mitigation actions for disruptions is about 30ms. This article 
shows that Venn predictions take computation times of 1ms for JET conditions. The influence of 
both the dimensionality of feature vectors and the number of training examples to make predictions 
are analyzed. Also a short discussion about the potential applicability to ITER is presented.

1.	 INTRODUCTION
A disruption is a catastrophic loss of plasma control in tokamaks that can produce irreversible 
damage to a fusion device. Therefore, disruptions can be a big issue in future reactors such as ITER 
or DEMO. The concepts of avoidance and mitigation are closely related to disruptions. The former 
is associated with the objective of free disruption operation. The latter is aimed at the alleviation 
of the disruption detrimental effects when a disruption is unavoidable. But it is worth highlighting 
that a pre-requisite to any mitigation method is to have a reliable real-time disruption predictor 
during the discharge.
	 Ideally, plasma theoretical models can guide operation and provide indications about disruption 
avoidance and prediction. However, the existing models and simulation tools have performances far 
from those that are needed [1]. Some related problems are: incomplete models, strong assumptions 
and unphysical boundary conditions. Due to the lack of reliable physics models, data-driven models 
are a practical alternative. They are based on discovering relations between signals to identify an 
incoming disruption. These data-driven predictors follow the temporal evolution of the discharges 
and make predictions on periodic basis (ms or tens of ms).
	 To train a data-driven disruption predictor, the more discharges the better. Training datasets can 
use hundreds of disruptions, like for instance the Advanced Predictor of DISruptions (APODIS) 
on JET. However, next generation of tokamaks cannot wait for hundreds of disruptions to obtain a 
predictor. Recent analyses have shown that it is possible to develop adaptive disruption predictors 
from scratch [2]. Dormido-Canto et al. uses APODIS in [2] to develop an adaptive disruption 
predictor from scratch. The main result shows that about 40 disruptions are needed in the training 
set to have good prediction capabilities: success rate of 93.5% and false alarm rate of 2.3%.
	 Trying to speed up the learning process and to reduce the number of required discharges, a 
new proposal of predictor from scratch was put forward in [3]. It is based on Venn predictors [4] 
(or Venn machines) that provide with each prediction not only a probability but also a probability 
error bar. The results in [3] show that reliable disruption predictors can be obtained in an adaptive 
way starting with predictors that have just 1 disruptive example and 1 non-disruptive example. To 
include more knowledge about the disruptive/non-disruptive parameter space, the number of training 
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examples is increased after each missed alarm. This adaptive approach based on Venn predictors 
allows achieving a success rate and a false alarm rate of 94% and 4% respectively. These results have 
been obtained after the off-line analysis in chronological order of 1237 JET discharges (1036 non-
disruptive and 201 disruptive) corresponding to the three first ILW campaigns (years 2011–2012). 
The average probability interval about the reliability and accuracy of all the individual predictions 
is 0.811 ± 0.189.
	 Venn predictors are a particular case of conformal predictors [4]. Conformal predictors always 
provide, together with the prediction, a measure about how reliable the prediction is. This reliability 
measure establishes the level of confidence in the prediction. In the case of the Venn predictors, the 
confidence in the prediction is provided by both the probability and the corresponding error bar.
	 The price to pay for having reliable predictions is computation time. In general, an important 
drawback of conformal predictors is the computation time needed to make predictions. Therefore, 
the application of this kind of predictors under real-time conditions can be an issue. Due to the 
good results obtained in JET (in terms of success rate, false alarm rate and probabilities), this article 
evaluates the possibility of using Venn predictors as disruption predictors from scratch under real-
time requirements. Tests have been performed with the JET database. At present, the time cycle to 
identify a disruptive behaviour in JET is 32 ms. This interval is about the minimum needed in JET 
to perform mitigation actions after the recognition of a forthcoming disruption. Therefore, this time 
is the upper bound for the real-time data processing (feature extraction from the plasma quantities 
plus the prediction algorithm) to implement a Venn disruption predictor from scratch in JET.
	 The good results of the adaptive Venn predictor with the JET database makes it a good candidate 
as predictor from scratch for ITER. With this type of predictor, there is no need to wait for tens of 
disruptions to produce a reliable prediction. The only point to assess, as mentioned previously, is 
to ensure that the computation time to make predictions fits the cycle time to put into operation 
mitigation actions in a fusion device.
	 Section 2 gives a summary of the Venn predictor theory and exhaustive bibliography is presented. 
Section 3 shows the real-time needs to develop the adaptive Venn predictors in JET. Section 4presents 
the computation time results and, finally, section V is a short discussion about the potential needs 
for ITER.

2.	 VENN PREDICTORS
In terms of machine learning theory, disruption predictors are considered binary classification 
problems. Typically, a binary classifier is implemented in a two-step procedure (fig. 1). The first 
one is an inductive process, in which a general model (typically, a mathematical function) is created 
from a dataset of training examples. Generally speaking, the mathematical function is obtained by 
solving an optimization problem. The second step is a deductive process that uses the model created 
in the first step to make predictions. It is important to note that the training set is no longer utilized 
for the predictions. Instead, the model is used as a decision function to predict the labels of the new 
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examples. Usually, the training process can be very expensive in terms of computational resources 
but the deductive step can require times below 1ms.
	 Conformal predictors (and the Venn predictors in particular) do no follow the inductive/deductive 
schema previously mentioned (Fig.1). The predictions are made in a transductive way, which 
means that no general model is created and the whole training dataset is necessary to make each 
new prediction. Conformal predictors assume each possible label for the example to classify. The 
classification with the maximum confidence is taken as prediction. Therefore, a binary classification 
problem implies the computation of two different confidence measures per example to classify, a 
fact which can involve a significant computational load.
	 Focusing the attention on binary Venn predictors, let’s consider a training dataset consisting of 
objects (xi ∈R′′′), labels (y, ∈ {0,1}) and pairs: (x1, y1),..., (x′′

, y
′′
). As it has been described in the 

preceding paragraph, to predict a label yn+1 for a new object xn+1 =
 xnew, it is necessary to check 

the different hypothesis yn+1 =
 y  each time including the pair (x1, y1),..., (xnew, y) into the dataset. 

From a mathematical point of view [4], the idea of Venn predictors is based on a taxonomy function
An, n ∈N, which classifies the relation between an example and the set of other examples:

	   
Values ti are called categories and are taken from a finite set T = {t1, t2 ,..., ti}. Equivalently, a 
taxonomy function assigns to each example (xi, yi) its category  ti, or in other words grouping all 
examples to a finite set of categories. This grouping should not depend on the order of examples 
within a sequence.
	 It is out of the scope of the article to go into an in depth explanation of Venn predictors. Reference 
[4] contains all the theory about them. Anyway, for the reader convenience, it is important to mention 
several types of taxonomies that can be used with multi-class problems in the Venn prediction 
framework. Five different taxonomies are analyzed in [5], where the Venn predictors are based 
on neural networks. Lambrou et al. [6] shows an application of inductive conformal predictors to 
develop an inductive Venn predictor with a taxonomy derived from a multi-class Support Vector 
Machine classifier. Nouretdinov et al. [7] describes the logistic taxonomy, which is created from the 
probabilistic method of logistic regression. Finally, this article uses the nearest centroid taxonomy, 
whose foundations can be found in [8].

3.	 REAL-TIME NEEDS OF ADAPTIVE VENN PREDICTORS FOR JET
To analyze JET real-time requirements for the adaptive Venn predictors described in [3], it is 
important to review the characteristics of the real-time prediction system. Taking into account the 
objective of ‘learning from scratch’, only those quantities that are considered essential diagnostics 
from the start of a fusion device have been considered (Table I).
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The quantities of table I are used to form feature vectors on a periodic basis (32ms). These feature 
vectors (x ∈R′′′) have m components that allow the characterization of the plasma behavior 
(disruptive/non-disruptive) every 32ms. It is well-known that the disruptive/non-disruptive character 
of the JET plasmas at any time instant is well defined through two different signal representations 
[9]: time domain and frequency domain. During the discharge, each signal is digitized at 1kSample/s 
and is processed in temporal windows 32ms long. The processing consists of computing, with the 
32 samples per window, the mean value (temporal domain) and the standard deviation of the power 
spectrum (frequency domain) after removing the DC component. These two values per signal are 
the components of the feature vectors. Therefore, a feature vector is generated every 32ms and is 
used as input to the Venn predictor to recognize the plasma behavior.
	 According to the previous paragraph, the use of 7 plasma quantities (Table I) and two different 
representations per signal means that the maximum dimension of the feature vectors is 14. Reference 
[3] shows the results of Venn predictors developed with 14 features taken Nf at a time, where
Nf = 2, …, 7. The computations were performed in Matlab and the results are shown in Table 2.
	 The real-time implementation of the Venn predictor has to ensure that predictions must be 
performed every 32ms in less than 32ms. The total computation time for the prediction will be the 
sum of three different times: the time to compute the mean values, the time to compute the standard 
deviation of the signal power spectrum and the time required for the Venn predictor itself. Due 
to the fact that the Venn predictors assume each possible label for the example to classify (in this 
case, disruptive and non-disruptive), always two classifications are necessary within each 32ms 
temporal window. But the transductive character of the Venn predictors has to be taken into account. 
As mentioned previously, this means that the whole training dataset is necessary to make each new 
prediction. Therefore, two different classification problems have to be solved in less than 32ms 
and the number of training samples can be an issue in this respect (the more samples the longer the 
computation time).
	 Next section evaluates the real-time computation times of the Venn predictors developed in [3] 
with a nearest centroid taxonomy as a function of the feature vector dimensionality and the number 
of training examples. 

4.	 COMPUTATION TIME ASSESSMENT
All simulations to determine the computation times have been performed in a PC with an Intel 
Xeon CPU E5-1603 3 @ 2.80 GHz processor and 6 Gbytes of RAM memory. The PC operating 
system is CentOS release 6.3 (Final). The codes have been written in C language and the compiler 
used is gcc 4.4.6.
	 It should be reminded that the predictions are performed with 32 samples per signal and 
the computations are carried out every 32ms. As a first step, the computation time to form the 
corresponding feature vector has to be considered. This time includes the computation time of both 
mean values and standard deviation of the power spectrum. Due to the impossibility of evaluating 
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these times on individual cases, average values on millions of cases are shown. The average 
computation times corresponding to the mean values of 32 samples is 0.122±0.001us. In the same 
way, the average values to compute the standard deviation of the power spectrum of 32 samples is 
4.339±0.016 us.
Next section evaluates the real-time computation times of the Venn predictors developed in [3] with 
a nearest centroid taxonomy as a function of the feature vector dimensionality and the number of 
training examples. 
	 As mentioned, the Venn prediction computation times depend on both the feature vector 
dimensionality and the number of training examples to make the predictions. With regard to the 
feature vector dimensionality, it should be noted that as reported in Table II, a maximum number 
of 7 features has been considered. Owing to the fact that the most time consuming computation is 
the estimation of the standard deviation of the power spectrum, this time will be used as an upper 
bound of the computation time to form a feature vector. Therefore, this maximum computation time 
(tF) follows the equation

 
where Nf is the number of features (i.e. the feature vector dimensionality).
	 Figure 2 shows the computation times of Venn predictions as a function of the number of features. 
The plot represents JET results with a number of features per vector between 2 and 7. The different 
curves (from top to bottom) correspond to different training examples (2000, 1750, 1500, …, 500, 
250).
	 Figure 3 shows the same results of fig.2 but in a (training examples, computation time) 
representation. In this plot, the curves from top to bottom are the number of features (7, 6, …, 2).
	 According to these simulations, the maximum computation time in JET, to generate the feature 
vector and to perform the prediction (which signifies two probability estimations about disruptive 
and non-disruptive behaviors), is less than 1ms. This time has to be compared with the characteristic 
time in JET to take mitigation actions that is about 30ms. It is important to emphasize that this 
results corresponds to use a maximum number of 7 features to describe the JET parameter space 
and a maximum number of 2000 training examples. Both situations are suitable for JET. 

5.	 DISCUSSION
The Venn disruption predictor developed in [3] can be used under real-time requirements in JET 
because it provides a high learning rate, high success rate, low false alarm rate, high prediction 
probability and low computational cost. Therefore, Venn predictors are potential candidates as 
disruption predictors from scratch for ITER. However, future work has to deal with specific ITER 
factors that can limit the prediction determinism in a running discharge. Firstly, only seven plasma 
quantities are enough for a proper description of the JET disruptive/non-disruptive parameter space. 
In ITER a larger number of plasma quantities can be necessary and, depending on the number, this 

tF ≤ 4.339 . Nf us, Nf = 2,..., 7
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can have a big impact on the dimensionality of the feature vectors. Secondly, reference [3] shows 
that the disruptive/non-disruptive characteristics of JET plasmas can be condensed in few feature 
vectors. This means that the number of training samples to make predictions does not need to 
be large. However, this situation is unknown for ITER and a more exhaustive analysis about the 
influence of the number of training examples on the computation time has to be tackled. Thirdly, it 
should be noted that the prediction codes can be parallelized. The most immediate analysis about 
this is to execute in parallel the two probability estimations corresponding to the assumptions of 
each possible label for the example to classify every 32ms.
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Table 1: List of signals to characterize the disruptive/Non-disruptive status of the JET Plasmas.

Table 2: Success rate (SR), False alarm rate (FA) and Average prediction probability (AVP) for several combination of 
feature vectors. The numbers to identify features correspond to the ones of Table 3. 

Table 3: Feature identification. Acronyms are related to Table 1. Mean(.) Represents the mean value during the time 
window of 32ms. STD(|FFT(.)|) Signifies the standard deviation of the fourier spectrum during the timewindow of 32ms 
(The DC component has been removed).

Signal name Acronym Units
Plasma current Ip A
Mode locked amplitude ML T
Plasma internal inductance LI
Plasma density Ne m–3

Stored diamagnetic energy time derivative dW/dt W
Radiated power Pout W
Total input power Pin W

Feature id.                       SR(%)  FA (%) AVP
2 3 4 5 7 8 11 12

x x 94.0 4.7 0.81±0.19
x x 92.5 5.1 0.83±0.17
x x x 94.0 4.3 0.81±0.19

x x x 94.0 4.7 0.81±0.19
x x x x 94.0 4.2 0.81±0.19
x x x x 94.0 4.2 0.81±0.19
x x x x x 94.0 4.2 0.81±0.19
x x x x x 94.0 4.2 0.80±0.20
x x x x x x 94.0 4.2 0.80±0.20
x x x x x x 94.0 4.3 0.81±0.10
x x x x x x x 94.0 4.3 0.80±0.20
x x x x x x x 94.0 4.3 0.80±0.20

Feat. id. Definition Feat. id. Definition
1 mean(Ip) 9 mean(dW/dt)
2 std(|fft(Ip)|) 10 std(|fft(dW/dt)|)
3 mean(ML) 11 mean(Pout)
4 std(|fft(ML)|) 12 std(|fft(Pout)|)
5 mean(LI) 13 mean(Pin)
6 std(|fft(LI)|) 14 std(|fft(Pin)|)
7 mean(Ne)
8 std(|fft(Ne)|)
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Figure 1: A traditional classifier has to be understood as consisting of two steps: induction and deduction. However, 
conformal predictors do not follow the induction/deduction steps. All training samples are used with each new prediction 
and no general rule is needed.

Figure 3: Computation times for the Venn predictors as a function of the number of training examples.

Figure 2: Computation times for the Venn predictors as a function of the feature vector dimension.
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