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ABSTRACT

Natural basis functions (NBFs), also known as natural pixels in the literature, have been applied

in tomographic reconstructions of simulated measurements for the JET soft x-ray system, which

has a total of about 200 detectors spread over 6 directions. Various types of NBFs, i.e. normal,

generalized and orthonormal NBFs, are reviewed. The number of basis functions is roughly

equal to the number of measurements. Therefore, little a priori information is required as

regularization and truncated singular-value decomposition can be used for the tomographic

inversion. The results of NBFs are compared with reconstructions by the same solution technique

using local basis functions (LBFs), and with the reconstructions of a conventional constrained-

optimization tomography method with many more LBFs that requires more a priori information.

Although the results of the conventional method are superior due to the a priori information, the

results of the NBF and other LBF methods are reasonable and show the main features. Therefore,

NBFs are a promising way to assess whether features in reconstructions are real or artefacts

resulting from the a priori information. Of the NBFs, regular triangular (generalized) NBFs

give the most acceptable reconstructions, much better than traditional square pixels, although

the reconstructions with pyramid-shaped LBFs are also reasonable and have slightly smaller

reconstruction errors. A more-regular (virtual) viewing geometry improves the reconstructions.

However, simulations with a viewing geometry with a total of 480 channels spread over 12

directions clearly show that a priori information still improves the reconstructions considerably.

1. INTRODUCTION

Emission tomography, in which the local emission is reconstructed from a large number of

measurements along narrow strips through an emitting plasma, is a typical tomographic problem

occurring in fusion research. In this report two-dimensional emission tomography without

refraction and re-absorption of radiation is assumed, but the results should be relevant for other

applications as well. Virtually all methods for tomographic reconstruction applied in fusion

research are so-called series-expansion methods. In these methods the mathematical description

of the measurement process is discretized, after which the problem is inverted. This is contrary

to so-called transform methods where the problem is first inverted and only then discretized [1].

The latter methods are generally more efficient and in wide use in medical tomography, but they

are less general because usually they require a regular coverage, they assume the measurements

to be along infinitely thin lines, and they exclude the application of a priori knowledge about the

expected emission profiles. Due to the restricted access to fusion devices, in fusion research

there are usually relatively few measurements from a few irregularly distributed directions.

Furthermore, to obtain a sufficient signal-to-noise ratio the measurements are along relatively

wide strips. Although there are ways to overcome these two problems with transform methods,

see for example Refs. 2 and 3, it is much easier in series-expansion methods. Furthermore, in
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series-expansion methods it is more straightforward to take into account a priori information

and other physical effects such as re-absorption, scatter, refraction, etc.

In series-expansion methods the emission profile (in the case of emission tomography) is

discretized by expanding it on a set of basis functions. Basis functions can either be local or

global [4]. Regularized series-expansion methods can cope with various local or global basis

functions, see for instance Ref. 5.1 Examples of global basis functions applied in tomography in

fusion research are the Fourier-Zernike [6] and Fourier-Bessel [7] expansions of the Cormack

method. Local basis functions (LBFs) include the much-used pixels [8–10] and related functions

describing a small region on a regular grid [4,11,12]. Global basis functions have a restricted

application because a limited number of the functions have to describe the emission profile well,

while local basis functions are much more flexible because a priori information can easily be

implemented. Natural basis functions (NBFs), often referred to as natural pixels in the literature,

were proposed by McCaughey and Andrews [13] and Buonocore et al. [14] as global basis

functions that in certain tomography problems are well suited as a replacement of LBFs. NBFs

are related to the strips with finite width that are viewed by the measuring system, and are

therefore in a certain sense ideally suited to describe the measurements by that system [14].

Recently, NBFs have been applied successfully in single positron emission computed tomography

(SPECT) [15,16], in which a tomographic image is formed of the emission from radionuclides

injected into a patient. A similarity between SPECT and tomography in fusion research is that

the beam widths of the imaging system are relatively large in order to achieve a good signal-to-

noise ratio. An important dissimilarity is that many more measurements from a regular coverage

are available in SPECT. However, in modern soft x-ray tomography diagnostics on fusion devices

there may be sufficient information (number of measurements) to make reasonable reconstructions

by means of NBF methods without a priori information.2 The purpose of this report is to

investigate whether this is the case and to discuss the advantages and disadvantages of NBF

methods compared with other tomography methods with LBFs. A number of types of NBFs are

investigated: the original NBFs [14], generalized NBFs [17], and orthonormal NBFs [18].

Examples of the NBFs are given for the soft x-ray (SXR) system on the JET tokamak. The

assessment, by simulations, of the performance of tomography methods with the various NBFs

and LBFs is done for the same system. The JET SXR system consists of 51/2 nearly complete

views of the plasma with 35 or 36 channels each [Fig.1(a)]. To assess whether the results would

be different for systems with a more regular and complete coverage, simulations were also

carried out for two virtual systems with 6×40 and 12×40 channels, respectively [Fig.1(b)].

1 The regularization in Ref. 5 is smoothness of the expansion coefficients for both local and global basis functions.
In general, however, smoothness cannot be used for global basis functions. For global basis functions a rough
regularization is often achieved by truncating the series expansion, see Sec. 2.4 and, for example, Ref. 6.

2 In this report the statement “without a priori information” means without a priori information such as smoothness
and other assumed properties of the emission profile. Even NBF methods require regularization in the form of
the estimated noise in the measurement, which in a strict sense can also be called a priori information.



3

Va)

2.0

1.0

0

Z
 (

m
)

–1.0

–2.0
2.0 3.0 4.0 2.0 3.0

R (m) R (m)
4.0

JG
98

.6
50

/1
c

b)

J
I

H
G

E

D
C

B
A

Fig.1: (a) Extent of the viewing fans of the JET SXR system. Eight detector arrays with 18 channels are grouped in
pairs to give nearly complete views of the plasma (AB, CD, GH, and IJ), one array (E, 18 channels) views half of
the plasma, and one array (V, 35 channels) has a wider view. (b) Extent of the viewing fans of measuring systems
with complete coverage (40 channels per fan) and fans at regularly spaced angles. Simulations were done with the
six outside fans (solid lines), and with all 12 fans (solid and dashed lines).

The structure of this report is as follows. Section 2 introduces the various NBFs and LBFs

and describes the numerical implementation of the tomography methods. Section 3 discusses

the results of simulations to compare the tomography methods using the various basis functions,

and Sec. 4 summarizes the results.

2. MATHEMATICAL BACKGROUND

2.1 Series-expansion methods

In series-expansion methods the emission profile g(x,y), where x and y are the spatial Cartesian

coordinates, is expanded on a set of basis functions B x yj ( , ):

g x y B x y gj jj
( , ) ( , ) ˜≈ ∑ . (1)

Later, the xy coordinates will be identified with the coordinates of a poloidal tokamak cross-

section R and Z, respectively, and will be used interchangeably with these. The measurement of

detector i can be written as

  
f g x y K x y g x y x yi i i= = ∫∫{ ( , )} ( , ) ( , )K d d , (2)

where the integral is over the support of g(x,y), which is assumed to be bounded. Here, a discrete-

continuous integral operator K that maps the continuous function g(x,y) in R2 to the discrete
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measurements fi  has been introduced. The kernel K x yi ( , )  describes the geometric properties

of the measuring system and will be referred to as the geometric function.3 The function K x yi ( , )

is non-zero in a strip-shaped region [see Fig.2(a) for an example] and Eq.(2) can sometimes be

approximated by a strip integral. Substituting Eq.(1) into Eq.(2) gives the matrix equation

f g= A ˜ , (3)

where f and g̃  are vectors with elements fi  and g̃ j , respectively, and the matrix elements are

given by

A K x y B x y x yij i j= ∫∫ ( , ) ( , )d d . (4)
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Fig.2: Contour plots of various typical basis functions. The NBFs are based on the geometry of the SXR system at
JET and are shown with respect to the inner wall of the JET tokamak. (a) Four standard NBFs B1, equal to K x yi ( , ) .
(b) Four support NBFs B2. (c) Four constant regular NBFs B3. (d) Four triangular regular NBFs B4. (e,f) Two
orthonormal NBFs B5 (dotted contours indicate negative values). (g) Four square constant LBFs B6. (h) Four
pyramid LBFs B7. Neighbouring basis functions were not drawn; note however that neighbouring basis functions
in (d) and (h) overlap, and also in (a) and (b) in so far as K x yi ( , )  of neighbouring channels overlap. The
representation of the basis functions in (a–d,g,h) is on the fine 400×800 grid, whereas (e,f) are on a coarser grid.

3 Another name for the geometric function regularly used in the literature is (point) response function; if the
operator K is continuous-continuous, the corresponding kernel is often referred to as the point spread function.
Note that the name point spread function is sometimes used with a different meaning in tomography, namely the
inverse Radon transform of the geometric function.
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Basis functions used in various tomography methods can be divided into the groups

mentioned in the Introduction. Local basis functions are functions with a support (i.e. region

where they are not zero) that is much smaller than the support of the function g(x,y). A well-

known example of LBFs are square pixels, where B x yj ( , )  is 1 inside pixel j and 0 outside. Other

LBFs [4,11] are overlapping triangular functions that guarantee that the expansion Eq. (1) gives

a continuous result [see Fig.2(h) for an example], and spline functions that guarantee it to have

continuous first derivatives. When the support of each basis function covers a large part of the

support of g(x,y), the basis functions are called global. This is the case when basis functions

linearly model physical or mathematical properties of the emission profile [if the model is not

linear Eq.(1) is not valid], or when they model the detection system. An example of the former is

the Cormack method, mentioned in the introduction, that has been useful in fusion research to

study, for example, MHD modes. NBFs are a way to model the detection system.

If the basis functions form an orthogonal set, a unique expansion Eq.(1) is guaranteed and

the expansion coefficients can be determined from ˜ ( , ) ( , )g g x y B x yj j= , where the brackets

denote the scalar product in Dirac notation. This is the case with several types of LBFs, such as

square pixels, and some mathematical global basis functions, such as the ones used in the Cormack

method. If the set of basis functions is not orthogonal, Eq.(1) may still describe a unique expansion,

i.e. one can solve Eq.(1) for given g(x,y) and basis functions to find g̃ . However, solving Eq.(1)

is generally not required in tomography because g(x,y) is the unknown: Eq.(3) is solved to find

g̃  from the measurements f, after which an approximate g(x,y) is found by substituting the

found g̃  in Eq.(1).

If Eq. (3) is overdetermined, i.e. there are more (known) measurements that (unknown)

basis-function expansion coefficients, there may be a unique solution. However, in the presence

of noise and inconsistencies in the data it is likely that there is no exact solution. It is well known

that the tomography problem is a so-called ill-posed problem [19]: it is easy to see that the

integral Eq.(2) averages over variations in g(x,y) and hence the inverse will amplify noise in the

measurements f [20]. In the overdetermined case a least-squares solution may be adequate.

However, often more expansion coefficients g̃ j  are required than there are measurements fi , so

that Eq.(3) is underdetermined. Then, no unique solution exists and one has to regularize the

inverse problem, for example by taking into account a priori information. Possible regularizations

include truncated singular value decomposition, smoothness, flatness, maximum entropy, non-

negativity, and zeroness of emissivity outside the plasma, some of which will be discussed later.

2.2 Natural basis functions

The most straightforward choice of NBFs, which will be referred to as standard NBFs, is [14]

B x y K x yj j( , ) ( , )= . (5)
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With this choice Eqs.(1) and (2) become very symmetrical, and, in fact, Eq.(1) can be written as

  g x y( , ) ˜= K†g , (6)

where   K†  is the adjoint operator of K. This will be shown in matrix notation in section 2.3. If

one, as is customary in the tomography field, refers to the strip-like integral of Eq.(2) as projection,

with the choice of NBFs one can refer to Eqs.(1) and (6) as the backprojection. Indeed, Eq.(1) is

closely related to a discrete version of the continuous backprojection operator of which the

continuous form is well known in transform methods [1].4 For obvious reasons, the matrix

  A= KK † is sometimes referred to as the projection-backprojection matrix.

With the choice of basis functions of Eq.(5) the number of expansion coefficients g̃ j  is

equal to the number of measurements, so that Eq.(3) may have a unique solution. Ways of

solving Eq.(3) are discussed in section 2.4. A major advantage of NBF methods is that they can

be much more computationally efficient than LBF methods that usually have many more

expansion coefficients than measurements.5 A further advantage is that NBFs represent the

information in the measurements well. Disadvantages are that for arbitrary systems there is no

way to take into account a priori information with standard NBFs and that the measurements

alone may not be sufficient to accurately describe the emission profile. Although Buonocore et

al. [14] claim that natural basis functions are optimal for tomographic reconstructions of actual

objects (in fact, they mean that natural basis functions give smaller discretization errors than

square pixels), it is more relevant to consider in how far the various basis functions can describe

the object. Hanson et al. [4,21] argue that only the information about g(x,y) that lies in the

subspace (called measurement space) spanned by the set of all geometric functions is contained

in the measurements, and no information about the orthogonal space (called null space). This is

true for any basis functions; a priori information is required to fill the null space. Because

natural basis functions can only represent the information in the measurement space, a priori

information cannot be added. For a regular coverage this may not be such a problem, but for

irregular coverage a significant null space may exist.

4 In the filtered-backprojection (FBP) method (also known as convolution-backprojection), one of the most widely
applied transform methods, a filtering operation is carried out on the measurements before backprojecting
them [1]. With B chosen as in Eq. (5) for a viewing system in which the geometric function describes parallel
strip integrals, solving ~g  from Eq. (3) must therefore be a discrete equivalent of the filtering operation in FBP.

5 Here it is meant that NBF methods are more efficient than LBF methods that use the same solution technique,
simply because the matrix size is smaller for NBF methods if there are more grid points than measurements, i.e.
in NBF methods Eq. (3) is solved, whereas in normal NBF methods a discrete version of Eq. (2) is solved. In
this report a matrix inversion is obtained by means of truncated singular value decomposition, which is feasible
on present-day computers for matrix dimensions of several thousand. For larger matrices iterative techniques,
such as ART-like algorithms [algebraic reconstruction technique, see for instance Herman G T 1980 Image
reconstruction from projections (New York: Academic Press) pp 180] have to be employed, which can be efficient
and achieve acceptable solutions for systems with good coverage. See Sec. 2.4 for a further discussion.
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One is free in the choice of basis functions, so one can choose the backprojection to use

the backprojection operator (basis functions) of another measuring geometry [ ′K x yj ( , )] than in

the projection, i.e.

B x y K x y K x yj j j( , ) ( , ) ( , )= ′ ≠ . (7)

Such basis functions have been referred too as generalized NBFs [17]. These NBFs may be

advantageous if the coverage of the measuring system is irregular or truncated, in which case

′K x yj ( , ) may be chosen to represent a (virtual) full regular measuring system, which has a

smaller null space than the actual measuring system. Note that in this case the matrix A need not

be square since the irregular and regular measuring systems may have different numbers of

detectors. One can also orthonormalize the NBFs [13,18], which leads to orthonormal NBFs.

These NBFs are discussed in detail in the section 2.3.

If the imaging system can be approximated by strip integrals, i.e. K x yi ( , )  equals 1 inside

the strip and 0 everywhere else, the matrix A of Eq.(4) for standard or generalized NBFs can be

calculated analytically because Aij  is simply the area of intersection between strips i and j [15,17].

The only need for discretization of the continuous description in that case is the backprojection

Eq.(1), to obtain a discrete image of the emission profile. In many actual measuring systems the

width of the strips varies with distance from the detector, and, consequently [3], the value of

K x yi ( , )  decreases with distance. In such more complicated imaging systems [see for example

Fig.2(a)] the representation of K x yi ( , )  has to be discretized. Although in this case still a

continuous mathematical description is possible until the numerical implementation, see Ref. 18,

it requires the introduction of new notation for discrete-continuous operators. By discretizing

the problem from the start, a consistent description of all methods is obtained and the way to

implement the methods numerically is evident, as is discussed next.

2.3 Numerical implementation of basis functions

In the numerical implementation one discretizes the geometric function K x yi ( , )  with strictly

local basis functions b x ym( , ), for example M small pixels. Note that a lower case b is used for

these LBFs of the numerical implementation to distinguish them from the basis functions B of

the tomography method. These LBFs of the numerical implementation are referred to here as

grid LBFs. The discrete representation gm  of the emission profile g(x,y) on this set of grid basis

functions is given by the expansion

g x y b x y gm mm
( , ) ( , )≈ ∑ ; (8)

note that there is no tilde on these expansion coefficients gm , which for square pixels corresponds

to the average emissivity in small pixel m. The geometric matrix, i.e. the discrete representation

Kim  of the geometric function, is given by

K K x y b x y x yim i m= ∫∫ ( , ) ( , )d d , (9)
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and, similarly, the discrete representation of the basis functions B x yj ( , )  by Bjm :

B B x y b x y x yjm j m= ∫∫ ( , ) ( , )d d . (10)

Using Eq.(10), one can give the discrete expression for the local emissivities

g B gm jm jj
≈ ∑ ˜ , or g g≈ BT ˜ . (11)

The projection-backprojection matrix A of Eq. (3) in terms of the matrices K and B is   A K B= T .

Equation (2) expressed in matrix form is

f=Kg. (12)

Various types of basis functions are introduced, a graphical representation of which is

given in Fig.2 for the JET SXR system. In the following it is assumed that there are I detectors

and J basis functions. The standard NBFs ( J I= ) are given by

B K1 = . (13)

With this choice, Eq.(11) justifies Eq.(6). A contour plot of a collection of these basis functions

is shown in Fig.2(a). The contours indicate strongly varying values of B1 inside the strips on

their support (i.e. the region where they are non-zero). This is the reason why in the present

application the name natural basis function seems preferable over the more usual name natural

pixel. Furthermore, the name natural basis function stresses the relation with local and global

basis functions. The strong variation within the strip may give rise to unwanted effects in

reconstructions, in particular when neighbouring channels do hardly overlap. In such a case, the

support NBFs (i.e. the support of K; J I= ) may be preferable [Fig.2(b)]:

B
K

Kjm
jm

jm

2 1 0

0 0
=

>
=





if ,

if .
(14)

Regular NBFs are obtained by defining the geometric matrix ′K  of an alternative regular

viewing geometry, for example parallel beams at regular angles. For regular constant NBFs B3

[Fig.2(c)] parallel strips with constant values were taken, whereas for regular triangular NBF

B4  [Fig.2(d)] parallel strips overlapping halfway with their neighbours and having triangular

values over the width were chosen. Note that in this case I and J need not be identical, although

they will be chosen to be close. It is evident that all NBFs defined so far are highly non-orthogonal.

Given the singular value decomposition (SVD)   K U S VK K K= T, the subscripts indicating the matrix

of which the SVD matrices are the decomposition, orthonormal NBFs can be obtained by

taking [18]

  
B S S S VK K K K

5 1 2
= [ ]+( )

/
T T, (15)
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where the plus sign indicates the Moore-Penrose pseudo-inverse (see section 2.4). The basis

functions of Eq.(15) (rows of B5; J I= ) basically correspond to the first I rows of   VK
T , which

are orthonormal. Contour plots of two typical orthonormal NBFs for the JET SXR system are

given in Fig.2(e,f). The structure of these NBFs for the SXR system is not very clear, although

many contours are spread along one or more lines of sight. For a system with regular coverage

much more structure can be expected [18].

Two sets of LBFs (with J I≈ ) have been constructed to make possible a direct comparison

of NBFs with LBFs. These LBFs are non-overlapping square constant pixels B6  [Fig.2(g)] and

half-overlapping “pyramid” basis functions B7  [Fig.2(h)]. The latter are the product of one

triangle function in the Z (or y) direction and one in the R (or x) direction [11], which results in

a pyramid shape with rounded corners. The summation of Eq.(1) in the case of the pyramid

LBFs results in a continuous g(x,y), whereas in the case of the square constant pixels g(x,y) is

step-like. A summary of the NBFs and LBFs used in this report is given in Table I.

Table I: Summary of the basis functions used.

emaN epyT noitinifeD .qE

B1 FBNdradnats B1=K 31

B2 FBNtroppus 41

B3 FBNtnatsnocraluger
)dezilareneg(

spirtsdecapsylralugernihtiweulavtnatsnoc

B4 FBNralugnairtraluger
)dezilareneg(

decapsylralugernihtiweulavralugnairt
spirtsgnippalrevo

B5 FBNlamronohtro 51

B6 FBLtnatsnocerauqs erauqsnihtiwtnatsnoc

B7 FBLdimaryp
snoitcnufelgnairtgnippalrevoowtfotcudorp

ni x dna y snoitcerid

Figure 2(a) makes clear that the matrix K has very few non-zero elements (a couple of per

cent), and that consequently the matrices B in all cases, except for the orthonormal basis functions,

do so as well. Because M is chosen large (typically 400×800) it was necessary to store and use

only the non-zero elements of these matrices to limit the use of memory and to speed up the

calculation of the projection-backprojection matrix A.

2.4 Inversion

The tomography problem without a priori information can be stated as follows: given f, invert

Eq. (3) to give g̃  and then backproject this with Eq.(1) to obtain the local emissivity values that

B
K

Kjm
jm

jm

2 1 0

0 0
=

>
=





if ,

if .

  
B S S S VK K K K

5 1 2
= [ ]+( )

/
T T
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can be represented in graphical form. Because the tomographic inversion problem is ill-posed, a

regularized inversion method is needed. Truncated SVD (TSVD) is a reasonable way to obtain

a stable solution to Eq.(3) when J I≈  (see for instance Ref.15 and references therein, and Ref.20).

The (truncated) pseudo-inverse or Moore-Penrose inverse of the I J×  matrix A, with SVD

  A U S VA A A= T , is given by [22]

  A V S UA A A
+ += T , (16)

where SA  is a I J×  diagonal matrix   S s sA r= diag( , , )1 K , with r I J= min( , )  and singular values

  s sr1K , and its pseudo-inverse is the diagonal J I×  matrix   S s sA t
+ = diag( / , , / , , , )1 1 0 01 K K , with

truncation value t A r≤ ≤rank( ) . The singular values are customarily sorted in descending order.

Small singular values will make the inverse A+  unstable; this can be prevented by truncating the

inverse, i.e. by choosing t suitably ( t r< ). It can be shown that the solution g̃ f= +A  is the least

square solution if the system is overdetermined ( I J≥ ) and the minimum norm solution if the

system is underdetermined ( I J< ) [22].
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Fig.3: Singular values of the projection-backprojection matrix A for the JET SXR system, normalized to the largest
singular value. These singular values were obtained with K on the fine 400×800 grid.

Figure 3 shows the singular values of the projection-backprojection matrix for the various

basis functions for the JET SXR system. The characteristics of all NBFs and LBFs are similar:

the first few singular values drop quickly, then there are more than a hundred singular values

with constant slope (on a logarithmic scale) and above about 160 the values drop steeply. Small

singular values, in particular after the steep drop, indicate redundancy in the information about

the emission profile by the basis functions (the redundancy is due to the overlap in the support of

geometric functions corresponding to crossing the lines of sight). Apparently, there is less
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redundancy in the standard and support NBFs ( B1 and B2 ) than in the other NBFs and LBFs.

The singular values of the orthonormal B5, i.e. the singular values of K, are not shown; their

relation to the singular values of standard NBFs is discussed later. The truncation of the SVD

should be done before the singular values fall off below the noise level; the optimal choice of

truncation will be discussed in connection with the simulations in section 3.1. The number of

singular values of the matrix A that can be taken in the TSVD corresponds to the degrees of

freedom, or independent pieces of information, gathered by the measuring system [13].

The SVD of A can be calculated by standard mathematical packages. It is computationally

intensive, but for given K and B it only needs to be done once and the matrices UA, SA  and VA

can be stored. For standard and orthonormal NBFs more can be said because of the way K and A

are related.

For standard NBFs ( B K1 = ),   A KK= T  is symmetric and its SVD is

  A U S V U S S UA A A K K K K= =T T T . (17)

Here, the unitary properties of U and V were used. It follows from Eq.(17) that the singular

values of A are those of K squared. With the SVD of K, it is easy to show that backprojection of

g̃ f= +A with Eq. (11) gives the trivial result

g f= +K . (18)

The solution found with standard NBFs is therefore equal to the solution found if TSVD were

applied to K in Eq. (12). Equations equivalent to Eq. (18) for solving g are 
  
g f= ( )+

K KKT T

and 
  
g f= ( )+

K K KT T , which numerically can give slightly different results [15]. The application

of standard NBFs has some advantages over the direct application of TSVD to Eq.(12). (1) If the

function K x yi ( , )  can be expressed analytically, the continuous backprojection of the inversion

of Eq.(3) is likely to be more accurate than a discretization of g and K on a grid and then solving

by Eq.(18) [14,15]. (2) If the number of grid basis functions required for an accurate discretization

of g and K is larger than the number of measurements, SVD of A is more efficient than SVD of

K; hence the NBF approach is more efficient than the solution of solution of Eq.(18). (3) If the

coverage of the measuring system is regular, A has a structure [14] that one can take advantage

of in the calculation of the SVD [18]. In the present application, only point 2 is applicable.

Using B5  of Eq. (15) in Eq. (3) and substitution into Eq. (11) also leads to Eq. (18), showing

that orthonormal NBFs are not very different from standard NBFs. The results in Ref. 18 confirm

this; there the inversion formula 
  
g f f= ( ) = ( )+ +

K KK K U S S UK K K K
T T T T T  was used. The

orthonormal NBFs are therefore not considered any further in this report. However, in certain

applications orthonormal NBFs can be useful [18]. Furthermore, the orthonormal NBFs give

insight into what the actual basis functions are when one solves Eq.(12) by means of the TSVD

of Eq.(18).
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2.5 Constrained-optimization method

The performance of tomography methods can be compared by means of phantom simulations.

Phantoms are assumed emission profiles, which are used to calculate pseudo-measurements, i.e.

what the detectors would measure if the phantom were the true emission profile. The tomographic

reconstruction of the pseudo-measurements, which is often called tomogram, can be compared

with the phantom. The NBF and LBF methods described are compared in phantom simulations

with the standard tomography method used for SXR and bolometer tomography at JET [11],

which is here referred to as the reference method. This is a series-expansion method with a grid

of pyramid LBFs (there are about six times more basis functions than measurements) in which

the solution is found by a constrained optimization (this is equivalent to Phillips-Tikhonov

regularization). The a priori information is given by an object function that quantifies anisotropic

smoothness on flux surfaces [11,23], in other words: for the given constraints the smoothest

solution is found. From the tomogram one can also backcalculate what would be measured if the

tomogram were the actual emission profile and compare these with the pseudo-measurements

from the phantom. This gives the misfit σ f between (pseudo) measurements f0  and

backcalculated measurements f:

σ f
f f

f
=

− 0

0
, (19)

where the bars indicate the Euclidean norm. The constraint in the constrained optimization method

is given by the so-called discrepancy principle [24], i.e. the solution is found for which the

misfit equals the estimated errors ε  in the measurements. The main parameter in the constrained

optimization method is given by the estimated errors; other parameters specify the exact form of

the object function. Other, similar tomography methods applied to SXR tomography, and

tomography in other wavelength ranges on fusion devices, often use square pixel basis functions,

and isotropic smoothness, flatness or maximum entropy as object function [5,8–10,25,26].

3. COMPARISON OF TOMOGRAPHY METHODS

3.1 Description of simulations

In the numerical implementation of the tomography methods two types of local basis functions

b x ym( , ) have been used. The first type consists of 400×800 square pixels and will be referred to

as the fine grid. This grid was chosen sufficiently fine so that the geometric functions K x yi ( , )

could be accurately represented. The tomograms are shown on this grid. An efficient way to

calculate the discrete representation of K x yi ( , )  is discussed Ref.3. Such a fine grid was feasible

in the TSVD methods on the (nearly) square matrix A, of which the dimensions are equal to the

number of measurements. However, in the constrained-optimization method a square matrix

related to   K KT [11], of which the dimensions are equal to the number of basis functions M, is

inverted. This inversion requires computer memory that goes as M2, and the computation time
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goes as M3. Also in the method of TSVD of the matrix K the number of grid basis functions (M)

is the limiting factor. For these two methods the reconstruction is done on a much coarser grid

with about 1200 pyramid basis functions (as explained in Sec.2.5), referred to as coarse grid. In

this case the discrete representation of K x yi ( , )  is an average weighted by the basis functions

according to Eq.(9). These representations are not necessarily worse than the fine grid as the

phantom is given on the coarse grid. However, it is found (Sec.3.2) that for the LBF and NBF

reconstructions the fine grid gives reconstructions closer to the phantom than the coarse grid,

which means that for those methods the fine grid is more adequate.

In the simulation a realistic level of noise is added to the pseudo-measurements; in the

present simulations that is Gaussian noise with a standard deviation of 3% relative to the pseudo-

measurement. Tomographic reconstructions g (the tomogram) of the pseudo-measurements can

be compared directly with the phantom g0  to give the tomogram error

σ g
g g

g
=

− 0

0
.

The tomogram error is an objective quality measure, with a global minimum, that can be optimized

by varying the reconstruction parameters, i.e. the estimated misfit ε  in constrained optimization

or the number of singular values (expressed in relative terms by s st 1 ) in TSVD. The misfit σ f

[Eq. (19)] is also a quantitative error measure. Contrary to σ g  it is usually a monotonic function

of the estimated misfit ε  in constrained optimization or the number of singular values in TSVD.

Figure 4 shows that for most methods σ g  has a minimum for a value of ε  or s st 1  close to the

noise level. The corresponding σ f  of this minimum (Tables II and III) is also expected to be

close to the noise level of the measurements. In TSVD σ f  can often be made zero by not

truncating at all, which obviously does not give reasonable results as the noise of the measurements

is amplified in the reconstruction. Figure 5 gives a typical example of the fit to the pseudo-

measurements of the backcalculated values from the tomograms with minimum σ g . Other

objective quality measures, such as the amount of negative values in the tomogram (all tomography

methods used in this report can result in unphysical negative emissivity values), could be used.

The image of the tomogram also gives an impression of the quality of the reconstruction. Although

this is not an objective quality measure, it can play an important role in deciding which method

gives the best results.

It is well known that [19] the minimum σ g  in constrained-optimization methods that use

the discrepancy principle is often for an ε  that is slightly smaller than the noise level [Fig.4(a)].

The truncation level s st 1  for which the minimum σ g  occurs for the NBF and LBF methods

[Fig.4(b-h)] corresponds roughly to the truncation that one would expect from the singular values

(Fig.3): B1, B2  and B5 have singular values that hardly drop below the noise level and therefore

the best results are obtained with very little truncation, whereas for B3, B4 , B6  and B7  the
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Fig.4: Tomogram errors σ σg g− min( ) for three representative phantoms (the three curves in each graph) as a

function of ε  [in (a)] and s st 1  [in (b–h)] for tomographic reconstructions on the fine 400×800 grid for the

various tomography methods indicated, except (f) which was done by TSVD of the matrix K on the coarse grid. The

values of min( )σ g  can be found in Table II.

opposite is true. The σ f  for which σ g  is minimum (Tables II and III) is clearly related: for B1,

B2  and B5 σ f  is very small (smaller than the noise level), whereas for B3, B4 , B6  and B7 it is

close to the noise level, although significant differences occur between phantoms. For each type

of basis function the phantom simulations give an indication of the reasonable range of truncation

level st/s1 for reconstructions of actual measurements (in which case σ g  cannot be determined

as no phantom exists to compare with). Within this range the truncation level can be optimized

to give the reconstruction with the least apparent artefacts.

Various phantoms were used in the reconstructions, which are listed in Tables II and III.

Phantoms I-III are based on actual measurements reconstructed by the reference method. Because

the reference method is known to smooth the result, the peaks of the phantoms were enhanced.

Phantoms I [Fig.6(a)] and II are two time slices (JET discharge 40305 at times 13.42 s and
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Table II: Tomogram reconstruction errors σ g  (in per cent) and misfit σ f  (within brackets; in per cent) for phantom

simulations on the fine grid.

metsyS motnahP ecnerefeR 1FBN 2FBN 3FBN 4FBN 6FBL 7FBL

TEJ
tnecserc(I

).mirepxe
0.8

)5.2(
9.54
)0.0(

6.43
)4.1(

4.82
)1.2(

8.62
)5.3(

7.82
)8.1(

3.12
)8.1(

TEJ
tnecserc(II

).mirepxe
0.7

)5.2(
2.44
)0.0(

3.13
)7.1(

4.42
)4.3(

1.32
)6.2(

6.52
)8.1(

2.81
)0.2(

TEJ
dekaep(III

).mirepxe
4.11
)3.3(

4.66
)0.0(

3.73
)1.0(

8.73
)5.01(

5.43
)3.11(

1.74
)1.6(

8.82
)6.1(

TEJ )naissuaG(VI
5.3

)0.2(
9.36
)0.0(

0.43
)2.0(

0.22
)2.4(

0.81
)1.4(

6.14
)9.2(

1.72
)1.1(

TEJ
eerht(V

)snaissuaG
3.8

)0.2(
7.95
)0.0(

5.53
)3.0(

8.13
)9.5(

2.82
)5.5(

6.04
)1.3(

4.72
)5.1(

TEJ )gnir(IV
1.72

)7.11(
5.16
)0.0(

4.34
)6.2(

5.04
)1.8(

7.63
)7.7(

7.04
)0.3(

0.92
)2.1(

TEJ
.vni(IIV
)tnecserc

3.23
)8.6(

7.27
)0.0(

7.25
)4.0(

8.25
)3.1(

8.94
)9.21(

5.45
)0.4(

9.14
)2.1(

TEJ )talf(IIIV
9.02
)0.3(

7.66
)0.0(

5.14
)2.0(

0.73
)6.9(

3.43
)4.9(

3.84
)2.4(

8.73
)6.1(

TEJ XI a 1.71
)6.2(

6.01
)4.2(

6× 04 I
1.9

)8.2(
6.32
)2.0(

7.22
)4.3(

0.42
)1.3(

0.22
)3.3(

3.32
)7.3(

4.71
)1.4(

21 × 04 I
5.5

)0.3(
8.71
)5.0(

5.61
)5.5(

1.12
)5.6(

7.91
)0.6(

5.12
)3.5(

9.51
)3.5(

6× 04 Ib 6.02
)5.3(

5.81
)7.2(
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b 21fosnoitcnufsisaB × .desuyllamronsnoitcnufforebmunehteciwt.e.i,desumetsys04

13.3 s into the discharge, respectively) in a plasma where the toroidal rotation velocity (of the

order of 500 km s 1− ) varies with time. Impurities accumulate in the plasma, but they do not

necessarily reach the centre on a short time scale. The centrifugal force from the toroidal plasma

rotation can cause an in-out asymmetry in the impurity density that shows up as a crescent-

shaped emission profile (see references in Ref.[11]). The radiation by the impurity ions can be as

large as the background bremsstrahlung and recombination radiation. Phantom III is based on

an optimized-shear discharge [27] (JET discharge 40554 at 7.08 s into the discharge), in which

the density and temperature profiles, and hence the SXR emission profile, are strongly peaked in

the centre. Phantoms IV–VIII are mathematical inventions that are not likely to occur in a plasma,
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Table III: Tomogram reconstruction errors σ g  (in per cent) and misfit σ f  (within brackets; in per cent) for phantom

simulations on the coarse grid.
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Fig.5: Pseudo-measurements for phantom I (the error bars indicate the standard deviation of the added noise) and
backcalculated values for the reference method and the method with NBF 4, for all detectors of the JET SXR system.
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but that give insight into what happens if there are multiple peaks or very steep gradients in the

emission profile. Phantom IV is a Gaussian emission profile, V consists of three Gaussians, VI

is a ring with a Gaussian cross-section, VII is similar to VI but with an angular variation that

peaks on the inside, and VII is a circle with unity emission inside and zero emission outside. The

reconstruction errors in Tables II and III show that results of the various phantoms are the same

qualitatively, i.e. the relative performance of the various tomography methods does not depend

much on the phantom. Therefore, only tomograms of the phantom simulations with phantom I

are discussed in detail (Fig.6).

3.2 Simulation results

The reconstructions shown in Fig.6 were all done on the fine grid, except the reference case

[Fig.6(b)] and the TSVD of matrix K [Fig.6(h)]. The corresponding reconstruction errors are

given in Table II. Figure 6(b) shows that the reference method gives a reconstruction that is very

similar to the phantom [Fig.6(a)], but that the peak and the hollow have been somewhat smoothed,

as can be expected when using a regularization based on smoothness. The NBFs B1 [Fig.6(c)]

do not give good reconstructions, with high values at the edge, because the basis functions have

a triangular shape and neighbours do not overlap. Still, the crescent shape is discernible. The

NBFs B2  [Fig.6(d)] perform better because the supports of the geometric functions of the detectors

of a camera fill the region well. However, due to the irregular coverage by the system, one gets

unrealistic gaps between viewing directions. The NBFs B3, which correspond to a virtual system

with regular coverage, alleviate this problem and the reconstruction is better [Fig.6(e)]. The

“cubist” features of the reconstruction, i.e. sharp edges, can be rounded by smoothing the image,

which gives a very acceptable result [Fig.6(f)]. A smooth result is also obtained by using triangular

regular NBFs [ B4 , Fig.6(g)], which give the best result of the types of NBF tested. Straightforward

TSVD of the matrix K on the coarse grid, which mathematically corresponds to the orthonormal

NBFs B5, also leads to a reasonable reconstruction [Fig.6(h)], but of a lesser quality than obtained

with the reconstructions on the fine grid (cf. Table II and Table III). The reconstruction with

square LBFs B6  [Fig.6(i)] also shows the main features, but for all phantoms the reconstruction

is worse than that with NBFs B3 and B4 , and often worse than reconstructions with NBFs B2 .

This is in agreement with what has been found in the literature [14,15]. The smoother

reconstruction with pyramid LBFs B7  [Fig.6(j)] is better. In fact, its tomogram error is lower

than for any of the NBFs for most phantoms. The relatively large size of the basis functions is

clear from the many local minima and maxima. Although the reconstructions with NBF B4  are

not free from artefacts, they seem preferable to the reconstructions with B7  despite the somewhat

larger tomogram error, in particular because the hollowness and values on the left side of the

crescent are reconstructed better and because the tomogram is smoother. The reason for the

tomogram error being larger for the NBFs is probably that there are non-zero features at the edge

of the plasma, while such features are suppressed for LBF B7  because the basis functions go to

zero in many places close to the edge.
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Fig.6: (a) Phantom I. Tomographic reconstructions by the various methods: (b) reference method, (c–g) NBFs, (h)
TSVD of the matrix K on the coarse grid and (i,j) LBFs. Image (f) was derived from image (e) by smoothing. The
green curve indicates the magnetic separatrix in the plasma and the box in the lower left corner the grid size.

On may argue that the comparison with the reference method for phantoms I–III is unfair,

as the phantom is based on a reconstruction by this method and thus is smooth. If a less smooth

phantom is used that does not satisfy the a priori information in the reference method, in particular

the tomogram of the reconstruction with NBF B4  (phantom IX in Table II), the reconstruction

with the reference method has a significantly higher reconstruction error than the reconstruction

with NBF B4 . Thus, it can be concluded that the excellent results with the reference method are
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biased by the smooth phantoms used. If the emission profile is particularly suited for a NBF

method, the reconstruction can be better than with the reference method. However, the unsmooth

features in reconstructions with NBF methods are mainly artefacts of the basis functions used.

Therefore, for reconstructions of actual emission profiles of the plasma one can expect the

reference method to perform a little worse than in the phantom simulations, but still to be much

better than the NBF and LBF methods without a priori information.

Table III summarizes the simulation results on the coarse grid. These result are less good

than those on the fine grid (Table II), thus it can be concluded that the coarse grid may not be

sufficiently fine to accurately describe the basis functions in numerical terms.6 This may be the

cause of the trends in the simulations on the coarse grid being less clear when comparing phantoms,

although again the LBFs B7  perform best for most phantoms. The simulations on the coarse

grid have been useful, however, to numerically verify that the results with NBF B1 and NBF B5

are be identical, as discussed in section 2.4. This is indeed the case (see Table III): the optimum

reconstruction error is found for the same number of singular values (note however that s st 1  of

NBF B1 is s st 1  of NBF B5 squared).

Some of the artefacts in Figs.6(c-g) can clearly be attributed to the irregular coverage of

the channels and the shapes of the geometric functions. One can therefore ask, whether better

results can be obtained with NBFs if the coverage is more regular. One can also wonder whether

the good performance of NBFs reported in the literature is due to the much larger number of

channels in those applications. To address the first question, simulations have been carried out

with a virtual system with approximately the same number of channels as the JET SXR system,

but spaced in a regular way: six fans at regular angles with 40 channels each, where each fan

covers the entire plasma cross-section [solid lines in Fig.1(b)]. To address the second question,

six additional virtual fans were added on the low-field side of the tokamak vessel to give a total

of 12x40 channels [solid and dashed lines in Fig.1(b)]. Because the qualitative results for the

various phantoms in the simulations with the JET SXR system were the same, the simulations

with the virtual systems were only carried out for phantom I. The number of NBFs B3 and B4 ,

and LBFs B6  and B7  was increased according to the number of channels available in the virtual

systems. The results are given in Table II. Surprisingly, the reconstruction with the reference

method for the 6×40 system is somewhat worse than that with the JET SXR system. The

reconstruction for the 12×40 system, however, is significantly better. It is clear that the NBF

methods perform much better with the regular systems. For the 12×40 system NBFs B1 and B2

even outperform NBFs B3 and B4 , indicating that (1) the problems for the JET SXR system

6 With the phantom given on the coarse grid, pseudo-measurements calculated by the geometric matrix on the
fine and the coarse grids are identical (within 0.001%). Therefore, discretization errors of the geometric matrix
on the coarse grid are not to blame for the worse performance of NBF and LBF methods on the coarse grid: for
a phantom on the coarse grid the reference method can be expected to give identical results on the fine and
coarse grids (but the reconstruction on the coarse grid would take of the order 107 times longer and require of
the order 105 times more memory).
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were purely due to limitations in that system and (2) for regular systems it is better to use normal

NBFs based on the geometric function than generalized NBFs based on a virtual regular system.

However, the LBFs also perform better for the regular systems and the tomogram errors for

LBFs B7  are still somewhat better than the tomogram errors with NBFs. The singular values of

the 6×40 system show a constant slope and no severe drop off which indicates that the system is

more balanced than the irregular JET SXR system. The first 240 singular values of 12×40 system

are similar to the ones of the 6×40 system; the singular values drop off later. This indicates that

there is a growing redundancy with more channels, which is typical for tomography (an asymptotic

limit is reached in the degrees of freedom as number of views increases [13]). A test was done by

reconstructing the measurements of the 6×40 system using the NBFs B4  and LBFs B7  of the

12×40 system (bottom row of Table II), i.e. there were twice as many basis functions as there are

measurements. The results show that not much is gained by using more basis functions than

measurements (if no extra a priori information is applied): the reconstruction with NBFs B4  is

only slightly better and the reconstruction with LBFs B7  is worse.

4. CONCLUSIONS

Natural basis functions have been applied successfully to tomography with the JET SXR system

in numerical simulations. Although reconstructions with a conventional tomography method are

significantly better, reconstructions with NBFs, which require less a priori information than the

conventional tomography methods, are useful to investigate whether features of a reconstruction

are real or may be due to the regularizing a priori information in conventional tomography

methods. An application of the NBF methods for this purpose is discussed in Ref. 28. Apparently,

the information supplied by the number of measurement of the JET SXR system is sufficient to

derive the main features of the emission profiles. Simulations with virtual systems with improved

coverage and a doubled number of detectors show that significantly improved reconstructions

can be obtained with such systems, but that the conventional tomography method remains

preferable.

If the coverage by the viewing system is irregular, the regular (generalized) NBFs perform

better than the NBFs that describe the actual viewing system. For systems with regular coverage

and optimum overlap between neighbouring channels the opposite is true. The appropriate NBFs

give more accurate reconstructions than the traditional pixels (LBFs without a priori information).

Pyramid LBFs, which describe a bilinear interpolation between grid points, give smaller

reconstruction errors than NBFs for most phantoms. However, the reconstructions with pyramid

LBFs have coarse artefacts, and the smoother reconstructions obtained by NBFs, which show

some relevant features better, may be preferable. The larger reconstruction errors in the latter

may be due to relatively larger artefacts at the edge of the reconstruction region. It is possible to

improve the generalized-NBF reconstructions by including a priori information, such as
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smoothness between virtual lines of sight of the basis functions and small values for edge lines

of sight, but this is outside the scope of this report in which an attempt is made to minimize the

influence of a priori information. Other types of NBFs than those discussed here have been

proposed in the literature, such as weighted NBFs [29], multigrid NBFs [30] and multiscale

NBFs [31]. The application of such NBFs to the present SXR tomography problem may be

studied in the future.

REFERENCES

[1] R.M. Lewitt, “Reconstruction algorithms: transform methods,” Proc. IEEE 71, 390–408

(1983)

[2] L.C. Ingesson and V.V. Pickalov, “An iterative projection-space reconstruction algorithm

for tomography systems with irregular coverage,” J. Phys. D: Appl. Phys. 29, 3009–3016

(1996)

[3] L.C. Ingesson, P.J. Böcker, R. Reichle, M. Romanelli and P. Smeulders, “Projection-space

methods to take into account finite beam-width effects in two-dimensional tomography

algorithms,” J. Opt. Soc. Am. A 16, 17–27 (1999)

[4] K.M. Hanson and G.W. Wecksung, “Local basis-function approach to computed

tomography,” Appl. Opt. 24, 4028–4039 (1985)

[5] S. Zoletnik and S. Kálvin, “A method for tomography using arbitrary expansions,” Rev.

Sci. Instrum. 64, 1208–1212 (1993)

[6] R.S. Granetz and P. Smeulders, “X-ray tomography at JET,” Nucl. Fusion 28, 457–476

(1988)

[7] Y. Nagayama, “Tomography of m=1 mode structure in tokamak plasma using least-square-

fitting method and Fourier-Bessel expansion,” J. Appl. Phys. 62, 2701–2706 (1987)

[8] A. Holland and G.A. Navratil, “Tomographic analysis of the evolution of plasma cross

sections,” Rev. Sci. Instrum. 57, 1557–1566 (1986)

[9] N. Iwama, H. Yoshida, H. Takimoto, Y. Shen, S. Takamura and T. Tsukishima, “Phillips-

Tikhonov regularization of plasma image reconstruction with the generalized cross

validation,” Appl. Phys. Lett. 54, 502–504 (1989)

[10] J. Mlynár
( , “Pixels method computer tomography in polar coordinates,” Czech. J. Phys.

45, 799–816 (1995)

[11] L.C. Ingesson, B. Alper, H. Chen, A.W. Edwards, G.C. Fehmers, J.C. Fuchs, R. Giannella,

R.D. Gill, L. Lauro-Taroni and M. Romanelli, “Soft x-ray tomography during ELMs and

impurity injection in JET,” Nucl. Fusion 38, 1675–1694 (1998)

[12] R.M. Lewitt, “Multidimensional digital image representations using generalized Kaiser-

Bessel window functions,” J. Opt. Soc. Am. A 7, 1834–1846 (1990)

[13] D.G. McCaughey and H.C. Andrews, “Degrees of freedom for projection imaging,” IEEE

Trans. Acoustics, Speech, Signal Processing ASSP-25, 63–73 (1977)



22

[14] M.H. Buonocore, W.R. Brody and A. Macovski, “A natural pixel decomposition for two-

dimensional image reconstruction,” IEEE Trans. Biomed. Eng. BME-28, 69–78 (1981)

[15] G.T. Gullberg and G.L. Zeng, “A reconstruction algorithm using singular value

decomposition of a discrete representation of the exponential Radon transform using natural

pixels,” IEEE Trans. Nucl. Sci. 41, 2812–2819 (1994)

[16] G.T. Gullberg, Y.-L. Hsieh and G.L. Zeng, “An SVD reconstruction algorithm using a

natural pixel representation of the attenuated Radon transform,” IEEE Trans. Nucl. Sci.

43, 295–303 (1996)

[17] Y.-L. Hsieh, G.T. Gullberg, G.L. Zeng and R.H. Huesman, “Image reconstruction using a

generalized natural pixel basis,” IEEE Trans. Nucl. Sci. 43, 2306–2319 (1996)

[18] J.R. Baker, T.F. Budinger and R.H. Huesman, “Generalized approach to inverse problems

in tomography: image reconstruction for spatially variant systems using natural pixels,”

Critical Reviews in Biomedical Engineering 20, 47–71 (1992)

[19] V.F. Turchin, V.P. Kozlov and M.S. Malkevich, “The use of mathematical-statistics method

in the solution of incorrectly posed problems,” Sov. Phys. Usp. 13, 681–703 (1971)

[20] P.C. Hansen, “Numerical tools for analysis and solution of Fredholm integral equations of

the first kind,” Inverse Problems 8, 849–872 (1992)

[21] K.M. Hanson and G.W. Wecksung, “Bayesian approach to limited-angle reconstruction in

computed tomography,” J. Opt. Soc. Am. 73, 1501–1509 (1983)

[22] G.H. Golub and C.F. Van Loan, Matrix computations 3rd Ed. (Johns Hopkins University

Press, Baltimore, 1996) pp 256

[23] J.C. Fuchs, K.F. Mast, A. Hermann, K. Lackner, “Two-dimensional reconstruction of the

radiation power density in ASDEX Upgrade,” Proceedings of the 21st EPS Conference on

Controlled Fusion and Plasma Physics, Montpellier, 27 June–1 July 1994, Ed. E. Joffrin

et al., Europhysics Conference Abstracts Vol. 18B (EPS, 1994), Part III, pp 1308

[24] M. Bertero, C. de Mol and E.R. Pike, “Linear inverse problems with discrete data: II.

Stability and regularisation” Inverse Problems 4, 573–594 (1988)

[25] K. Ertl, W. Von der Linden, V. Dose and A. Weller, “Maximum-entropy based reconstruction

of soft x-ray emissivity profiles in W7-AS,” Nucl. Fusion 36, 1477–1488 (1996)

[26] M. Anton, H. Weisen, M.J. Dutch, W. Von der Linden, F. Buhlmann, R. Chavan, B. Marletaz,

P. Marmillod and P. Paris, “X-ray tomography on the TCV tokamak,” Plasma Phys. Control.

Fusion 38 ,1849–1878 (1996)

[27] The JET Team (presented by F.X. Söldner), “Shear optimization experiments with current

profile control on JET,” Plasma Phys. Control. Fusion 29, B353–B370 (1997)

[28] L.C. Ingesson, H. Chen, P. Helander and M.J. Mantsinen, “Comparison of basis functions

in soft x-ray tomography and observation of poloidal asymmetries in impurity density”

Plasma Phys. Control. Fusion 42, 161-180 (2000)



23

[29] L. Garnero, J.-P. Hugonin and N. De Beaucoudrey, “Limited-angle tomographic imaging

using a constrained natural-pixel decomposition,” Opt. Acta 33, 659-671 (1986)

[30] V.E. Henson, M.A. Limber, S.F. McCormick, B.T. Robinson, “Multilevel image

reconstruction with natural pixels,” SIAM J. Sci. Computing 17(1), 193-216 (1996)

[31] M. Bhatia, W.C. Karl, and A.S. Willsky, “Tomographic reconstruction and estimation on

multiscale natural-pixel bases,” IEEE Trans. Image Proc. 6(3), 463-478 (1997)


