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ABSTRACT

Mathematical details are given of various tomographic reconstruction algorithms that are in use

at JET. These algorithms include constrained optimization (CO) with local basis functions, the

Cormack method, methods with natural basis functions and the iterative projection-space

reconstruction method. Topics discussed include: derivation of the matrix equation for constrained

optimization, variable grid size, basis functions, line integrals, derivative matrices, smoothness

matrices, analytical expression of the CO solution, sparse matrix storage, projection-space

coordinates, the Cormack method in elliptical coordinates, interpolative generalized natural basis

functions and some details of the implementation of the filtered backprojection method.

1. INTRODUCTION

The algorithms for tomography presently used at JET for emission tomography have been

described in several publications [1–5]. Much of the mathematical details of these algorithms

were left out of those articles as their derivations are quite straightforward. The purpose of this

report is to show in detail the derivations of the mathematical expressions used in the algorithms

and to discuss other details of the implementation, in order that the algorithms and programs are

fully documented. These mathematical expressions may also prove useful to readers who are

implementing similar tomography algorithms.

The main tomography method discussed is the constrained optimization (CO) method

with local basis functions [12]. Other methods known from the literature have been implemented

at JET, such as the Cormack method [6,7], a truncated singular value decomposition method

that uses natural basis functions [3], and the iterative projection-space reconstruction (IPR)

method [5]. The IPR method uses the well-known filtered backprojection (FBP) method, also

called convolution backprojection [8]. Other methods have been developed, such as a constrained-

optimization method with natural basis functions [4]. All derivations of mathematical techniques

that exceed a certain complexity and are not readily available from the literature have been

included in this report. Although some context is given of the mathematical expressions, the

present report is not self-contained: for the full context reference to the literature will be necessary.

At JET much effort has been put into correcting for the beam widths of the imaging systems.

Details of the mathematics of those techniques have been published elsewhere [9–11] and are

not repeated here.

2. MATHEMATICAL DETAILS OF THE CONSTRAINED OPTIMIZATION

METHOD

Constrained optimization methods are based on a standard way of solving ill-posed problems.

Constrained optimization is particularly applicable to tomography when the coverage by lines

of sight is coarse and irregular, as is the case in most applications of tomography in fusion

research. The present implementation is based on the method implemented by Fuchs [12], but
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with several extensions: variable grid size, non-negativity constraints, taking into account a

neutral-particle contribution [2] and taking into account beam widths [1,9–11]. The two first

extensions will be discussed, in Secs. 2.2 and 2.7, respectively, as well as some features of

which details have not been published or are not easy to find in the literature: the background of

constrained optimization problems (Sec. 2.1), sparse-matrix storage (Sec. 2.8), derivative matrices

(Sec. 2.5) used in the smoothness matrices, anisotropic diffusion on flux surfaces (Sec. 2.6), and

line integrals (for poloidal and toroidal lines of sight) (Sec. 2.4) with bi-linear interpolative basis

functions (Sec. 2.3).

2.1 Matrix equation for constrained optimization

In the constrained optimization method one tries to optimize an object function that describes

some desired or expected property of the emission profile g x y( , )  (in emission tomography),

which is constrained by the measurements. The emission profile is discretized onto a set of basis

functions, which will be described in Secs. 2.2 and 2.3. If the object function O(g), which is

described in Sec. 2.6, is quadratic and based on smoothness, one can write

O( ) ,g g g= ΩΩ (1)

where the Dirac notation is used for the inner product and ΩΩ is a so-called smoothness matrix.

With the discrepancy principle [13,14], one chooses the constraint to be

  
C( )g f g= − −K

2 2ε , (2)

where f are the measurements, K is a matrix that describes the geometric properties of the

measurement process, and ε  is the estimated noise. The object function can be optimized with

respect to the constraint:

min ( ) ( ) .O Cg g ≤{ }0 (3)

In plain language this optimization methods finds the smoothest function for which the misfit is

equal to the noise (i.e. the discrepancy principle). Alternatively it can be seen as selecting from

all possible solutions that satisfy C( )g ≤ 0 the solution that is smoothest.

The constrained problem of Eq. (3) can be solved by means of the Lagrange multiplier

method. That is, the following system of equations is solved:

d
d

d
dg

g
g

g

g

O C

C

( ) ( ) ,

( ) ,

+ =

=

λ 0

0

(4)

where λ is the Lagrange multiplier, which is required to be positive. In Cartesian coordinates for

a vector g: d d/ ( / )g e= ∑ ∂ ∂gii i , where ei  is the unit vector. It can be shown by writing out the

inner products and matrix multiplications of O(g) and C(g) that

    

d
dg

g g g gA A A= + T (5)
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and

    

d
dg

f g fA A= T . (6)

Therefore, from Eq. (4) it follows that

    

d
d

d
d

d
d

g
f g f g g g

g
f f g g f g g g

g
f f g g f g g g g f

λ λ λ λ

λ λ λ λ λ

− − +( ) = + − +( ) =

+ − +( ) = + −

K K K K K

K K K K K K

ΩΩ ΩΩ

ΩΩ ΩΩ

2

2 2 2 2T T Tg ,
(7)

where     ( )K K K K
T T T=  and   ΩΩ ΩΩT =  have been used1. Thus, the first line of Eq. (4) leads to the

matrix equation

    
λ λK K K

T T+( ) =ΩΩ g f , (8)

and the constraint on the second line of Eq. (4) gives the condition to determine λ. If the

measurements are weighed by the covariance matrix W, the constraint is

  
C M( )g f g f g f g f g= − − − = − − −K W K W K W KΩΩ ΩΩ , (9)

where M is the number of measurements, Eq. (8) becomes

    
λ λK WK K W

T T+( ) =ΩΩ g f (10)

The reason for the equality in the constraint in the second line of Eq. (4) is as follows. Figure 1

shows 
  

f g f g− −K W K  and O(g) as a function of 1/λ. It is clear that to minimize O(g) the

maximum value of 
  

f g f g− − ≤K W K M  should be taken, i.e. C( )g = 0. Note that both

O(g(λ)) and C(g(λ)) are monotonic functions of λ, which can be proven for C(g(λ)) for λ > 0 [14].

The quadratic object function of Eq. (1) is only one of the possibilities. Sometimes non-

linear object functions are chosen, such as in the maximum entropy method. In that case matrix

equations such as Eqs. (8) and (10) do not exist and much more cumbersome numerical methods

have to be used. Equations (8) and (10) also correspond to the Phillips-Tikhonov method to

solve the problem. It is clear that if λ is chosen large, the measurements will dominate the

solution of Eqs. (8) and (10), whereas if λ is chosen small, the object function will dominate.

Instead of the discrepancy principle Eq. (2), it is common to choose other ways to determine the

optimum regularization parameter λ. A large amount of literature exists on this topic, see for

instance Ref. 13.

1 See Sec. 2.6 for the definition of Ω from which this property follows.
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Fig.1: Typical example of the competing functions in constrained optimization, the misfit 
  

f g f g− −K W K  (dotted

line) and the unsmoothness g gΩΩ  (dashed line), as a function of the inverse of the Lagrange multiplier 1/λ (the

regularization parameter). The solid circles show the optimized Lagrange multiplier according to the discrepancy

principle, i.e. where the misfit equals the estimated errors   ε εW = M (solid line).

The optimum λ for Eqs. (8) and (10) in combination with the constraint can be found

iteratively because, as said, O(g(λ)) and C(g(λ)) are monotonic functions of λ. This is often

done by solving Eqs. (8) or (10) iteratively for different λ. The solution can also be expressed

analytically, which may be much faster, and can also include a non-negativity constraint [14,15],

see Sec. 2.7.

2.2 Irregular grid for variable grid size

The total emission profile in JET shows little structure in the bulk plasma and much structure in

the divertor plasma. The lines of sight of the bolometer systems therefore have large separations

in the bulk plasma and small ones in the divertor. If a tomography method is well regularized,

the grid size should not matter if the grid size (the distance between grid points) is chosen small

enough (typically equal or smaller to the average separation between lines of sight in a region).

Many grid points, however, are very expensive computationally and consume a lot of memory.

For bolometer tomography at JET it makes much sense to choose a large grid size in the bulk

plasma and a small grid size in the divertor. A rectangular reconstruction region with a constant

grid size is by far the simplest to implement. A Cartesian grid with variable grid size is complicated,

but straightforward. Non-Cartesian grids, for example in flux coordinates, are further

complications with certain benefits if the emissivity is well represented in flux coordinates, such

as soft x-ray radiation, but also have complications, for example when the line integrals of full

geometric properties of the imaging system should be taken into account. Furthermore, there is
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a danger to impose a grid onto a solution when the grid may not be appropriate, for instance

when the reconstructed flux is not accurate; a Cartesian grid is insensitive to such problems as it

is more flexible (the fact that one expects the emission to be approximately constant on flux

surfaces can, for instance, be built into the object function).

A irregular grid scheme for variable grid size was implemented. The requirements were

that the basis functions used can be defined on the grid, that the local emissivity can be represented

by these basis functions, and that derivative matrices can be calculated. Furthermore, the edge

of the reconstruction region can be irregular, so that no grid points are wasted on the uninteresting

region outside the irregularly shaped vacuum vessel. It was determined that for a given problem

the grid would be built and remain fixed, i.e. the grid cannot be refined during tomographic

reconstructions.

JG
99

.4
92

/2
c

Fig.2: Typical example of a small part of a grid with variable grid size (used for the simulations presented in
Ref. 21). The dots indicate the regular original grid, the solid circles the actual grid points and the open circles
virtual grid points. Note how on the boundary of grid sizes the virtual grid points ensure that actual grid points
always have four neighbours on the grid lines. The lines around virtual grid points indicate which actual points are
their neighbours: the value held by the virtual point is the linear interpolation between the two actual neighbours.
Note that several virtual points can have the same actual neighbours. Outside the reconstruction region no actual
points are selected, as in the lower left corner of the figure.

The bi-interpolative basis functions described in Sec. 2.3 and the requirement of derivative

matrices to be continuous over the boundary between grid sizes were the main factors that

determined the implementation. The grid points are a subset of a fine rectangular regular Cartesian

grid. There are non-used, actual and virtual grid points. Actual grid points are the only points to

hold independent values. The virtual points are only used to ease the calculations on the edges

between regions with various grid sizes. The virtual points hold a virtual value that is the linear

interpolation between its two actual neighbours. An example of a grid is given in Fig.2. Each

actual grid point is surrounded by four pixels, each of which has four corners which are either
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actual or virtual grid points. The way the grid sizes can be chosen in different regions is very

flexible, although there is a strict requirement of the placement of virtual grid points in appropriate

places, and is certainly not limited to two different sizes in one grid. To speed up the calculations,

the two neighbours of each virtual point, and the four neighbours (actual or virtual) of each

actual point are stored so that no searches are needed while building basis functions and derivative

matrices. The main difficulties in generating grids are to ensure that: virtual grid points are

located where required, there are no conflicts between different grid sizes and virtual points on

the grid boundary, and that the correct neighbours are assigned to each point.

The chosen type of grid is very suitable for the pyramid basis functions described in Sec. 2.3,

but it is less suitable for square constant pixels2. Higher order basis functions can in principle be

defined on the grid, although in that case searches of the neighbours of neighbours have to be

made and limitations may have to be imposed on the grid3.

2.3 Basis functions

In series-expansion methods for emission tomography, the emissivity g(x,y) is expanded into

basis functions b x yj ( , ) by

g x y g b x yj jj
( , ) ( , )≈ ∑ . (11)

See Refs. 1, 4 and 16 for more detailed descriptions (including that the basis functions do not

necessarily need to be orthogonal) and discussions on possible basis functions (such as global

and natural basis functions4).

A common discretization of g is into pixels of a grid (see for example Ref. 17). In this case

the basis functions b x yj ( , ) are

b x y
x y j

j ( , )
( , )

= 



1

0

if inside the th pixel,

otherwise.
(12)

This is an example of local basis functions. In the present implementation local basis functions

are used that describe bilinear interpolation between the grid points, which are pyramid shaped

2 In the current implementation each actual grid point holds values. For square constant pixels the pixel holds the
values and a way has to be chosen to represent those values unambiguously (in, for instance, the lower left
corner point of each pixel; but what happens if that is a virtual point?).

3  As Sec. 2.3 shows, the basis functions on the boundary between different grid sizes are fairly complicated and
may cover many pixels depending on the virtual grid points. It should be possible to extend the definition for
higher order basis functions, but much care has to be taken to do this properly. It may turn out to be impossible
or very difficult to do this for arbitrary grids.

4 Basis functions can be divided into local, global and natural types [4,16]. Local basis functions are non-zero in
only a small part of the reconstruction region in object space, but their Radon transforms are non-zero over a
large part of projection space. Global basis functions and their Radon transforms are non-zero over most part of
the reconstruction region in object space and projection space. Natural basis function are non-zero in a small
part of projection space, but their backprojections are non-zero over a large part of object space.
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with rounded corners between grid points (see Fig.3). On a regular grid these basis functions

can be expressed as

b x y t x x t y yj x j y j( , ) ( , ) ( , )= , (13)

where the triangle functions tx  and ty  are given by

t z z

z z z
z z z

z
z z z z

z z z

z
z z z z

z z z

z z z
z z

z
z z z

z ( , )c

c
c

c c

c
c c

c

c

c
c

if

if

if

if

if

if
=

< −
− + − ≤ <
+ − ≤ < +

≥ +













=
− ≥

−
−

− <







0

0

0

1

∆
∆

∆
∆

∆
∆

∆
∆

∆

∆
∆

(14)

where z is x or y and ∆z indicates the distance between grid points. These basis functions ensure

that the resulting g(x,y) in Eq. (11) is continuous. In the case of constant pixel basis functions,

gj  corresponds to the average emissivity in the pixel. In the case of the bilinear interpolation, gj

corresponds to the actual value in the grid point and thus g g x yj j j= ( , ) , ( , )x yj j  being the

coordinates of grid point j.

(a) (b) (c)

JG
99

.4
92

/3
c

Fig.3: Three examples of pyramid basis functions on the boundary between different grid sizes. The symbols for
grid points follow the convention of Fig. 2. The contour plots have contours at 0.01, 0.1, 0.2 … 1.0. Note how the
pixels that are covered by the basis function are determined by the virtual corner points of which the central actual
point, to which the basis function corresponds, is a neighbour.

The geometric matrix K of Sec. 2.4 is given by

K K x y b x y x yij i j= ∫∫ ( , ) ( , )d d , (15)

for these basis functions, where K x yi ( , )  is the geometric function [1,9,11].

On the grid with variable grid size great care has to be taken to define the basis functions

in a meaningful way. The basis function corresponding to actual grid point j will have non-zero

values in all pixels that surround the point, and in pixels for which the point is a neighbour of a

virtual corner point. This means that more than four pixels can be involved (see Fig. 3). The

reason for this is that when the bi-linear interpolative values are assigned to the corners of a

pixel, the values of virtual corner points are distributed over their two neighbouring actual points.

To integrate over the grid, for instance to determine the total radiated power from the

reconstructed emission profile, it is necessary to consider all pixels, not the actual grid points.
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All corner points, actual and virtual, have a value (for virtual points this is the linearly interpolated

values between its two actual neighbours). Iterating through all pixels, a factor of 1/4 of the

value of each of its corner points is added to the sum, weighted by the size of the pixel.

2.4 Line integrals through basis functions

The line integral through a basis functions is given by the Radon transform of the basis function.

For square constant pixels the line integral is simply the length of the viewing chords through

the pixel. The length l of the chord p x y+ − =sin cosξ ξ 0, where p is the distance to the lower-

left corner of the pixel with size ∆ ∆x y×  and ξ the angle with the x axis and

0 ≤ <ξ arctan( / )∆ ∆y x 5, is:

l

p y x p y

y x p x
y

y p x

y
x p y

y x p x p y x

=

< < <( )
> < <( )

≤ ≤

≤ ≤

+ − < < +

sin cos
,

sin cos sin

sin cos cos ,

cos
, sin cos ,

sin
, cos sin ,

sin cos
sin cos

,
cos sin

ξ ξ
ξ ξ ξ

ξ ξ ξ

ξ
ξ ξ

ξ
ξ ξ

ξ ξ
ξ ξ

ξ ξ

∆ ∆ ∆

∆ ∆ ∆
∆ ∆ ∆

∆ ∆ ∆

∆ ∆ ∆ ∆ ∆

and or

and

0

0

coscos

sin sin cos ,
sin cos .

ξ
ξ ξ ξ

ξ ξ

or

∆ ∆ ∆
∆ ∆

y p y x
p y x

< < +
≥ +

















0

(16)

For ξ outside this range, Eq. (16) can be used after symmetry considerations. See Ref. [18] for

the derivation (for square pixels).

For other basis functions the derivation is more complicated. In the case of the pyramid

basis functions the line integral can still be expressed analytically both for poloidal and toroidal

lines of sight. The expressions below can be used by iterating through the lines of sight, solving

the intersections of the line with all the grid lines6. The expressions below give the contribution

to the four corner points of each pixel through which the line of sight passes.

2.4.1 Lines of sight in the poloidal cross-section in case of pyramid basis functions

The line of sight in poloidal coordinates is given by

R

Z

R

Z

R

Z






= 





+ 





s

s

d

d
λ , (17)

where ( , )R Zs s  is the starting point of the line (on the reconstruction boundary) and ( , )R Zd d  the

direction vector, which is assumed to be normalized.

5 See Sec. 3.1 for a description of projection-space coordinates p and ξ.

6 This is a certain method. A method in which the line is traced through the various neighbouring pixels can fail
when numerical errors lead to an incorrect pixel.
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The intersections of the line with all grid lines R Rj=  and Z Zj=  are stored in the array

λn , which are easily found from

R R Rj = +s dλ  and Z Z Zj = +s dλ . (18)

Each pair λ λn n, +1 give the boundaries of the pixels through which the line passes.

The line integral of the basis function in each pixel can be evaluated analytically in terms

of the grid-point values. If gj , gj+1, gj J+  and gj J+ +1 are the values contained in the grid points

at the lower left, upper left, lower right and upper right corners of the pixel respectively, the bi-

linearly interpolated value in any internal point (x,y) is given by (see the definition of the bi-

linearly interpolative basis function Eqs. (13) and (14) in Sec. 2.3):

g R Z
R

R

R

R

Z

Z

Z

Z
g

R

R

R

R

Z

Z

Z

Z
g

R

R

R

R

Z

Z

Z

Z
g

R

R

R

j j
j

j j
j

j j
j J

( , ) = − +





− +





+

− +





−





+

−





−





+

−

+

+ +

1 1

1 1

1

∆ ∆ ∆ ∆

∆ ∆ ∆ ∆

∆ ∆ ∆ ∆

∆
jj j

j JR

Z

Z

Z

Z
g

∆ ∆ ∆






− +



 +1 .

(19)

This equation can be factored as follows:

g R Z A BR CZ DRZ( , ) = + + + , (20)

where

A
a g a g a g a g

R Z
j j j j j J j J j J j J=

+ + ++ + + + + + + +1 1 1 1

∆ ∆
(21)

and similarly for B, C and D. The components are given by

a R R Z Z a R R Z Z

a R R Z Z a R R Z Z

j j j j j j

j J j j j J j j

= + + = + − +

= − + − + = − + +
+

+ + +

( )( ), ( )( ),

( )( ), ( )( ),

∆ ∆ ∆ ∆

∆ ∆ ∆ ∆
1

1
(22a)

b Z Z b Z Z b Z Z b Z Zj j j j j J j j J j= − + = − − + = − + = ++ + + +( ), ( ), ( ), ( ),∆ ∆ ∆ ∆1 1 (22b)

c R R c R R c R R c R Rj j j j j J j j J j= − + = + = − + = − − ++ + + +( ), ( ), ( ), ( ),∆ ∆ ∆ ∆1 1 (22c)

d d d dj j j J j J= = − = = −+ + + +1 1 1 11 1, , , . (22d)

It is clear that substituting the equation for the line (17) in g R Z( ( ), ( ))λ λ  will give terms in

1, λ and λ2 . Carrying out the integral for the interval λn  to λn+1 (which corresponds to the pixel

j) gives the contributions
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I
n

n
n n1 1

1= = −+∫ +dξ λ λ
λ
λ

, (23a)

I
n

n
n n2

1
2 1

2 21= = −+∫ +λ λ λ λ
λ
λ

d ( ), (23b)

I
n

n
n n3

2 1
3 1

3 31= = −+∫ +λ λ λ λ
λ
λ

d ( ). (23c)

Thus,

g R Z AI BI CI DI
n

n
R Z RZ( ( ), ( ))λ λ λ

λ
λ

d+∫ = + + +1
0 , (24)

where

I I0 1= , (25a)

I R I R IR = +s d1 2 , (25b)

I Z I Z IZ = +s d1 2 , (25c)

I R Z I R Z R Z I R Z IRZ = + + +s s s d d s d d1 2 3( ) . (25d)

Factoring out the gj s from Eq. (21), one finds that the integral contributes the following

value corner point j

a I b I c I d Ij j R j Z j RZ0 + + + , (26)

and similarly for the other grid points. The sum over the contributions to the four corner points

of the pixel must be equal to λ λn n+ −1 .

2.4.2 Lines of sight in the toroidal direction in case of  pyramid basis functions

A straight-line view in the toroidal direction is given by

x

y

z

x

y

z

x

y

z

















=
















+
















s

s

s

d

d

d

λ , (27)

where ( , , )x y zs s s  is the starting point, and the direction vector ( , , )x y zd d d  again is assumed to be

normalized. This straight line can be mapped to toroidal coordinates (R,Z,φ):

x R

y Z

z R

=
=
= −

cos ,

,

sin ,

φ

φ
 or 

R x z

Z y

z x

= +
=
= −

2 2 ,

,

arctan( / ).φ
(28)

If one can assume the emissivity to be toroidally symmetrical, i.e. independent of φ, the toroidal

line integral through the basis functions can be evaluated; the emissivity in a pixel is given by
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Eq. (19). The starting point ( , , )x y zs s s  is assumed to be on the reconstruction boundary in R and

Z coordinates.

The intersections with the grid lines Z Zj=  are trivial:

Z Z Zj = +s dλ . (29)

The intersections with the grid lines R Rj=  are given by

( ) ( )x x z z Rjs d s d+ + + =λ λ2 2 2. (30)

This simple quadratic equation can have zero, one or two solutions:

a x z R b x x z z c x z ac bj= + − = + = + = −s s s d s d d d
2 2 2 2 2 22 4, ( ), , ,∆ (31)

if ∆ ∆≤ = − ± −
0

2
: .λ b

c
(32)

Note that all negative solutions and solutions larger than the λ of the end point on the reconstruction

boundary should be discarded (the latter solution would correspond to a bent line being able to

see through the solid wall at the edge of the reconstruction region).

Given these found λn , the integral can be evaluated as in Sec. 2.4.1, with only IR  and IRZ

different. To express those integrals one requires the definitions (31), with Rj = 0, and

q
a b c

c

c b
c

c
c a b c c b c

c

c

0 2
21

2
0 0

1
2 2 0

0

0 0

( )

arcsin

ln ( )

( )

λ
λ λ

λ

λ

λ λ λ=
+ +

=

−
−

+
−





 < <

+ + + +



 >

=
< >














∫ d

1
and

undefined
or

and

∆
∆

∆

(33)

q a b c
c b a b c

c c
q1

2
2

0
2

4 8
( )

( )
( )λ λ λ λ λ λ λ λ= + + = + + + +∫ d

∆
, (34)

q a b c
a b c

c

c b b a b c

c

b

c
q2

2
2 3 2

2 2 03
2

8 16
( )

( ) ( )
( )λ λ λ λ λ λ λ λ λ λ λ= + + = + + − + + + −∫ d

∆
,

(35)

which expressions are Eqs. (2.261), (2.262.1) and (2.262.2) of Ref. 19.7 With Eq. (30),

R x x z z( ) ( ) ( )λ λ λ= + + +s d s d
2 2 ,8 one obtains

7 The case c = 0 corresponds to a vertical poloidal line, and should be treated as such with the expressions of
Sec. 2.4.1.

8 Only positive R values are relevant.
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I R q qR n n
n

n= = −+∫ +( ) ( ) ( )λ λ λ λ
λ
λ

d1
1 1 1 , (36a)

I R Z Z I Z q qRZ R n n
n

n= = + −( )+∫ +( ) ( ) ( ) ( )λ λ λ λ λ
λ
λ

d s d
1

2 1 2 . (36b)

2.4.3 Implementation with variable grid size

The formulae derived in Secs. 2.4.1 and 2.4.2 are valid for constant grid size. With some careful

considerations they can also be used with the pyramid basis functions for variable grid

size (Sec. 2.3). One has to consider all pixels with actual and virtual corners. The λn  are solved

for all intersections with the original grid, and only the solutions that are on the edges of pixels

are retained. Then, as above, one steps through the pixels that are intersected (i.e. one steps

through pairs of λ λn n, +1) and calculates the contributions to the corner points of the pixel,

making sure to use the ∆x and ∆y of the pixel in question. If a corner point is actual, the value is

assigned (added) to that point, if it is virtual the value is spread over the two actual neighbours of

the actual point9. This process has the effect of integrating correctly over basis functions such as

the ones displayed in Fig.3.

2.5 Derivative matrices

2.5.1 Derivative matrices for a grid with constant grid size

The smoothness object function for constrained optimization can conveniently be expressed in

terms of derivative matrices, see Sec. 2.6. Derivative matrices can be derived in the following

way, see also Ref. 20. Here symmetric definitions are chosen for the first derivatives and the

second derivative to x and y. Other definitions are of course possible [20], but are probably not

very important. The main obstacle in defining derivative matrices for two-dimensional grids is

the numbering of the grid points. In first instance, two indices x and y are used, where x runs

from left to right and y from top to bottom (so, the signs for y will be reversed with respect to the

formulae for x), start at 1 and end at X and Y, respectively. ∆x and ∆y are the distances between

the grid points.

The first derivatives to x for central and boundary points are given by:10

∂
∂
g

x

g g

x

g g

x g g

xy x

y x y x y x y x

y x y x



 =

−
+

−

=
−

− +
+ −

,

, , , ,

, , ,

1 1

1 1

2 2
∆ ∆

∆
(37a)

∂
∂
g

x

g g

xy

y y



 =

−

,

, , ,
1

2 1

∆
(37b)

9 For example, if the virtual point is 2/3 between its two neighbours, 2/3 of the value will be allocated to the
closest neighbour and 1/3 to the other neighbour.

10 Equation (37a) defines the elements D[y,x][y,x+1] = 1/(2∆x) and D[y,x][y,x–1] = –1/(2∆x), et cetera.
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∂
∂
g

x

g g

xy X

y X y X



 =

− −

,

, , ;1

∆
(37c)

the first derivative to y:

∂
∂
g

y

g g

yy x

y x y x





=
−− +

,

, , ,1 1

2∆
(38a)

∂
∂
g

y

g g

yx

x x





=
−

1

1 2

,

, , ,
∆

(38b)

∂
∂
g

y

g g

yY x

Y x Y x





=
−−

,

, , ;1

∆
(38c)

the second derivative to x:

∂
∂

∂
∂

∂
∂

2

2

1 1

1 1
2

2g

x x

g

x

g g

x

g g

x
x

g g g

x
y x y x

y x y x y x y x

y x y x y x





= 











=

−
−

−

=
+ −

+ −
+ −

, ,

, , , ,

, , ,

)
,∆ ∆

∆ (∆
(39a)

∂
∂

2

2
1

3 1 2
2

1
2

2g

x

g g g

x

g

x
y

y y y y





=

+ − −

,

, , , ,

) )
,

2(∆ (∆
or

gy,2 (39b)

∂
∂

2

2
2 1

2
1

2

2g

x

g g g

x

g

x
y X

y X y X y X y X y X





=

+ − −− − −

,

, , , ,

) )
,

2(∆ (∆
or

g , (39c)

the second derivative to y:

∂
∂

2

2
1 1

2

2g

y

g g g

y
y x

y x y x y x





=

+ −− +

,

, , ,

)
,

(∆
(40a)

∂
∂

2

2
1

1 3 2
2

2
2

2g

y

g g g

y

g

y
x

x x x x





=

+ − −

,

, , , ,

) )
,

2(∆ (∆
or

g1,x (40b)

∂
∂

2

2
2 1

2
1

2
2g

y

g g g

y

g

y
Y x

Y x Y x Y x Y x Y x





=

+ − −− − −

,

, , , , ,

) )
;

2(∆ (∆
or

g
(40c)

and the mixed second derivative:

∂
∂ ∂

∂
∂

∂
∂

∂
∂

∂
∂2

1 1

1 1 1 1 1 1 1 1

g

x y x

g

y

g

y

g

y

x

g g g g

x y

y x y x

y x y x

y x y x y x y x







= 











=







− 





=

+ − −

+ −

− + + − − − + +

, ,

, ,

, , , , ,

2∆

4∆ ∆

(41a)
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∂
∂ ∂

2

1

1 1 2 1 1 1 2 1 2 1
g

x y

g g g g

x y
x X

x

x x x x





=

+ − −
= −+ − − +

,

, , , , , [ ( )]
2∆ ∆

K (41b)

  

∂
∂ ∂

2
1 1 1 1 1 1 2 1

g

x y

g g g g

x y
x X

Y x

Y x Y x Y x Y x





=

+ − −
= −− + − − − +

,

, , , , , [ ( )]
2∆ ∆

K (41c)

  

∂
∂ ∂

2

1

1 2 11 11 1 2 2 1
g

x y

g g g g

x y
y Y

y

y y y y





=

+ − −
= −− + − +

,

, , , , , [ ( )]
2∆ ∆

K (41d)

  

∂
∂ ∂

2
1 1 1 1 1 1 2 1

g

x y

g g g g

x y
y Y

y X

y X y X y X y X





=

+ − −
= −− + − − − +

,

, , , , , [ ( )]
2∆ ∆

K (41e)

∂
∂ ∂

2

11

1 2 2 1 11 2 2g

x y

g g g g

x y







=

+ − −

,

, , , , ,
∆ ∆

(41f)

∂
∂ ∂

2

1

1 2 1 1 1 2g

x y

g g g g

x y
X

X X X X





=

+ − −− −

,

, , , , ,
∆ ∆

(41g)

∂
∂ ∂

2

1

1 2 1 11 2g

x y

g g g g

x y
Y

Y Y Y Y





=

+ − −− −

,

, , , , ,
∆ ∆

(41h)

and

∂
∂ ∂

2
1 1 1 1g

x y

g g g g

x y
Y X

Y X Y X Y X Y X





=

+ − −− − − −

,

, , , , .
∆ ∆

(41i)

To obtain a two-dimensional matrix   D∂ ∂b ba/ , where   D
∂ ∂b ba b ba/ ( / )g g= ∂ ∂ , a is x or y

and b indicates the order of the derivative, these indices (x,y) have to be translated into a one-

dimensional numbering that corresponds to the numbering of the vector g. From the expressions

above, the nonzero elements Dij
ab b∂ ∂/ are easily found by i y X x= − +( )1  with the indices (x,y)

of   D∂ ∂b ba/ , and j similarly from the subscripts of g on the right-hand-side. For example, the

derivative matrix   D∂ ∂/ x  can be built from components

    

D
∂ ∂/ x

y x[ ] =

−
−

−

−

−
−

−



































1
2

2 2 0

1 0 1 0

0 1 0 1 0

0 0 1 0 1 0 0

0 1 0 1 0

0 1 0 1

0 2 2

∆

L

L

L

L L

L

L

L ,

(42)



15

to give with Y of these matrices

      

D

D

D

D

∂ ∂

∂ ∂

∂ ∂

∂ ∂

/

/

/

/

.x

x

x

x

Y

=

[ ]
[ ]

[ ]























1

2

0 0

0 0

0

0 0

L

M

M O

L

(43)

Note that the elements on the rows add up to zero. Because of the order of the one-dimensional

numbering of the grid points, the expressions for the y-derivative matrices is more scrambled

and cannot be described with simple submatrices.

Similarly, for the matrix of the second derivative to x, with the first alternative expression

in Eqs. (39b–c), one finds:

    

D
∂ ∂2 2 1

2

1 2 1 0

2 4 2 0

0 2 4 2 0

0 0 2 4 2 0 0

0 2 4 2 0

0 2 4 2

0 1 2 1

2
/

( )
x

y x






=

−
−

−

−

−
−
−



































∆

L

L

L

L L

L

L

L ,

(44)

and with the second alternative expression in Eqs. (39b–c)

    

D
∂ ∂2 2 1

1 1 0

1 2 1 0

0 1 2 1 0

0 0 1 2 1 0 0

0 1 2 1 0

0 1 2 1

0 1 1

2
/

( )
x

y x






=

−
−

−

−

−
−
−



































∆

L

L

L

L L

L

L

L .

(45)
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2.5.2 Implementation with variable grid size

When implementing the derivative matrices on a grid with variable grid size one has to take care

that the implementation properly describes the discrete derivative. For the ∂ ∂/ x , ∂ ∂/ y , ∂ ∂2 2/ x

and ∂ ∂2 2/ y  this is relatively straightforward. One has to consider the two neighbouring actual

or virtual grid points of the actual point (x,y) under consideration, which can have varying distances

to the actual point (x,y). Thus, ∂ ∂/ x  can be implemented with the first term of Eq. (37a) with

two different ∆x, ∂ ∂2 2/ x  with three different ∆x in the first term in Eq. (39a), and likewise for

∂ ∂/ y  and ∂ ∂2 2/ y . The values found are allocated to the neighbouring points directly if they are

actual. If a neighbouring point is virtual, the a fraction of the value is allocated to the two

neighbouring points of the virtual point11.

The derivative ∂ ∂ ∂2 / x y  is more complicated as the grid sizes may vary in all four directions,

which cannot be properly taken into account in Eq. (41a). This is clear if Eq. (41a) is written out

with grid sizes:

∂
∂ ∂

∂
∂

∂
∂

∂
∂

∂
∂

2
1

1

1

1

1

1

2

2

g

x y

g

y

g

y

x x

g

y

g

y

x x

g g

y

y x

y x y x

y x y x

y x y x

y x y x

y x y x

y







=







− 





−
+







− 





−
=

−

−

−

+

+

−

−

,

, ,

, ,

, ,

, ,

, ,

( ,, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

) ( ) ( ) ( )

( )
x y x

y x y x

y x y x

y x y x

y x y x

y x y x

y x y x

y x y x

y

g g

y y

g g

y y

g g

y y

x x

−
+

−
−

−
−
−

−
−
−

−

+

+

− − −

− − −

− + −

− + −

−

1

1

1 1 1

1 1 1

1 1 1

1 1 1

1

2 2 2

2
++

−
−

+
−
−

−
−
−

−
−
−

− + +

− + +

+ + +

+ + +

−

−

+

+

g g

y y

g g

y y

g g

y y

g g

y y
y x y x

y x y x

y x y x

y x y x

y x y x

y x y x

y x y x

y x y

1 1 1

1 1 1

1 1 1

1 1 1

1

1

1

2 2 2 2
, ,

, ,

, ,

, ,

, ,

, ,

, ,

,( ) ( ) ( ) ( 11

12
,

, ,

)

( )
.x

y x y xx x+ −

(46)

For this expression to be valid, it must for example be the case that x xy x y x, ,− −1 in the first term

is the same as x xy x y x+ + −−1 1 1, ,  and x xy x y x− − −−1 1 1, , , which is not necessarily the case.

Furthermore, the result should be independent of the order of derivatives, i.e.

∂ ∂ ∂ ∂ = ∂ ∂ ∂ ∂/ ( / ) / ( / )x y y x . For these reasons, a different technique than for the other derivatives

had to be developed to calculate the mixed second derivative on a grid with variable grid size.

Instead of the actual and virtual grid points, the original grid points are used for Eq. (46), which

ensures that correct values for ∆x and ∆y are used. Note that the surrounding original grid points

will always lie in the four pixels surrounding the point, as the original grid determines the smallest

11 See footnote 9 on page 12.
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possible dimension. Equation (46) gives the factors that should be assigned to the eight points

surrounding the point in question. These values are then distributed over the four corner points

of the four pixels in which they lie according to bi-linear interpolation (i.e. bi-linear interpolation

of the corner points should give back the values12); if one of the corner points is virtual, the

value is spread over its two neighbours. If one considers non-edge points, most terms in Eq. (46)

will cancel each other: only the four diagonal points given by Eq. (41a) remain. For edge points

some terms of Eq. (46) are indeterminate and have to be left out, as on the edge there can be one,

two or three pixels surrounding the point. The values are assigned to these pixels in the same

way as for four pixels, but from Eq. (46) a weight of 1, 1
2  or 1

3 follows instead of 1
4 .

Furthermore, in addition to diagonal points, values are assigned to points on pixel edges as these

do not cancel out in Eq. (46) in that case.

2.6 Isotropic and anisotropic unsmoothness

The object function in constrained optimization should be chosen appropriately for the expected

types of solutions g(x,y). In the literature, a requirement of smoothness is common, which involves

second derivatives. Depending on the coordinate system, the functional describing unsmoothness

can be chosen to be isotropic or anisotropic, and can also include other derivatives. A general

expression in Cartesian coordinates is given in Sec. 2.6.1. Fuchs [12] introduced an objective

function that describes anisotropic unsmoothness in flux coordinates, given by a diffusive type

of functional. The mathematical expressions needed to implement that functional in Cartesian

coordinates are given in Sec. 2.6.2.

2.6.1 Ordinary unsmoothness

The smoothness operator should quantify the unsmoothness of the function g, and can be expressed

by a scalar product

g gΩΩ = + 



 + 





+









 +









 +











∫∫[

]

( , )

.

c g x y c
g

x
c

g

y

c
g

x
c

g

x y
c

g

y
x y

x y

xx xy yy

0
2

2 2

2

2

2

2
2 2 2

2

2

∂
∂

∂
∂

∂
∂

∂
∂ ∂

∂
∂

d d

(47)

The parameters c can be chosen to suit the particular problem, can be chosen differently for

different directions, i.e. leading to anisotropic smoothness, and they can be chosen to be functions

of x and y. The c0  term forces the solution to be as small as possible in all points where c0  is not

zero, the first derivative terms force the solution to be as flat as possible, whereas the second

12 Some examples. If the point is in the middle of the pixel, each corner is assigned 1/4 of the value. If the point
is ∆x/4 in x and 2∆y/3 in y, the fraction of the values assigned to the corners are (1/4)×(2/3), (3/4)×(2/3),
(1/4)×(1/3) and (3/4)×(1/3).
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derivative terms force it to be smooth. Often only the second derivative terms are used because

one is searching for the smoothest function. The Cartesian coordinate system used in Eq. (47)

only serves as an example: of course any coordinate system can be used in the definition of ΩΩ
by a scalar product, as long as it is a valid definition and a valid scalar product. The coordinate

system can be chosen to suit the particular problem. The derivatives can be implemented

numerically in terms of the derivative matrices given in Sec. 2.4.1, so that the matrix ΩΩ of Eq.

(47) is given by

    

ΩΩ = + + + +


+ 


c c c c

c c x y

x
x x

y
y y

xx
x x

xy
x y x y

yy
y y

0
2 2 2 2

2 2 2 2 2 2
2

I D D D D D D

D D D D

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

/ / / / / /

/ / / / ,

T T T

T T ∆ ∆
(48)

where I is the identity matrix. If the coefficients c depend on x and y, the c of Eq. (48) must be

replaced by diagonal matrices that have the values of c in the grid points on the diagonal. To give

an impression of the structure of the smoothness matrix, here the first and second derivative

parts to x are given explicitly. With the expressions like Eq. (43) one obtains

  

ΩΩ∂ ∂/ x

y
xc

y

x[ ] =

− −
− −
− −

− −

− −
− −

− −



































∆
∆4

5 4 1 0

4 5 0 1 0

1 0 2 0 1 0

0 0 1 0 2 0 1 0 0

0 1 0 2 0 1

0 1 0 5 4

0 1 4 5

L

L

L

L L

L

L

L .

(49)

Note that the matrix is symmetrical; this is the case because it is the product of the transpose of

a matrix with a matrix itself. The complete matrix ΩΩ∂ ∂/ x  consists of Y of these submatrices on

the diagonal:

    

ΩΩ

ΩΩ

ΩΩ

ΩΩ

∂ ∂

∂ ∂

∂ ∂

∂ ∂

/

/

/

/

.x

x

x

x

Y

=

[ ]
[ ]

[ ]























1

2

0 0

0 0

0

0 0

L

M

M O

L

(50)
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For the second derivative matrix one finds with Eq. (45) the submatrix

  

ΩΩ∂ ∂2 2

3

2 3 1 0

3 6 4 1 0

1 4 6 4 1 0

0 0 1 4 6 4 1 0 0

0 1 4 6 4 1

0 1 4 6 3

0 1 3 2

/

)
,x

y
xxc

y

x






=

−
− −

− −

− −

− −
− −

−



































∆
(∆

L

L

L

L L

L

L

L

(51)

If, instead, one uses Eq. (44) the upper four rows of the matrix are

  

5
4

5
2

5
4

5
2

9
2

5
4

9
2

25
4

0

6 1 0

4 1 0

0 1 4 6 4 1 0

−
− −

− −
− −























L

L

L

L

. (52)

2.6.2 Anisotropic unsmoothness in flux coordinates

The diffusive anisotropic unsmoothness in flux coordinates can be defined similarly to

Eq. (47) [12]:

  
g gΩΩ = ∇ ∇[ ]{ }•∫∫ • D g x y x y( , )

2
d d . (53)

This means that instead of the smoothest solution, the solution that would give the least diffusion

is obtained; in both cases the solution is chosen from the set of solutions that fit the data. Note

that this diffusion is diffusion of the emissivity in the mathematical sense, and is only remotely

related to physical diffusion in the plasma. Here D is an anisotropic diffusion tensor, which can

be chosen to vary as a function of position. Defining the diffusion by the diffusion coefficients

D⊥  and D// , perpendicular and parallel to the flux surfaces, Eq. (53) can be written as

∇∇ ∇∇ ∇∇• ⊥ • •+( )[ ]∫∫ n n t tD g D g x y// ,
2
d d (54)

where n and t are the unit vectors normal and tangential to the flux surfaces in the poloidal cross-

section. Choosing Cartesian coordinates, Eq. (54) can be written very similarly to Eq. (47):
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cx
g

x
cy

g

y
cxx

g

x
cxy

g

x y
cyy

g

y
x y

∂
∂

∂
∂

∂
∂

∂
∂ ∂

∂
∂





 + 





+








 +









 +





















∫∫

2

2 2
2 2

2

2

d d , (55)

where the coefficients c are complicated functions of the diffusion coefficients and the flux

function (see below). Note that they are functions of x and y because the diffusion tensor is a

function of the position. It is interesting to note that the requirement of minimum diffusion in

flux coordinates (i.e. defined by a second derivative operator) requires flatness and smoothness

in Cartesian coordinates (because of the nonzero cx and cy terms). There is a danger involved in

using Cartesian coordinates. Because derivatives of the flux function are taken with respect to

the Cartesian coordinates on a relatively coarse grid one can expect that numerical errors could

occur if either n and t are almost parallel to the Cartesian axes (i.e. there is an averaging over the

grid size, and the error of averaging could be large if there is much change over one pixel). From

experience this seems not to be a large problem, except at the magnetic axis where precautions

have to be taken (near the magnetic axis D⊥ = D// is taken). The alternative would have been to

describe the entire algorithm in flux coordinates, which, however, would complicate the evaluation

of line integrals (along curved paths) and the geometric matrix.

Note that the c coefficients are functions of the position. Therefore, and because of the

square in the integrand of Eqs. (53–55) which generates 25 terms instead of five, the filling of

the geometric matrix is somewhat more complicated than before, but can conveniently be written

in a similar form as Eq. (48):

    

ΩΩ = + + +





+ +

•C D C D +C D C D C D

C D C D +C D C

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

/ / / / / / / / / /

/ / / / / /

x x y y x x x y x y y y

x x y y x x

2 2 2 2 2 2 2 2 2 2

2 2 2 2

2

2

T

22 2 2 2 2 2/ / / /

,

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂x y x y y y

x y

D C D+



 ×

∆ ∆

(56)

where the D are derived from Eqs. (37–41) and the C are diagonal matrices with the values c

from Eqs. (59) below for each grid point on the diagonal.

Next, the position-dependent coefficients c are derived. The coordinates chosen are the

poloidal Cartesian coordinates major radius R and vertical distance Z, and the toroidal angle φ.13

To be consistent with the general notation, R is replaced by x and Z by y, and φ does not appear

explicitly. The unit vectors normal and tangential to the flux surface are

n e e t e e= ∇
∇

=
∇

+





=
∇

−





ψ
ψ ψ

∂ψ
∂

∂ψ
∂ ψ

∂ψ
∂

∂ψ
∂

1 1
x y y xx y x yand , (57)

13  The nabla operator is ∇ = eR(∂/∂R) + eZ(∂/∂Z) + eφ(1/R)(∂/∂φ), or ∇ = ex(∂/∂x) + ey(∂/∂y) because the function
is toroidally symmetric.
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respectively, where ψ is the flux function and e the axis unit vector, and the normalization factor

is simply:

∇ = 



 + 





ψ ∂ψ
∂

∂ψ
∂

2
2 2

x y
. (58)

The signs in the direction of n and t is not important in the following. The coefficients c (in each

coordinate point) in Eq. (55) follow from substitution of these expressions for n and t into Eq.

(54) and a cumbersome rearrangement terms:

c D
x

D
yxx =

∇




 + 

















⊥
1

2

2 2

ψ
∂ψ
∂

∂ψ
∂// , (59a)

c D
y

D
xyy =

∇






+ 

















⊥
1

2

2 2

ψ
∂ψ
∂

∂ψ
∂// , (59b)

c D D
x yxy =

∇
−( )



⊥

1
2ψ

∂ψ
∂

∂ψ
∂// , (59c)

c D
x x

D
x y y

D D
x y y y x

D c c c

x

x x x

= +



 + −( ) +








+( ) + ∇( )( ) + ( )

⊥ ⊥
1

2 2

1

2

2

2

2 2 2

2

2

ψ
∂ ψ
∂

∂ψ
∂

∂ ψ
∂ ∂

∂ψ
∂

∂ ψ
∂ ∂

∂ψ
∂

∂ ψ
∂

∂ψ
∂

∂ ∂ ψ

// //

/ ,term term toroidal term

(59d)

and

c D
y y

D
x y x

D D
x y x x y

D c c c

y

y y y

= +



 + −( ) +








+( ) + ∇( )( ) + ( )

⊥ ⊥
1

2 2

1

2

2

2

2 2 2

2

2

ψ
∂ ψ
∂

∂ψ
∂

∂ ψ
∂ ∂

∂ψ
∂

∂ ψ
∂ ∂

∂ψ
∂

∂ ψ
∂

∂ψ
∂

∂ ∂ ψ

// //

/ .term term toroidal term

(59e)

The derivative terms with D and ∇ψ in Eqs. (59d–e) are:

( ) // //∂ ∂ψ
∂

∂
∂

∂ψ
∂

∂
∂

∂ψ
∂

∂ψ
∂

∂
∂

∂
∂

D c
x

D

x y

D

x x y

D

y

D

yxterm = 



 + 





+ 





−





⊥ ⊥
2 2

, (60a)

∂ ψ
ψ

∂ψ
∂

∂ψ
∂

∂ψ
∂

∂ ψ
∂

∂ψ
∂

∂ ψ
∂ ∂

∂ψ
∂

∂ψ
∂

∂ψ
∂

∂ ψ
∂

1
22

2

2 2 2

2

2

2

/ //

//

∇( )( ) = −
∇





 + 






















+







+

−( )



⊥

⊥

term c D
x

D
y x x y x y

D D
x y x

x

xx y y y∂
∂ψ
∂

∂ ψ
∂

+












2

2 ,

(60b)
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( ) // //∂ ∂ψ
∂

∂
∂

∂ψ
∂

∂
∂

∂ψ
∂

∂ψ
∂

∂
∂

∂
∂

D c
y

D

y x

D

y x y

D

x

D

xyterm = 





+ 



 + 





−





⊥ ⊥
2 2

, (60c)

and

∂ ψ
ψ

∂ψ
∂

∂ψ
∂

∂ψ
∂

∂ ψ
∂ ∂

∂ψ
∂

∂ ψ
∂

∂ψ
∂

∂ψ
∂

∂ψ
∂

∂ ψ
∂

1
22

2

2 2 2 2

2

2

/ //

//

∇( )( ) = −
∇







+ 






















+







+

−( )



⊥

⊥

term c D
y

D
x x x y y y

D D
x y x

y

xx y x y2

2
+












∂ψ
∂

∂ ψ
∂ ∂

.

(60d)

The toroidal terms in Eqs. (59d–e) are due to the change of eR as a function of toroidal angle φ14.

They are given by

toroidal term and toroidal term c
c

R
c

c

Rx
xx

y
xy( ) = ∇ ( ) = ∇ψ ψ2 2, (61)

where the major radius R is written explicitly (it is equivalent to x in the chosen coordinates).

Note that ∇ψ 2  in Eq. (61) is to compensate for the normalization in Eqs. (59d) and (59e).

The derivatives in Eqs. (59a–e) can be numerically implemented by the derivative operators

derived in Sec. 2.5.1. To do this, the vectors ψ, D⊥ and D// in the grid points are formed with the

same numbering of elements as those of g in Eqs. (37)–(41). The derivative ∂ ∂2 2ψψ / x  in grid

point i, for example, is given by 
  
( )/
D

∂ ∂2 2x
iψψ .

2.7 Analytical solution of constrained-optimization problem

As said in Sec. 2.1, Eqs. (8) and (10) can be solved by iteratively varying the Lagrange multiplier

λ and solving the matrix equation. It is also possible to construct an analytic solution as a function

of λ [14,15], which is discussed in this section. In this framework it is also possible to implement

additional constraints on the solution g, for example that it must be positive gj ≥ 0; additional

Lagrange multipliers l are introduced for each constraint. Thus, this is a quadratic optimization

problem with a quadratic constraint and bounds on the variables g. More detailed derivations

can be found in Ref. 14 and 15.

Equation (8) or (10) and the Lagrange multipliers should be solved, given the constraints.

The following shorthand notation will be used:     C = K WK
T ,     c f= −K W

T  and   B = ΩΩ. An

additional vector b can be introduced in the object function as a generalization [14,15] to give

  
O( )g g g b g= +B 2 , in the present application   b = 0. Equation (8) or (10), including the

constraints on g, can now be written as

14  In cylindrical coordinates around the major axis: ∇⋅h = (1/R)(∂/∂R)(R hR) + (∂/∂Z)hZ + (1/R)(∂/∂φ)hφ.
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B C+( ) = − −λ λg l b c . (62)

It is possible to solve Eq. (62) formally by considering a generalized eigenvalue problem [14,15].

A solution exists for λ > 0  if B and C are both positive semidefinite. The solution is given for

three different cases in the following three subsections: B and C symmetric and positive

semidefinite, the matrix C is positive definite, and the matrix B is positive definite. The first is

the general case (which will generally be true for the tomography problem), the other ones are

simplifications if either of the matrices is positive definite. If the object function does not only

include the smoothness property, but also forces values to be small on the reconstruction boundary

[i.e. it has the term 
  
c0I  in Eq. (48) which penalizes large values], B is likely to be positive

definite. This is what is actually used at present (i.e. the formulae of Sec. 2.7.3).

2.7.1 Both matrices C and B are positive semidefinite

This section is based on Ref. 14. It is required that a solution exists and that     ker( ) ker( ) { }B C∩ = 0 ,

i.e. the subspace of solution space that goes unnoticed by the experiment [ker(C)] does not

overlap with the subspace towards which the a priori information is indifferent [ker(B)]. If the

matrices C and B are positive semidefinite,   C B+  is positive definite and   ( ) /
C B+ −1 2  exists

and the inverse of the matrix in Eq. (62) can be written as

  
B C B C I B C C B C B C+( ) = + + − + +[ ] +− − − − − −λ λ1 1 2 1 2 1 2 1 1 21( ) ( )( ) ( ) ( )/ / / / , (63)

where I is the identity matrix and by definition   ( ) ( )/ /
C B C B C B+ + = +1 2 1 2 .

Defining the generalized eigenvalue problem

  
C B Cy yk k k= +µ ( ) , (64)

and

  
y uk k= + −( ) /

B C
1 2 , (65)

where uk  are the eigenvectors of

  
( ) ( )/ /
B C C B C+ + =− −1 2 1 2 u uk k kµ , (66)

one can show that

  

I B C C B C+ − + +[ ] =
+ −

− − −
=∑( )( ) ( )

( )
/ /λ

λ µ
1

1 1
1 2 1 2 1

1

u uk k

k
k
J

, (67)

where the summation is over the grid points. With Eq. (63), Eq. (67) gives

g
y l b y c

y( )
( )

λ
λ

λ µ
=

− −
+ −=∑ k k

k
kk

J

1 11
. (68)
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This is the solution without imposed constraints, i.e. a function of λ. Given the l, the λ that

solves the constrained optimization problem is the root of

    

C

k k k k k k k

k
k
J

( )g f f

c y b l y b l y

( )

[ ][( ) ]

( )
.

λ ε ε

λ µ λµ µ
λ µ

= − +

+ − − − + −

+ −( )
==∑

W W

                 
2 2

1 1
021

c y (69)

An equivalent solution can be derived by generalized singular value decomposition [14]. It can

be shown that, for λ > 0 ,   C( )g( )λ  is a monotonically decreasing function with λ [14], i.e. there

is a unique solution, which means that Eq. (69) can be solved numerically in a straightforward

way. To obtain the solution of Eq. (8) or (10) it is thus necessary to solve the generalized eigenvalue

problem Eq. (64) numerically, and use the eigenvectors yk  and eigenvalues µk  in Eq. (69) to

find λ.

2.7.2 The matrix C is positive definite

This section is based on Ref. 15. If the matrix B is positive semidefinite, and C is positive

definite,   C−1 2/  exists and the inverse of the matrix in Eq. (62) can be written as

  
B C C I C BC C+( ) = +[ ]− − − − − −λ λ1 1 2 1 2 1 2 1 1 2/ / / / . (70)

Equations (64)–(69) in this case become

  
B Cy yk k k= µ , (71)

  
y uk k= −

C
1 2/ , (72)

  
C BC

− − =1 2 1 2/ / u uk k kµ , (73)

  

λ
λ µ

I C BC+[ ] =
+

− − −
=∑1 2 1 2 1

1
/ / u uk k

k
k
J

, (74)

g
y l b y c

y( )λ
λ

λ µ
= −

− +
+=∑ k k

k
kk

J
1

, (75)

and

    

C

k k k k k k

k
k
J

( )g f f

c y b l y c y b l y

( )

( )
.

λ ε ε

λ µ λ µ
λ µ

= − +

− + + − − −

+( )
==∑

W W

                 
2 2 2

21

2 2
0

(76)

Thus, if C is positive definite, the solution of Eq. (8) or (10) can be found by solving the generalized

eigenvalue problem Eq. (71) numerically and substituting the eigenvalues and eigenvectors in

Eq. (76).
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2.7.3 The matrix B is positive definite

This section is based on Refs. 15 and 1. If the matrix C is positive semidefinite, and B is positive

definite,   B−1 2/  exists and the inverse of the matrix in Eq. (62) can be written as

  
B C B I B CB B+( ) = +[ ]− − − − − −λ λ1 1 2 1 2 1 2 1 1 2/ / / / . (77)

Equations (64)–(69) in this case become

  
C By yk k k= µ , (78)

  
y uk k= −

B
1 2/ , (79)

  
B CB

− − =1 2 1 2/ / u uk k kµ , (80)

  

I B CB+[ ] =
+

− − −
=∑λ

λµ
1 2 1 2 1

1 1
/ / u uk k

k
k
J

, (81)

g
y l b y c

y( )λ
λ

λµ
= −

− +
+=∑ k k

k
kk

J

11
, (82)

and

    

C

k k k k k k

k
k
J

( )g f f

c y b l y c y b l y

( )

( )
.

λ ε ε

µ λ λ µ
λµ

= − +

− + + − − −

+( )
==∑

W W

                 
2 2 2

21

2 2

1
0

(83)

Thus, if B is positive definite, the solution of Eq. (8) or (10) can be found by solving the generalized

eigenvalue problem Eq. (78) numerically and substituting the eigenvalues and eigenvectors in

Eq. (83).

2.7.4 Constraints

The bounds (constraints) on g can be set to any arbitrary value and can be an upper bound or a

lower bound. Usually, a lower zero bound is required in all grid points (i.e. a non-negativity

constraint). In special cases, however, also other bounds can be set for certain grid points to

prevent artefacts from occurring there.

It would be possible to require the constraint to be “active” in all (required) grid points and

solve Eq. (62) with all Lagrange multipliers. This is a non-linear problem and requires special

techniques to be solved. However, not all constraints will be violated, and furthermore, because

of the object function grid points violating the constraint are likely to occur in clusters. One can

therefore try only to have active constraints for grid points that violate the constraint most (negative

local minima for instance). The bounds on g can be implemented in an iterative way by means of
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the analytical expressions in the previous subsections [14,15]. First one solves the problem with

  l = 0. Only the grid points where this initial solution violates the constraints need to be considered,

i.e. one only uses a limited set of the Lagrange multipliers l j . In the grid points j that are chosen

to have active constraints (local minima for example), one sets ∆gj  so that the constraint is not

violated any more, in the case of non-negativity constraints: ∆g gj j= − . This correction

corresponds to ∆l j , which is zero in non-active constraints, which because of linearity follows

from Eq. (62):

  ∆ ∆g l= + −(B Cλ ) 1 , (84)

where only the active constraints contribute. One can thus solve Eq. (68), (75) or (82), depending

on which solution method one is using, for just the active constraints. These ∆l j  give new l j

used to find a new root λ of Eq. (69), (76) or (83). This possibly results in a solution g that

violates some other constraints. This process is iterated until a solution is found that satisfies all

constraints. Although convergence cannot be guaranteed, especially when an attempt is made to

reconstruct inconsistent data for which no positive solution might exist, the method generally

works well. However, when the method has difficulties converging and the set of active constraints

only grows, sometimes other criteria have to be used to choose new active constraints. This

method is not iterative in solution space, but is an iterative search for active constraints in the

space of Lagrange multipliers, which can be much faster if the number of active constraints is

small.

2.8 Sparse matrix storage

The geometric and smoothness matrices used in tomography are usually very sparse: typically

only a few percent of elements are non-zero. This is easy to understand for the geometric matrix:

only the grid points close to the line of sight contribute to the line integral along that line. Also

smoothness matrices have only a few elements in diagonal bands that are non-zero, as can be

seen from Eqs. (49) and (51). The matrices are also very large, of the order of the number of grid

points (>1000). Storing only the non-zero elements of the matrices can therefore save a great

deal of memory space. Furthermore, an additional benefit is that, if the non-zero elements are

suitably stored, in the evaluation of matrix multiplications only terms are considered that do not

lead to zero, which can speed up the computation by several orders of magnitude.

To achieve the benefit of the efficient matrix multiplications it was important to choose a

storage scheme that can take advantage of the order in which multiplications are done. This

means that the non-zero elements should not be heaped at random onto one stack. The possibility

that was implemented was storage by row: i.e. for each row the indices and values of non-zero

elements are stored. For the matrix B: βm  is number of non-zero elements of row m, αmn is the

index of nth non-zero element on row m, and γ αmn mB
mn

= ,  is the value of the nth non-zero

element on row m. In practice, β is a one-dimensional integer array, and α and γ arrays of linked

pointer lists, integer and real, respectively.
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The following low-level operations were required on this data structure: initialize the matrix

B for storage, delete B from memory, add element Bij  to B, add a value to a particular element,

and check for the existence (non-zero value) of a particular element. The mathematical operations

that were implemented include: vector multiplication, inner product of vector and matrix, the

transpose of a matrix, and various types of matrix multiplications. These can be described as

follows. Vector multiplications:

  
( )Bv i ik k ikkk

B v v
ik

i= = =∑∑ γ α
β

1
, (85)

  
v vB = =∑∑ ∑∑ =v B v v vi ik kki i ikki ik

i γ α
β

1
. (86)

The transpose of a matrix is obtained by a loop through all non-zero elements of all the rows and

putting these in the correct place of the transposed matrix. For the matrix multiplication   A BC=
it is most efficient to first obtain the sparse storage of the transpose of B. The multiplication is

done by three nested loops over the rows i, and k and l over the non-zero elements of each row

of both matrices (non-primed symbols for     BTand primed for C, respectively): each multiplication

is added to the relevant element of the new matrix A:

A A
ik il ik il ik ilα α α α γ γ′ ′← + ′ . (87)

If C is a diagonal matrix with diagonal elements Ci , the matrix multiplication     A B CB= T  is

obtained in a similar way (note that one of the two summations disappears because C is diagonal)

A A C
ik il ik il ik i ilα α α α γ γ← + . (88)

3. SOME MATHEMATICAL DETAILS OF OTHER METHODS

This section describes some expressions that are used in other tomography methods. Section 3.1

introduces two types of projection-space coordinates and gives the relationships between these.

Section 3.2 shows how the Cormack method can be applied with elliptical coordinates and Sec. 3.3

describes so-called interpolative generalized natural basis functions. Some details of an

implementation of the filtered backprojection method are given in Sec. 3.4: explicit expressions

for filters are listed, the backprojection operator is discussed and the inverse filter operation is

described.

3.1 Projection space coordinates

A line of sight can be parametrized by its angle and a distance to a reference point, see Fig. 4. In

tomography, usually the shortest distance p to a chosen origin is used. Coordinates of a so-called

projection at angle φ, i.e. a function that is given by the line integrals along parallel lines

parametrized by p, is much used in tomography. In this case, φ is the angle of the normal of the

parallel lines and the horizontal axis, and p is signed (i.e. continuous from a negative to a positive

value). Sometimes, in particular when the measurements are not along parallel lines of sight, it
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is more convenient to choose the angle ξ between the line and the horizontal axis. The parameters

of the lines of sight form the coordinates of the so-called projection space.

Because the measurement along a pure line of sight does not depend on the direction of the

measurement if the reconstruction region is convex, the point ( , )p φ  in projection space is identical

to ( , )− +p φ π . It is therefore sufficient to consider the ranges p a a= −[ , ], where a is the maximum

radius of the reconstruction region, and φ π= [ , ]0 . This space can be seen as a Möbius band with

a “Möbius periodicity” of π. Alternatively, one can consider the absolute distance |p| and the

range φ π= [ , ]0 2 . In this case one loses information about the continuity of projection space at

p = 0 . The same ranges and remarks are valid for ( , )p ξ  coordinates. In the following the origin

( , )x y0 0  was chosen.

JG99.492/4c

p

s

y

ξ

φ

x

a

Fig.4: Various definitions of the parametrization of a line of sight.

The definition of the ( , )p ξ  coordinates of a line is as follows. Given two points on the line

( , )x y1 1  and ( , )x y2 2 :

ξ = −
−







arctan
y y

x x
2 1

2 1
, (89)

and p from the equation for the line:

p x x y y+ − − − =( )sin ( )cos0 0 0ξ ξ . (90)

In polar coordinates around the origin Eq. (90) is

p r= −sin( )θ ξ . (91)
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The line can be parametrized with parameter s as

x x p s= − +0 sin cosξ ξ , (92a)

y y p s= + +0 cos sinξ ξ . (92b)

The φ are related to ξ by φ ξ π= + / 2 , and thus sin cosξ φ= −  and cos sinξ φ= .

For ( , )p φ  coordinates the same relations as above are then:

φ = − −
−







arctan
x x

y y
2 1

2 1
, (93)

and p from the equation for the line:

p x x y y− − − − =( )cos ( )sin0 0 0φ φ . (94)

In polar coordinates

p r= −cos( )θ φ . (95)

The line parametrized with parameter s:

x x p s= + +0 cos sinφ φ , (96a)

y y p s= + −0 sin cosφ φ . (96b)

It is easy to translate ( , )p ξ  to ( , )p φ  coordinates and vice versa with φ ξ π= + / 2  and the

Möbius periodicity. Regularly, the coordinates ( , )p φ  are used, for example in the Cormack

method. In that case, provided the ranges specified above are used, the translation is:

φ
ξ π
ξ π π

=
+ ≥
− <





=

/ ,

/ mod ,

,

2 0

2 2 0

if

if

p

p

p p

(97)

and

( , )

/ / ,

/ / ,

/ / / .

p

p

p

p

ξ
φ π φ π
φ π φ π
φ π π φ π

=
− − >
− + <

− ≤ ≤









3 2 3 2

2 2

2 2 3 2

for

for

for

(98)

If the reconstruction region is not convex, some lines of sight may be blocked by the

boundary, which usually will be a solid wall. This is the case, for example, in tokamaks with a

closed divertor. In that case the measurement is not independent of the direction and the simple

picture of projection space breaks down. One has to extend projection space to the ranges

p a a= −[ , ] and φ π= [ , ]0 2 ; for most lines of sight the point ( , )− +p φ π  will still be identical to

( , )p φ , but in “shadow regions” it will not and both points need to be considered separately.

Projection-space coverage when the reconstruction region is concave is discussed in detail in
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Ref. 21. If measurements exist from both directions, they can be summed and used in conventional

tomographic reconstruction methods; if such measurements do not exist one may have to resort

to reconstruction algorithms that do not operate in projection space. If beam-width effects are

important, the measurements from opposite directions are also likely to be different. That fact

can be handled in projection space with the technique described in Ref. 9.

3.2 Cormack method in elliptical coordinates

The Cormack method [6,7] connects so-called orthogonal spherical-harmonic functions in object

space, with polar coordinates (r,θ), with their analytical Radon transform (also orthogonal) in

projection space, with coordinates (p,φ). The angular functions are simple exp(imθ) and exp(imφ)

functions.

The spherical-harmonic functions can be extended to elliptical coordinates in object space.

Assume the elliptical coordinates to be

x x r

y y r

= +
= +

0

0

cos ,

sin ,

θ
ε θ

(99)

where ( , )x y0 0  is the chosen origin or the polar coordinates and the projection-space coordinates.

To use the Cormack method, one can simply apply the linear transformation

′ =

′ = + −
x x

y y
y y

,

,0
0

ε
(100)

to obtain polar coordinates. Because this transformation is linear, a straight line ( , )p φ  will be

transformed to another straight line ( , )′ ′p φ :

′ =

′ = ′ = ′
φ ε φ

φ
ε φ

φ
φ

arctan( tan ),

sin
sin

cos
cos

.p
p p (101)

Note that the limits for φ φ π π π, , / , , /′ → 0 2 3 2 exist. In principle, this is the only transformation

that is required to apply the Cormack method to elliptical coordinates: the lines of sight are

transformed, the reconstruction is done in polar coordinates, and the reconstruction in real

coordinates is back-transformed. To depict the orthogonal functions in projection space for

elliptical coordinates (see Fig.5), one can use the inverse transformation:

φ φ
ε

ε φ
φ

φ
φ

= 





= ′
′

=
′

arctan
tan

,

sin
sin

cos
cos

.p
p p

(102)
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Fig.5: Illustration of a Cormack function in elliptical coordinates suitable for elongated tokamak plasmas, (a) in
object space (the JET first wall outline is shown) and (b) in projection space (the grey area indicates lines of sight
that pass outside the JET first wall). Note that the angle ξ is used in projection space (see Sec. 3.1). The cosine
component of the Cormack function with parameters n = 2  and m = 3 [6] is shown. This figure was extracted from
Figs.2(e) and (f) of Ref. 4.

The above expressions were derived by considering the transformation of two points on the line

( , ) ( , ),

( , ) ( , ),

sin sin

cos cos

x y x y

x y x y

p p

p p

0 0 0 0

0 0 0 0

+ → +

+ → +

φ ε φ

φ φ

(103)

and applying Eqs. (93) and (94).

For (p,ξ) coordinates the above expressions are

tan
tan

,

sin sin
.

′ =

′
′

=

ξ ξ
ε

ξ ξ
p p

(104)

3.3 Interpolative generalized natural basis function in object space

The interpolative generalized natural basis functions (NBF) are used for a tomographic

reconstruction method described in Ref. 4. These basis functions are pyramid-shaped in projection

space [see Fig.1(h) of Ref. 4]. Here it is derived how the corresponding basis functions in object

space can be calculated: they are the backprojection of the pyramid functions in projection

space.

The most efficient way to determine the interpolative generalized natural basis function in

object space is to loop over all grid points in object space and to determine the values of all such

basis functions that are nonzero for those points. Thus, for each given point (x,y), one solves

intersections of the curve (90) with the grid in p and ξ as a function of ξ, and stores these

intersections as ξn . The array ξn  thus contains all grid coordinates ξ j , and all intersections

where

p x x y yj = − − + −( )sin ( )cos0 0ξ ξ . (105)
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The additional solutions ξn  from Eq. (105) are found by substituting tan( / )ξ 2 = t , and thus

sin /( )ξ = +2 1 2t t  and cos ( ) /( )ξ = − +1 12 2t t . Note that the number of solutions depends on

the quantity ∆ for given pj  by ∆ = − + − −( ) ( )x x y y pj0
2

0
2 2 : if ∆ < 0 there are no solutions,

if ∆ = 0 there is a degenerate solution, and if ∆ > 0. For ∆ ≥ 0 the solutions are given by

t
x x

p y y
t y y p

t
p

x x
y y p

= − − ±
+ −

= − ≠ −

= −
−

= − = −

( )
( )

arctan ( ) ,

( )
( ) .

0

0
0

0
0

2
∆

and for

and for

ξ

ξ π
(106)

Next, the solutions ξn  are sorted and it is checked in which pixel, i.e. the region between

four grid points, the middle point of each pair lies. The integral along curve (90) for each pixel

is then evaluated over the bi-linear interpolative basis functions and the resulting values assigned

to each of the four grid points. If the values of one particular natural basis function are needed,

only the possible intersections ξn of curve (90) for each point (x,y) with the four pixels surrounding

the grid point in question need to be considered: the present method however will efficiently

give the values for all grid point with non-zero contribution (i.e. skipping all the grid points with

zero contribution).

The calculation technique is very similar to the integrals in Sec. 2.4. If hj , hj+1, hj J+  and

hj J+ +1 are the values contained in the grid points at the lower left, upper left, lower right and

upper right corners of the pixel, respectively, the bi-linearly interpolated value in any internal

point ( ( ), )p ξ ξ  on curve (90) is given by (see the definition (13) and (14) of the bi-linearly

interpolative basis function in Sec. 2.3)

h p
p

p

p

p
h

p

p

p

p
h

p

p

p

p
h

j j
j

j j
j

j j

( ( ), )
( )

( )

( )

ξ ξ ξ ξ
ξ

ξ
ξ

ξ ξ
ξ

ξ
ξ

ξ ξ
ξ

ξ
ξ

= − +





− +






+

−





− +






+

−





−






+

1 1

1 1

∆ ∆ ∆ ∆

∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ jj J

j j
j J

p

p

p

p
h

Ap B Cp D

+ +

+

+

− +





−






= + + +

1

1
( )

( ) ( ) .

ξ ξ
ξ

ξ
ξ

ξ ξ ξ ξ

∆ ∆ ∆ ∆

(107)

Carrying out the backprojection integral for the interval ξn  to ξn+1 (which corresponds to the

pixel j) over the function h p( ( ), )ξ ξ  gives

h p AI BI CI DI
n

n ( ( ), )ξ ξ ξ
ξ

ξ
d+∫ = + + +1

1 2 3 4 , (108)
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where

I p x x y y
n

n
n n n n1 0 1 0 1

1= = − − + − −+∫ + +( ) ( )(cos cos ) ( )(sin sin )ξ ξ ξ ξ ξ ξ
ξ
ξ

d , (109a)

I
n

n
n n2

1
2 1

2 21= = −+∫ +ξ ξ ξ ξ
ξ
ξ

d ( ), (109b)

I p x x

y y
n

n
n n n n n n

n n n n n n

3 0 1 1 1

0 1 1 1

1= = − − − − + +

− − − +

+∫ + + +

+ + +

( ) ( )(sin cos sin cos )

( )(cos sin cos sin )

ξ ξ ξ ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ
ξ
ξ

d

    
, (109c)

I
n

n
n n4 1

1= = −+∫ +dξ ξ ξ
ξ

ξ
. (109d)

Furthermore,

A a h a h a h a hj j j j j J j J j J j J= + + ++ + + + + + + +1 1 1 1 , (110)

and similarly B, C and D. The components are

a
p p

a
p p

a
p

a
pj

j
j

j
j J

j
j J

j= − + = + = − = ++ + + +
1 1

1 1∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆
ξ

ξ
ξ

ξ
ξ

ξ
ξ

ξ
, , , , (111a)

b
p

p
b

p

p
b

p

p
b

p

pj
j

j
j

j J
j

j J
j= − − = = − = ++ + + +

1 1
1 1∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ξ ξ ξ ξ ξ ξ

, , , , (111b)

c
p

c
p

c
p

c
pj j j J j J= = − = = −+ + + +

1 1 1 1
1 1∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ξ ξ ξ ξ

, , , , (111c)
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p
d

p

p
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p
d
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d
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j J
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j J
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ξ

ξ
ξ

ξ
ξ

ξ
ξ

ξ
ξ

ξ
ξ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

, , , ..
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By re-arranging the terms and factoring out the hj s, one finds that the backprojection integral

contributes the following value to corner point j

a I b I c I d Ij j j j1 2 3 4+ + + , (112)

and similarly for the other grid points. The sum over the contributions to the four corner points

of the pixel must be equal to ξ ξn n+ −1 .

Figure 6 shows an example of the resulting interpolative generalized natural basis functions

in object space for one particular grid point of projection space.

3.4 Details of filtered backprojection

The most popular tomographic reconstruction algorithm in medical tomography is the filtered-

backprojection (FBP) or convolution-backprojection algorithm [8]. This algorithm is robust and

easy to implement, and relatively fast. However, it cannot be used directly to measuring systems
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Fig.6: Example of an interpolative generalized natural basis function as contour plot in object space (the basis
function is exaggerated in size). This figure was extracted from Fig. 1(g) of Ref. 4.

with irregular coverage. For this purpose, the iterative projection-space reconstruction method,

which uses FBP in its iterations, was developed [5]. It is well known that [8,17] the tomographic

inversion of the function f p( , )ξ  can be obtained by the following two steps: (1) the filtering by

means of a convolution

h p f p p p p( , ) ( , ) ( )ξ ξ η= ′ − ′ ′
−∞

∞
∫ d (113)

followed by (2) the backprojection

g x y h x y( , ) ( sin cos , )= − +∫ ξ ξ ξ ξd
0

π
. (114)

The filtering function η( )p  is discussed in Sec. 3.4.1, the backprojection operator in 3.4.2, and

the inverse of the filter operation in 3.4.3.

3.4.1 FBP filters

Commonly used filtering functions η( )p  can be found in the literature [8,17], where usually the

function H(P) in Fourier space is given, P being the spatial frequency corresponding to p. For

small P, the Fourier transform of the filtering function must follow P , which is the function

required in the analytical Radon inversion. Furthermore, in order to give a good regularization,

it must (1) properly take into account the discrete nature of the measurements (at discrete p) and

(2) suppress noise at high spatial frequencies. The first requirement is achieved by band-limiting
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Table I Filter functions for the FBP method in Fourier domain [ P H P( )] and p domain [η( )p ].

Name P H P( ) η( )p

Band-limiting P
cos( ) sin( )2 2 2 10 0 0

2
π π π

2π2
P p P p P p

p

+ −

if p = 0 : P0
2

Cosine P
P

P
cos

π
2 0





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4
1 32 256
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2 1 2 3

0
2 2

0
4 4P

t t t

P p P p

+ +
− +π2( )

with t P p P p1 0
2 2

016 2= ( )cos( )π − π π ,

t P p P p2 0 016 2= sin( )π  and t P p3 0
2 22 32= − − .
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P

= ± 1
4 0

: P0
2 1

2
2−
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
π2

Sinc or 2
2
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P
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P
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Pπ
π

sin

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
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4 2 1

16 1
0
2 0 0

0
2 2P
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P p

sin( )

( )

π
π2

−
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Generalized with t P p1 02= α cos( )π ,

Hamming t P p P p2 0
5 5

064 2= απ πsin( ) ,

(with α  as t P p P p3 0
3 3

024 2= − απ πsin( ) ,

parameter, t P p P p4 0
4 4

032 2= α cos( )π ,
0 5 1. ≤ ≤α ):

t P p P p5 0
2 2

04 2= − α cos( )π ,

t P p P p6 0
4 4

016 2= − cos( )π ,

Hanning: t P p P p7 0 02 2= απ πsin( ) ,

α = 0 5. ; t P p P p8 0
2 2

04 2= − cos( )π ,

t P p P p9 0
3 3

08 2= π πsin( ),

Hamming: t P p P p10 0
5 5

032 2= − π πsin( ) and

α = 0 54. . t P p P p11 0
2 2

0
4 412 4 16= − + − −α α( ) .
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= ± 1
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: − + −P0
2 8[ ( ) ]α π π

2π

2 2

2

if p = 0 : 
P0

2 4 4[ ( ) ]α π
π

2

2
+ −

the function to half the Nyquist frequency P0 of the measurements, i.e. P p0 1 2= /( )∆ , where ∆p



36

is the distance between adjacent measurements. If the Fourier transform of the function f(p,ξ)

for fixed ξ does not have frequency components higher than P0, no aliasing will arise. The

second requirement is achieved by either choosing P0 smaller than the Nyquist frequency or by

a suppressing function H(P) at high P. The amount of suppression is the essential

differencebetween the various functions η( )p  described in the literature. The inverse Fourier

transform η( )p  of the band-limited and suppressing function P H P( )  can be found analytically

for several of the common functions by means of the inverse Fourier cosine transform (because

P H P( )  and η( )p  are even functions). Some pairs are given in Table I and in Fig. 7.
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Fig.7: The various FBP filter functions of Table I in Fourier space (a) and direct space (b). Solid line: not band-
limited; thin dotted line: band-limited; thin dashed line: cosine filter; dot-dashed line: Shepp-Logan (sinc) filter;
thick dotted line: Hanning filter (α = 0 5. ); long-dashed line: Hamming filter (α = 0 54. ); thick dashed line:
generalized Hamming filter (α = 0 8. ). The solid circles in (b) show the points at which the filter functions are
actually used in the numerical implementation if the band limit is chosen to coincide with two times the Nyquist
frequency and no interpolation is applied between sample points.

In the numerical implementation it can be advantageous to interpolate f(p,ξ) for fixed ξ to

many more points p, while retaining P0 of the original sampling in the function η( )p : otherwise

discontinuities in higher derivatives of the interpolated function can give rise to noise in the

h(p,ξ). In practice there is not particularly much difference between the results obtained with the

various filters, although pure band-limitation may be too rough. Of the filter functions given in

Table I, the generalized Hamming window with small α  gives most suppression of high

frequencies. In practice, one can also choose a smaller cut-off frequency than the Nyquist

frequency for a given ∆p.
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3.4.2 Backprojection

The numerical implementation of the backprojection operator Eq. (114) is usually a numerical

integral over interpolated values of the function h(p,ξ) between grid points in projection space,

typically by nearest-neighbour or linear interpolation in p [8]. With the expressions of Sec. 3.3,

a higher accuracy can be achieved efficiently by analytical expressions for bi-linear interpolation,

i.e. interpolation in both p and ξ direction. For the backprojection in point (x,y) the ξn  are solved

as before from ξ ξ= j  and Eq. (105). For each interval in ξ, the backprojection is given by

Eq. (108), using the expressions (109)–(111).

3.4.3 Inverse filter operation

The inverse operation of Eq. (113) can be expressed as [4]:

f p h p A p p p( , ) ( , ) ( , | , )ξ ξ ξ ξ ξ
π

= ′ ′ ′ ′ ′ ′
−∞

∞
∫∫ d d

0
, (115)

where the function A p p( , | , )ξ ξ′ ′  is given in terms of the geometric function K and natural basis

functions B by

A p p K p x y B x y p x y( , | , ) ( , | , ) ( , | , )ξ ξ ξ ξ′ ′ = ′ ′∫∫ d d . (116)

Normally, the functions K and B will be chosen to have finite widths and in that case describe the

series-expansion tomography method based on natural basis functions [4]. For theoretical

purposes, it is of interest to calculate A p p( , | , )ξ ξ′ ′  for line integrals. This is applied in Ref. 4.

Thus, one chooses

B x y p p x y( , | , ) ( sin cos )ξ δ ξ ξ= + − (117)

and

K p x y p x y x y
a

( , | , ) ( sin cos ) ( )
,

ξ δ ξ ξ= + − +Π
0

2 2
2 . (118)

The band-pass function Π  in Eq. (118) is defined by

Π z r z
z r z z r

c

for

otherwise
c c

, ( ) =
− < < +




1

0
(119)

and can be introduced without affecting the outcome of the Radon transform as g has finite

support (i.e. is zero outside a circle with radius a). Substitution of B x y p( , | , )ξ  and K p x y( , | , )ξ
into equation (116) gives

A p p

p x y p x y x y x y
a

( , | , )

( sin cos ) ( sin cos ) ( )
,

ξ ξ

δ ξ ξ δ ξ ξ

′ ′

= + − ′ + ′ − ′ +
−∞

∞

−∞

∞
∫∫ Π

0
2 2

2 d d .
(120)
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The following explicit expressions for A p p( , | , )ξ ξ′ ′  were used. By integrating over the

delta functions in Eq. (120) one can show that

A p p p
p a p

( , | , )
sin( )

( )
cos( ),sin( )

ξ ξ
ξ ξ ξ ξ ξ ξ

′ ′ =
− ′ ′ − ′ − ′ − ′

1
2 2Π . (121)

In the singularity at ξ ξ= ′  one can show that

h p A p p p a p h p( , ) ( , | , ) ( , )′ ′ ′ = −
−∞

∞
∫ ξ ξ ξ ξd 2 2 2 . (122)

At first sight it may seem surprising that an equation with two integrals [Eq. (115)] is the inverse

of an equation with one integral [equation (113)]. This inverse is however only valid for functions

f p( , )ξ  that are Radon transforms of arbitrary functions g(x,y); i.e. the functions f p( , )ξ  have to

satisfy the consistency conditions [1] of projection space [4]. One can further note that the

inversion formula of the Radon transform, a single integral, also has a double integration.
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