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ABSTRACT

Methods to determine the total electromagnetic power, radiated by the plasma, from bolometer

measurements are compared. The effectiveness of weighted summations of a limited number of

measurements is compared with the values calculated from tomographic reconstructions. The

sensitivity of the tomographic reconstructions to various reconstruction parameters and different

numbers of lines of sight has also been investigated. The results show that of plasmas with an X

point it seems not to be possible to find weights for the weighted summation that give satisfactory

results for wide range of plasma parameters. The total radiated power determined from

tomographic reconstructions, in contrast, is fairly insensitive to reconstruction parameters, except

if negative values are allowed in the reconstructions or if there are inconsistencies between

measurements. Beam widths are shown to play only a minor role in the total power calculation.

1. INTRODUCTION

The total radiated power is an important plasma parameter that is required routinely during

operations and in the analysis of discharges. The total radiated power can be estimated in various

ways, ranging from a simple weighted summation of bolometer lines of sight that can be calculated

between discharges, to an elaborate tomographic reconstruction that requires input by hand and

can only be carried out for a limited number of time slices in a limited number of discharges. In

the past, in JET the simple weighted summation has proven adequate for most purposes and

differences between calculation methods could be explained and gave no cause for concern.

However, no systematic study comparing the different calculation methods had been carried

out. Recent doubts raised by the ASDEX-Upgrade team [1] warrant such a systematic comparison.

The present document describes some relevant technical details of the bolometer diagnostics

(Sec.2) and discusses the results obtained with various calculation methods to estimate the total

radiated power: by tomographic reconstructions (Sec.3) and by weighted summation of line

integrals (Sec.4). The comparison of the methods is mainly done by means of simulations with

realistic phantoms, i.e. emission profiles that are expected to occur in JET. The phantoms used

in this study are the emission profiles predicted by the EDGE2D/NIMBUS code for the attached

and detached phase of an L-mode density-limit discharge in the MkIIA divertor. The methods

have also been compared with experimental data for a variety of discharges in different divertors.

In addition, the effects on the calculated total radiated power due to the finite width of the

instrument functions (beam width) are studied in Sec.5.

2. TECHNICAL DESCRIPTION OF THE BOLOMETER DIAGNOSTICS

2.1 Bolometers of the KB1, KB3 and KB4 systems

Three bolometer systems are in use on JET: three 10 or 14-channel ex-vessel KB1 cameras

(Fig.1), 14 4-channel in-vessel KB4 cameras (Fig.2), and 7 4-channel in-vessel KB3 cameras in
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Fig.1: Lines of sight of the three cameras of the KB1
bolometer system. The dotted curves indicate typical flux
surfaces.
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Fig.2: Lines of sight of the 14 cameras of the KB4
bolometer system.
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Fig.3: Lines of sight of the seven cameras of the KB3 bolometer system in three divertors.

the divertor (Fig.3). The KB1 system, which is mounted in ports of the vacuum vessel, has been

in operation since 1984 and uses single-bolometer assemblies developed at IPP-Garching [2,3].

The radiation is absorbed by an unblackened gold absorber on a Kapton substrate. The resistance

change of a resistor mounted on the rear of the Kapton substrate is measured in a measuring

bridge, in which also the resistor of a reference bolometer, which is mounted directly behind the

signal bolometer, is included. The reference bolometer makes it possible to subtract heating

effects by, for example, fusion neutrons and gamma radiation, which are registered by both the

signal and reference bolometer. The bolometers are cooled to about room temperature.

The KB3 and KB4 systems use 4-channel bolometer arrays that are mounted in-vessel.

The bolometers are based on a newer type of bolometers than the ones of KB1, also developed
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at IPP Garching [4]. For application on JET, the bolometers were further developed with a mica

substrate instead of Kapton in order that the bolometers do not need to be cooled. Most channels

of the KB3 and KB4 systems have operated reliably for several years at 320ºC. These bolometers

have a blackened gold absorber. Behind the mica substrate there are two (signal) resistors, and

there are also two (reference) resistors behind an identical gold absorber, shielded from radiation,

located close to the signal bolometer. The signal and reference resistors are connected in a

Wheatstone bridge. All absorbers and resistors of the four channels of the array are on the same

mica foil, and, because they have undergone the same processing steps in their manufacture,

they are nearly identical.

2.2 Calibration

Both types of bolometer can be calibrated in situ, without the need of a calibrated radiation

source, by heating up the resistors with a known current and measuring the time response of the

output signal [2,4]. Comparison with a calibration with light sources have shown that the above

calibration method is satisfactory, although a small correction is needed for the KB1 system [2].

The gold absorber absorbs all radiation in the UV to soft x-ray range. A blackening of the foil

extends the good absorption to the visible range. Because of this wide range of sensitivity, most

of the radiation emitted by the plasma will be detected. The plasma is optically thin for

electromagnetic radiation in this range. Therefore, a good estimate of the total radiated power

can be obtained, on the condition that the radiation is toroidally symmetric (the vertical and

horizontal KB1 cameras, and the KB3 and KB4 systems are located in different octants). The

bolometer systems also detect neutral particles produced in the plasma by charge-exchange

processes. Although these play a role in the bulk plasma, the main contribution to the bolometer

signals and to the power loss from the plasma comes from the divertor [5–7]. The bulk plasma is

opaque to neutral particles, and the coverage by the divertor bolometers is insufficient to fully

quantify the total power carried by the neutral particles in the divertor. Therefore, the estimates

of total radiated power discussed here only include the electromagnetic radiation part (and a

small component of neutral particle losses from the bulk plasma). In tomographic reconstructions,

the contribution of neutral particles to the signals of the divertor bolometers (KB3) has to be

taken into account [6,7], which complicates the tomographic reconstructions significantly and

also makes the results of the total radiated power somewhat less reliable if KB3 measurements

are taken into account (but the details of the radiation pattern in the divertor are hugely improved

by taking into account the KB3 measurements).

2.3 Coverage and geometric effects

The KB1 and KB4 cameras are pin-hole cameras, i.e. the detectors of one camera view the

plasma through one aperture. Due to the limited space in the divertor, the KB3 cameras (in

MkIIA and MkIIGB) are collimator cameras, i.e. each detector views the plasma through a

number of apertures that are not shared with other detectors. The size of the apertures and location
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of the detectors determines the separation between the lines of sight of that camera and the beam

widths around the lines of sight from which radiation is received by the detectors. The beam-

widths, which are related to the étendue of the detector [8], determine the amount of light that is

received, and therefore the signal-to-noise ratio. These quantities and the coverage have been

optimized such that there are no gaps not covered between the lines of sight (see Sec. 5). The

beam widths are so large that a significant blurring occurs if the emission profile is very localized

and peaked. For a proper quantification of the local emissivity it is important to take these beam

widths into account (see Ref. 8 and Sec. 3 of this document), although the poor coverage of the

plasma severely limits the resolution that can be obtained. In Sec. 5 it is shown that the beam

widths have a negligible effect on the total radiated power calculation.

2.4 Reliability of channels

Over the years of operation, several channels of the bolometer systems have ceased to function.

Table I gives an overview of the number of channels that are currently working. The main problem

in the KB3 and KB4 systems is the crimped connection that is used between the cables leading

to the bolometer head and the gold wires that lead to the bolometer foil. Repeated cooling-down

and heating-up of the bolometers causes more and more of these crimped connections to fail.

Three new divertor bolometers, installed in 1998 for the MkIIGB divertor campaign, have a

more reliable design.

Table I: Typical number of working channels of the JET bolometer systems in 1998/1999

metsyS slennahclatoT elbaileR elbailernU nekorB

V1BK 41 11 2 1

L1BK,U1BK 02 81 2 -

3BK 82 51 5 8

4BK 65 82 01 81

2.5 Summary

Although the KB1 and KB3/4 systems have different types of bolometers, different electronics,

the in-situ calibration is achieved in different ways, KB1 has unblackened and KB3/4 blackened

absorbers, and the systems are located in different octants, the measurements of these systems

are in reasonable agreement. Unfortunately, there are only a very small number of nearly

coinciding lines of sight (with different beam widths) that can be compared directly. Overall

comparisons, however, do not give any indication that either of the systems measures

systematically different values.

In ASDEX-Upgrade significantly higher radiated fractions are obtained than in JET [6,9].

It is important to make sure that systematic errors in the measurements and in the processing are

not responsible for this discrepancy, and that the cause must be sought in the plasma behaviour.
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Instrumental effects can be ruled out for JET: two different systems give consistent measurements.

Furthermore, in some JET plasmas a radiated fraction of up to 100% can be achieved (mainly in

some limiter plasmas, but also in some divertor plasmas), which makes systematic errors unlikely.

Also, no radiation can escape detection due to the overlap of the viewing beams of adjacent

channels. The bolometers used in JET and ASDEX-Upgrade are very similar (although the

ASDEX-Upgrade bolometers are unblackened), which makes it likely that the quantities that

are compared are indeed comparable (the systems have the same sensitivity range, for example).

In JET large neutral charge-exchange particle losses are reported [5–7], levels that are confirmed

by EDGE2D/NIMBUS simulations, which may explain the reduced electromagnetic radiated

power fraction in JET when the neutral losses are high. The aim of this document is to investigate

whether systematic errors are made with the methods used at JET to calculate the total radiated

power from the bolometer measurements.

3. TOMOGRAPHY

3.1 Background

If g(R,Z) is the emission profile, where R is the major radius and Z the height above the midplane,

i.e. Cartesian coordinates of a poloidal cross-section, line-integral measurements are given by

f p g R Z p R R Z Z R Z( , ) ( , ) ( ( )sin ( )cos )ξ δ ξ ξ= + − − −∫∫ 0 0 d d , (1)

where ( , )R Z0 0  is a chosen origin, for example the magnetic axis, and ( , )p ξ  parametrize a line

of sight and are coordinates of projection space: p is the signed distance from the origin to the

line and ξ  is the angle of the line with the positive R axis. The image f p( , )ξ  for a given

emission profile g(R,Z), i.e. values f p( , )ξ  for ( , )p ξ  on a regular grid, is called the sinogram of

g(R,Z). The range of ( , )p ξ  is usually chosen as follows: − ≤ ≤a p a , where a is the maximum

distance from the origin ( , )R Z0 0  for which g(R,Z) is nonzero, and 0 ≤ <ξ π . Sometimes, when

the viewing direction is relevant, one can consider 0 2≤ <ξ π ; in that case one has to realise that

the function f p( , )ξ  is subject to “Möbius” periodicity: f p f p( , ) ( , )ξ π ξ+ = − .

In reality the measurements are not along infinitely thin lines and an instrument function

has to be taken into account. If all detectors have identical instrument functions (shift-invariant),

ˆ ( , )f p ξ , i.e. f p( , )ξ  blurred by the instrument function, can be considered. The lines of sight of

the JET bolometer system, however, cover the poloidal plane very irregularly (Figs.1–3) and all

channels have different instrument functions. Therefore the measurements f̂i  in discrete points

corresponding to the average line of sight ( , )pi iξ , have to be considered.

The sparse and irregular coverage of the plasma and the very localized and peaked emission

in the divertor make tomographic reconstructions of the bolometer measurements difficult. The

most successful tomographic inversion algorithm used for bolometry at JET is a constrained-
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optimization method that uses smoothness as object function1 and the discrepancy principle as

constraint [6,10]. The method is based on the algorithm used at ASDEX-U [11], but it has several

important additions: (1) the discrepancy principle is used to find the regularization parameter

(or equivalently, the Lagrange multiplier) [6,10], which means that the values that would be

measured if the emission profile obtained by the tomographic reconstruction were true correspond

to the actual measurements within estimated error bars; (2) a non-negativity constraint is used to

avoid negative emissivities in the reconstruction [10,12]2; (3) the beam widths are fully taken

into account instead of approximating the measurements by line integrals3; (4) different grid

sizes can be used in various parts of the plasma, in particular a large grid size in the bulk plasma,

where the emission profile is relatively smooth, and a smaller grid size in the divertor, where

small emitting structures may exist4; (5) the tomography method can give an estimate of the

contribution of neutral particles to the divertor measurements if a sufficient number of

measurements from outside the divertor is available [6,7]. The importance of these points, except

for (5), is discussed below.

The performance of the tomography method and the effects of changing reconstruction

parameters has been discussed in Ref. 10. Here, this is done for bolometry by means of phantom

simulations. A phantom is a known emission profile, from which one can calculate what would

be measured if the phantom were the actual emission profile (making use of the beam widths in

this case). A realistic level of noise is added to these so-called pseudo-measurements (3% Gaussian

noise relative to the measurement). The pseudo-measurements are then used as input in the

tomographic reconstruction, the result of which is called tomogram. The tomogram can be

compared directly with the phantom. The effect of varying reconstruction parameters can be

studied objectively in this way, in contrast to actual measurement for which the actual emission

profile is not known and one can only compare the backcalculated measurements (“pseudo-

measurements” of the tomogram) with the actual measurement and use a subjective judgement

1 In fact, usually anisotropic “smoothness” is used as object function in the form of diffusion operators, see Refs. 10 and 11.

2 As will be demonstrated in the following discussion, a quadratic constraint in combination with limited coverage and very
peaked divertor radiation leads to very negative artefacts in the tomographic reconstructions. Here, an efficient method to
reduce or eliminate the negative values is employed [10,12]. Another way of finding a purely positive solution is, for
example, with the entropy object function (the entropy of the reconstruction is maximized); this however is a computationally
intensive highly non-linear technique.

3 In the line integral approximation the emission is assumed to be constant on planes perpendicular to the average line of sight
within the beam width. The measured power is divided by the étendue of the detector and this value is assigned to the
average line of sight (i.e. a point in projection space), see, for example, Ref. 8. Although this approximation is remarkably
robust to violations of the basic assumption, taking into account the beam widths improves the reconstructions when the
emission profile is very peaked, as will be demonstrated in the following.

4 Choosing the grid size equal in the entire plasma according to the requirements in the divertor is not necessarily problematic
from the mathematical point of view, as the tomography method is properly regularized. However, one can argue that the
grid size should be chosen according to the average distance between lines of sight in various parts of the plasma or according
to the expected size of emitting structures to reduce the freedom of the tomography algorithm to create artefacts. This point
is discussed in more detail later. At JET the main reason for implementing varying grid sizes was to reduce the required
memory and computation time, which, for the current tomography method, scale with the second and third power, respectively,
of the number of grid points.
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on what one thinks the emission profile should

look like. The phantoms used in this study are

based on EDGE2D/NIMBUS predictions for

a density-limit L-mode discharge in the MkIIA

divertor, one in the attached and one in the

detached phase. EDGE2D/NIMBUS only

simulates the divertor, edge and scrape-of-layer.

A realistic level of constant emissivity has been

assumed in the bulk plasma. In the phantom

simulations only lines of sight were used that

are also available in reality and it was assumed

that there is no contribution of neutrals particles

to the signals.

3.2 Discussion of phantom simulations

The phantoms used in the phantom simulations

are shown in Figs.4(a) and 5(a). Figure 4(b)

shows the available lines of sights.

Tomographic reconstructions with varying

parameters for the detached phantom are shown

in Figs.4(c–g,i) and the pseudomeasurements

and backcalculated measurements from the best

tomogram [Fig.4(c)] are given in Fig.6. The

tomograms differ significantly when different

reconstruction parameters are used, although

the total radiated powers calculated from these

tomograms do not vary much, as will be

discussed in the next subsection.

For Fig.4(c) all beneficial features of the

tomography code were exploited: beam widths

were taken into account, anisotropic

smoothness, non-negativity constraints and all

available channels were used, and the

reconstructions were carried out on a fine grid

in the divertor. Obviously, much detail of the

phantom has been lost due to a limited number

of lines of sight, the beam widths, and

smoothing in the tomographic reconstruction.

The object function and constraint used to
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Fig.4: (a) Phantom of detached plasma (emission profile
predicted by EDGE2D/NIMBUS code). (b) Lines of sight
(in the divertor region) used in the reconstructions.
(c–g,i) Tomographic reconstructions of pseudo-
measurements with varying reconstruction parameters.
(h) Tomographic reconstruction of actual measurements
of the discharge simulated. The phantom simulations
were done on a find grid in the divertor, with non-
negativity constraint, with anisotropic smoothness,
taking into account the beam widths and using all
available channels, unless otherwise specified. (d) KB1
lines of sight only. (e) Coarse divertor grid. (f) Line
integrals. (g) Isotropic smoothness. (i) No non-negativity
constraints. The box in the lower-left corner indicates
the grid size in the divertor, the green curve the separatrix
of the plasma.
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Fig.5: (a) Phantom of attached plasma. The peak values
in the strike points are out of scale by about a factor of
2. (b) Tomographic reconstruction of pseudo-
measurements (best result). (c) Tomographic re-
construction of actual measurements of the discharge
simulated.

regularize the tomography problem lead to

somewhat smoothed tomograms since the

result of the reconstruction is the smoothest

emission profiles that fits the measurements

within the overall (i.e. not per channel)

estimated errors, which leads to smoothing of

peaks. This is a problem with virtually all

tomography methods: the regularization

requires the suppression noise, and this usually

takes the form of suppression of high spatial

frequency components as noise and genuine

high-frequency components cannot be

separated [13]. Although methods exist to

enhance peaks in the tomogram [10], these only

have a limited effect. The good fit of the

backcalculated measurements to the

pseudomeasurements in Fig.6 is no surprise as

this is an input parameter of the reconstruction method (the discrepancy principle). In principle,

the fit to the pseudomeasurements can be made as good as one wants (if there are enough grid

points to allow this), but that is improper to require: noise in the measurements will cause

unphysical artefacts in the tomogram5. Note that because the divertor emissivity is more than

one order of magnitude higher than in the bulk plasma, small errors in the reconstruction lead to
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of Fig.4(c) as a function of channel number (refer to Figs. 1–3 for the numbering).

5 This is related to the fact that the least-square solution of an ill-posed problem is not good in the presence of
noise.
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an unsmooth emissivity in the bulk plasma with very small values in places6. With the present

lines of sight it is not possible to reconstruct accurately the emissivity in the bulk plasma from

lines of sight that do not view the divertor without assumptions such as constant emissivity on

flux surfaces, an assumption that usually is violated due to mainly an increase in radiation from

the bulk plasma towards the divertor, and also due to in-out asymmetries.

If only the KB1 channels are taken into account [Fig.4(d)], the emitting peak in the divertor

is smeared out even more due to the large beam widths and lacking spatial information in the

divertor. A reconstruction with a grid with approximately a four times larger grid size in the

divertor [Fig.4(e)] gives comparable results to those on the fine grid (although the convergence

with non-negativity constraints is slower of even incomplete), indicating that for most purposes

such a grid is adequate for this number of line of sight (tomographic reconstructions are

significantly faster with fewer grid points). Neglecting the beam widths [Fig.4(f)], i.e. assuming

that the measurements are along infinitely thin lines, leads to a significant underestimation of

the peak values7. Taking pure isotropic smoothness as object function [Fig.4(g)] gives a smoother,

less realistic result, indicating that anisotropic smoothness on flux surfaces is indeed a better

object function. Finally, Fig.4(i) shows the dramatic effect of not using the non-negativity

constraint, demonstrating that without non-negativity constraints the details of the emitting peaks

are wrong and there are very large negative artefacts. Apparently these constraints are very

important for a detection system with such irregular coverage, very localized peaks in the

emissivity, and the other constraints in the tomography method being quadratic. This has been

observed to be the case in many different types of JET plasmas and also in simulations for

ITER [14]. Interestingly, application of the non-negativity constraint in tomographic

reconstructions of ASDEX-Upgrade data has shown that for ASDEX-Upgrade data the constraint

is much less important.

Figure 5(b) shows the best tomogram for the attached phantom. This reconstruction is

worse than for the detached phantom (the convergence is also much slower). Apparently the

coverage of the detection system is not sufficient to adequately characterize the attached emission

profile, in particular the peaks at the strike points, whereas for the detached phantom the coverage

is enough to yield a consistent reconstruction, albeit with much loss of detail.

Concluding, due to smoothing, the sparseness and the matching beam widths, much detail

is lost in the reconstructions. The irregular coverage can also cause artefacts (as for the attached

phantom) and a different resolution in various parts of the plasma. Even with much improved

coverage it is very difficult to make very accurate reconstructions due to peakedness in divertor,

6  With a finite tolerance in the non-negativity constraint some values in the bulk plasma are somewhat negative,
but in comparison with the positive values they are effectively zero.

7  Because the reconstruction with the full beam widths does not resemble the phantom in detail, one could argue
that the difference between [Fig. 4(c)] and [Fig. 4(f)] is insignificant. However, for other, less structured phantoms
it has been shown that taking into account beam widths in the bolometer reconstructions is indeed relevant [8].
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as is exemplified in simulations done for the bolometer system proposed for ITER [14]8. A

successful way to derive improved detail is by sweeping the plasma in front of the detectors,

thus creating many extra lines of sight from the time information of the sweep (provided only

the position of the plasma and nothing else changes) [5,7,9].

3.3 Total radiated power calculation

The total radiated power can be calculated and compared for both the phantom and the tomograms

of reconstructions with varying reconstruction parameters. Assuming toroidal symmetry, the

total radiated power is the toroidal volume integral

P g R Z R R Z= ∫∫2π ( , ) d d . (2)

The main aim of this document is to compare the total radiated powers of tomograms obtained

with different numbers of lines of sight and different reconstruction parameters and the total

radiated powers obtained with techniques other than tomographic reconstructions (Sec. 4.2).

Table II Total radiated powers determined in different ways in phantom simulations. Unless otherwise specified,
the fine divertor grid, the non-negativity constraint, anisotropic smoothness, and the beam widths were taken into
account.

)WM(rewopdetaidarlatoT

dohteM dehcateD dehcattA

motnahP a 91.1 21.1

noitcurtsnocerylno-1BK,yhpargomoT 61.1 41.1

dirgrotrevidesraoc,slennahclla,yhpargomoT 01.1 60.1

slennahclla,yhpargomoT 90.1 30.1

slargetnienil,slennahclla,yhpargomoT 61.1 91.1

ssenhtoomsciportosi,slennahclla,yhpargomoT 31.1 11.1

2esiondetamitse,slennahclla,yhpargomoT × 80.1 70.1

ytivitagen-nonon,slennahclla,yhpargomoT b )9.4(60.1 )1.6(17.0

atadtnetsisnocni,slennahclla,yhpargomoT 11.1 11.1

delacsnu,noitammusdethgieW p 49.0 88.0 c

delacs,noitammusdethgieW p 81.1 60.1 d

a Depending on the grid on which the phantom is represented, a variation of up to 10% in total radiated power is found from
the volume integral due to discretization errors.

b The values in brackets give the total radiation if negative values are neglected (set to zero).
c Corresponding to blue circles in Fig.8
d Corresponding to red squares in Fig.8

8 In these simulations it was found that even with significantly more lines of sight it is very difficult to reconstruct
the emissivity in the bulk plasma reliable at the same time as one reconstructs the divertor radiation.



11

 Table II gives the total radiated powers calculated with Eq. (2) for the various tomographic

reconstructions given in Figs.4 and 5. Apparently, the total radiated power does not dependmuch

(about 10%) on the number of lines of sight and modest variations in most reconstruction

parameters. This robustness of the total power calculation has also been observed before in

phantom simulations [14]. There are two exceptions to the robustness: (1) when no non-negativity

constraints are used, and (2) from other cases than given in Table II (see the discussion of Fig. 10)

inconsistent data can lead to artefacts that distort the total radiated power significantly. Usually,

reconstructions without non-negativity constraints give reasonable total radiated power values

if the negative emissivities are taken into account. If only the positive values are taken, hugely

exaggerated total radiated powers are obtained9 (in the given examples the negativity10 was

0.4–0.6, whereas with the non-negativity constraint negativities smaller that 0.01 are obtained).

Although the total radiated power obtained from reconstructions without the non-negativity

constraint usually is reasonable, it cannot be relied upon as the attached case in Table II illustrates.

4. WEIGHTED SUMMATION

4.1 Background

The area integral

˜ ( , ) ( , )P g R Z R Z f p p= =∫∫ ∫d d dξ (3)

is true independent of angle ξ : all vertical integrals of the sinogram are equal11. Relating Eq. (3)

to the toroidal volume integral of Eq. (2), one can write

P f R R R R P= = ≈∫2 2 2 0∂ ξ π π( , / ) ˜d , (4)

where R has been identified with p for ξ=π/2. For a machine with the aspect ratio of JET, the

approximation with the constant R0  is not bad: it only deviates some per cent from the proper

integral over R. The consequence of Eqs. (3) and (4) is that if measurements exist on or can be

mapped to any ξ = const  line, a reasonable approximation of the total radiated power can be

obtained from the integral along this line. This procedure is highly preferable to calculating the

total radiated power from a tomographic reconstruction as it is a robust integral method, whereas

the tomographic reconstruction is a noise-sensitive differential operation (ill-posed problem)12.

9 Taking only positive values is inappropriate because the backcalculated values from the positive values of the
tomogram are much higher than the measurements, i.e. the positive tomogram is inconsistent with the
measurements.

10 The negativity is defined as the square root of the summed square of negative values over the summed square of
all values.

11 Equation 3 can be considered as a zeroth moment (p0); similar ξ -independent properties of the sinogram can

be derived for higher moments of p [13]; these are sometimes referred to consistency conditions for the sinogram.

12  If the tomographic reconstructions has artefacts, the location of the artefacts may give rise to incorrect total
radiated power values calculated from the reconstruction.
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Discretization of Eq. (4) gives

P R f p pi ii
≈ =∑2 0π ξ( , )const ∆ . (5)

Equation (5) will be referred to as the weighed-summation method to determine the total radiated

power, the weights being given by ∆pi  between the discrete measurements. If measurements

existed along a line ξ = const  (i.e. parallel lines of sight covering the entire cross-section), only

discretization errors and an error due to constant R0  would be made with this method. In reality,

however, no such measurements exist on JET and many other tokamaks [Fig.7(a)]. The set of

measurements closest to ξ = const  is the vertical camera of KB1 (KB1V). Because the channels

of KB1V share a common aperture with coordinates ( , )R Zap ap , the projection-space points

corresponding to the average lines of sight ( , )pi iξ  lie on the “aperture curve” [Fig.7(b)]

p R R Z Zap ap ap( ) ( )sin ( )cosξ ξ ξ= − − + −0 0 . (6)
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Fig.7: Contour plots of the sinogram for the phantom with attached plasma [Fig.5(a)]. The grey area is the area of
projection space where lines of sight do not pass inside the JET vessel. (a,b,d) Origin of projection space on nominal
magnetic axis. (c,e) Origin of projection space in X point. (a) Solid circles: average lines of sight of the KB1
vertical camera; open circles: average lines of sight of the other KB1, KB3 and KB4 channels. (b,c) Blow up of (a);
curve: aperture curve of the KB1 vertical camera; solid circles: channels of KB1 vertical camera plus a virtual
(zero) channel just outside the boundary; solid squares: lines of sight projected onto the line ξ = 84º  with scaled p.
(d,e) Blow up of (b,c); solid diamonds: lines of sight projected onto the line ξ = 84º  with unscaled p. The solid
arrows in (b,c,d,e) show the projection process onto ξ = 84º  with scaled p for some lines of sight. The dashed
arrows in (d) show the projection process onto ξ = 84º  with unscaled p. The of the contour plots are not equidistant
to enhance lower values (of the bulk plasma). The ragged shape of the contours is due to the coarseness of the
( , )p ξ  grid used.
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The main problem in applying the weighted summation method to JET data (and data from other

tokamaks) is that an accurate mapping from the aperture curve to a ξ = const  line has to be

found. Two ways of doing this are indicated in Fig.7(b–e) and will be discussed next. Two

approaches to finding appropriate weights for the weighted summation are discussed:

(1) determination from sinograms (Subsection 4.2) and (2) a statistical approach (Subsection 4.4).

4.2 Weights determined from the sinogram

The ξ = const  line chosen in the following is ξ = °84 , which is centred on the KB1V line of

sight viewing the centre of divertor. This seems slightly more appropriate than ξ = °90 , but one

loses the benefit of the more exact calculation of the first equality in Eq. (4). The simplest method

to map the aperture curve to a ξ = const  line is to keep the p constant (unscaled p), and just

change the ξ  to ξ = const . Figure 8 shows the cross-section of the sinogram of Fig.7 at ξ = °84

(solid black curve) and the projection of the sinogram values along the aperture curve to ξ = °84

with unscaled p (dotted green curve). For p<–0.5m and p>1.0m it is clear that due to the elongated

shape of the plasma the sinogram is “squeezed” around ξ = °90 , and therefore it is appropriate

to apply this squeezing in the mapping [arrows in Fig.7(b)], which results in a scaled p. Close to

the X-point the scaling in this way is very slight [diamonds and dashed arrows in Fig.7(d)]. This

mapping is satisfactory for the bulk plasma, for example in the limiter phase of a discharge.

However, from Fig.7(d) and the dotted green curve in Fig.8 it is evident that this mapping is

unsatisfactory at the X point: the extent of the X-point radiation is underestimated, which would

lead to too low a total radiation. An improved mapping is indicated by the solid arrows in Fig.7(d).

A convenient way to formulate this mapping is in projection space of which the origin lies in the

divertor or X point [Figs.7(c,e)]: in these coordinates ( , )′ ′p ξ  the three central channels are
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function, see Sec. 5).
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mapped with unscaled ′p , whereas the other channels are squeezed proportionally to their distance

from ξ = °84 . This leads to the improved mapping of the dashed green curve in Fig.8. The effect

on the pseudomeasurements (including the beam widths) is given by the red squares with respect

to the blue circles. The total radiated power values obtained with weighted summation with

unscaled and scaled p are given in Table II. As expected, the values obtained with unscaled p are

far too low, while the values obtained with scaled p are very reasonable.

The dashed green curve in Fig.8 could still be broadened further to be closer to the actual

values (black curve). However, although the scaling is ad hoc, there is a clear justification for it

from the sinograms, whereas there is no real justification for further broadening. Furthermore,

for other phantoms, for example the detached phantom, in which case there is much radiation

from around the X point, the width of the dashed green curve coincides better with the black

curve. It seems therefore, that more accurate mappings cannot be independent of the radiation

profile.

It is remarkable that although the three central lines of sight of KB1V seem virtually

parallel in the divertor, the fan-shape distribution has a major impact on the scaling of p that has

to be applied in the mapping from the aperture curve to ξ = const . Not the peakedness of the

divertor radiation is the problem, but the divergence of the lines of sight! Therefore, it can be

concluded that the calculated total radiated power will not depend strongly on the peakedness of

the divertor radiation, but rather on the broadness and on the ratio of divertor to bulk radiation.

Because the sinogram is given by the line integrals, it mixes bulk radiation (which requires a

squeezed mapping of p) with divertor radiation (which requires an expanded mapping of p close

to the X point). It is clear that it may be difficult to find a single set of weights ∆pi  in Eq. (5) that

gives satisfactory results for widely different plasmas, as will become clear from the following.

4.3 Comparison with BOLO/TOPO

The current quick total radiated power calculation used at JET, called BOLO/TOPO, has been

applied for a long time, and its results have been found to be satisfactory. However, its values in

the divertor phase of discharges have been found to be consistently lower than those found by

tomography by up to 10% (consistent with the errors found in Sec. 3), which has been assumed

to indicate what the error bars of this simple calculation method are. The methods with unscaled

p and scaled p have been compared with BOLO/TOPO for range of plasmas in the JET MkI,

MkIIA and MkIIGB divertors, and it has been found that the in most cases BOLO/TOPO is

close to the method with unscaled p, and that the method with scaled p gives higher values. In

the limiter phase unscaled p gives higher values than BOLO/TOPO because the elongation is

not taken into account in the former method, but it is in the latter; whereas the effects of the

elongation of the bulk plasma becomes negligible in the divertor phase as the emission in the

divertor dominates. Therefore, it can be concluded that the algorithm of BOLO/TOPO gives

similar results as a weighted summation method with squeezed p, but no expansion at the X

point. To assess which simple method gives the most reliable results, the methods mentioned
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above have been compared for a small number of discharges with tomographic reconstructions

using (1) KB1 channels only, and (2) all available bolometers. Figures 9 and 10 show two

examples. In Fig.9 (an L-mode density-limit discharge) it is found that, as in most other cases

studied, BOLO/TOPO and the method with unscaled p are lower than the more reliable values

form the tomographic reconstructions and the method with scaled p, while the tomographic

reconstructions and the method with scaled p agree fairly well (the spread is an indication of the

error bars that have to be assumed). Figure 9 is an extreme example in which BOLO/TOPO and

the method with unscaled p are much lower (almost 30%) than the more reliable values. However,

the method with scaled p is not always a better estimate than with unscaled p: Fig.10 (an impurity-

seeded H-mode density-limit discharge; data averaged over ELMs) shows that in some cases

BOLO/TOPO agrees much better with the tomographic reconstructions than the method with

scaled p. The reason for such different behaviour is not entirely clear. Figure 11 shows that, if

the signals are normalized to the central channel of the vertical camera, the radiation in the

divertor in the case of Fig.9 is somewhat broader than the case of Fig.10, that the bulk radiation

in the latter is significantly higher and that the X-point radiation in the former is much higher

(clear from the UPHC camera) and extends further in (Fig.9 is for a plasma with vertical targets,

whereas Fig.10 is with horizontal targets; the X point in the former is therefore higher up).

Hence, it is possible that the scaling of p found for the case of Fig.9 with the higher X point

overestimates the total radiated power in the case of Fig.10. These results indicate that it seems

impossible to find one set of weights  ∆pi  in Eq. (5) that gives satisfactory results for widely

different plasmas. The cause for the significant difference in Fig.10 between KB1-only
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reconstructions and reconstructions with all channels is thought to be an artefact in the bulk

plasma in the latter reconstructions that is caused by inconsistencies in data (measured values or

uncertainties in the alignment of lines of sight). An important inconsistency in the data is due to

the KB1 cameras being in different octants: one horizontal camera often observes a significant

increase in radiation in the upper-inner corner as a result of plasma-wall interaction.

4.4 Statistical approach to finding weights

Given the finding that the tomographic reconstructions give reliable values for the total radiated

power (Sec. 3), it is possible to find weights of the summation by fitting the weights so that the

summation gives the total radiation known from tomography. Statistical methods can be used to

find appropriate weights for a wide range of discharges. Such a method has been applied at

ASDEX-U [15]. Also, a neural network could be trained for this purpose. To successfully apply

such statistical methods, a large database with reliable results for widely varying plasma

parameters is required to find appropriate weights or to train the neural network. Unfortunately,

as at JET the only reliable way to obtain the total radiated power is by tomographic reconstructions

of carefully verified bolometer measurements, the database currently available is too small. A

major effort would be required to build such a database and to derive the optimum weights by a

statistical method. In view of Fig.11, improved results may be obtained in the statistical approach

if not only KB1V channels are used in the weighted summation, but also other KB1 channels are

taken into account.

5. EFFECTS OF BLURRING

In Fig.8 the blurring, or smoothing, effect of the instrument function is evident. It is worthwhile

to investigate the information loss due to the blurring and whether this can affect the total radiated
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power that is determined. It is convenient to do this investigation along the aperture curve, i.e.

the curve of which the points correspond to lines that go through the centre of the common

aperture of the detectors [see Fig.7(b)]. The instrument function can be approximated along this

curve by the angular étendue [8], which is defined as

e k p pi i( ) ( , )ξ ξ= ∫ d , (7)

where i numbers the detector and k pi ( , )ξ  is the geometric function in projection space [8]. The

étendue for the average angle ξi  is given by [8]

E
e

i
i

i
( )

( )

cos( )
ξ ξ

ξ ξ
ξ

π
=

−∫ d
0

. (8)

In the following, normalized angular étendues e e Ei i i i( ) ( ) ( )ξ ξ ξ=  have been used, so

that the dimensions of both unblurred and blurred line integrals are the same. Because the angles

for which ei ( )ξ  is nonzero are very close to ξi , the cosine in the denominator of the integrand in

Eq. (8) is close to one and the integral ei ( )ξ ξd ≈∫ 1. The normalized angular étendues of the

KB1V channels are shown in Fig.12(b). These angular étendues of all channels are virtually

identical; the reason for the variation in width and height is a cosine-effect due to the angle at

which the various detectors view through the aperture. Because the instrument function of all

channels can be assumed to be represented by the one of one particular channel, e( )ξ , one can

write the blurring as the convolution

ˆ ( ( ), ) ( ( ), ) ( ( ), )f p f p e pap ξ ξ ξ ξ ξ ξ ξ ξ ξ= ′ ′ − ′ − ′ ′∫ ap ap d , (9)

and pseudomeasurements are given by ˆ ˆ ( ( ), )f f pi i i= ap ξ ξ . Because e( )ξ ξd ≈∫ 1, it follows that

ˆ ( ( ), ) ( ( ), )f p f pap apd dξ ξ ξ ξ ξ ξ∫ ∫≈ , (10)

which means that no “power” is lost due to the blurring in a “total” power13 calculation along

aperture curve. Note, however, that an uncertainty in the total power is introduced by the coarseness

of the sampling and by the nonlinear scaling and mapping of Sec. 4.2.

Figure 12 shows the effect of blurring by the instrument function (angular étendue) for the

sinogram values along the aperture curve. In Fourier space (for the coordinate along the aperture

curve) the effect of the blurring and of the limited sampling by the detectors is very clear. The

values for Ξ < −0 1 1. deg  correspond to the peak of radiation in the divertor, whereas peaks for

Ξ > −0 15 1. deg  correspond to the fine structure. In this example (the attached EDGE2D phantom)

13  The integral along the aperture has no direct physical meaning, but the fact that it is not strongly affected by the
instrument functions indicates that the same should be true for the projection to constant ξ , and it is therefore

related to the total radiated power.
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the peak at Ξ ≈ −0 2 1. deg  is not sufficiently damped by the instrument function which leads to

considerable aliasing. However, the amplitudes that are affected by the aliasing are relatively

small, about a factor of 5 below the zero frequency component.

The Fourier transform of f̂  along the aperture curve is given by14

ˆ( ) ˆ( ( ), ) exp( )F f p i dΞ Ξ= −∫ ap ξ ξ ξ ξ2π .

Noting that ˆ ( )F 0  is equal to the “total” power along the aperture curve [Eq. (10)], it is

clear that the zero frequency component carries the total power and that also in the Fourier

domain the blurring (filtering at higher frequencies) has no effect on the total power if the signal

is continuous. However, sparse sampling complicates the interpretation of ˆ ( )F 0 : due to aliasing
ˆ ( )F 0  may be incorrect. This is related to the observation in that integration over a piecewise

14  Note that although the variable ξ is periodic, and hence the corresponding frequency variable would be discrete,
here the periodicity of ξ is irrelevant because the function that is Fourier transform goes to zero at both low and
high ξ. Therefore, the frequency variable Ξ considered here is continuous.
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linear fit to the measuring points of Fig.12(a), i.e. a trapezoidal rule, may overestimate or

underestimate the proper integral over the blurred curve. Because the regions where the piecewise

linear fit is higher or lower than the blurred curve will largely cancel unless the sampling is

extremely sparse with respect to the beam widths, the effect on ˆ ( )F 0  will be small [as is also

clear from the minimal aliasing at Ξ = −0 1deg.  in Fig.12(c)].

The instrument functions of neighbouring channels overlap close to their half-maximum

values [Fig.12(b)]. This seems optimal as no emitting peaks between channels can be missed.

However, the Fourier transform of the angular étendue has its first zero only at the Nyquist

frequency 1/ ∆ξ , where ∆ξ is the spatial sampling rate [see Fig.12(d)]. Therefore, with this kind

of limited overlap between instrument functions, significant aliasing can occur [16,17,18], see

Fig.12(c). The lobes of the Fourier transform of the angular étendue are so small, that hardly any

aliasing would occur if the overlap of the instrument functions were twice the current (i.e. the

first zero of the Fourier transform of the angular étendue would coincide with half the Nyquist

frequency). However, this would lead to a significantly reduced spatial resolution. Furthermore,

Fig.12(c) is an extreme case as in other cases, such as the detached EDGE2D phantom, the

aliasing effect is much smaller. Therefore, the current overlap between the instrument functions

appears to be a reasonable compromise between maximizing resolution and minimizing aliasing.

However, one should always remember that aliasing can occur.

As has been indicated, it is possible to obtain improved resolution by sweeping the

plasma [5,7,9]. The emission profile not blurred by beam-width effects can then be restored to a

certain extent by deconvolution [18].

6. CONCLUSIONS

Calculating the total radiated power from properly regularized tomographic reconstructions is

fairly reliable and is quite insensitive to most reconstruction parameters and the number of lines

of sight used for the reconstructions (as long as the lines of sight used are consistent and contain

a sufficient amount of information about the entire plasma cross-section). Inconsistencies in the

data and not using a non-negativity constraint in the reconstructions, however, can severely

affect the result. Unfortunately, tomographic reconstructions are too time-consuming to be carried

out for several time slices of each discharge, and should also be checked by hand.

A simpler and far more efficient calculation is possible by a weighted summation. The

properties of such a weighted summation were studied in a fundamental way in projection space.

The results for the JET bolometer system are thought to be valid for similar weights determined

in other ways, for example by statistical methods, as well. It was found that the weights of the

weighted summation depend on the profile shape of the emissivity, in particular the divertor

radiation, and it does not seem to be possible to obtain a robust set of weights that gives accurate

total radiated powers for widely different plasmas. The limitations to the method seem to stem

from the combination of a local peak of radiation in the divertor and the fan-distribution of the
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lines of sight (the total radiated power determined from truly parallel lines of sight should not

suffer from these problems). Finding weights for separate classes of plasmas, for example with

statistical methods, would be a lot of work and not necessarily be more reliable that the present

calculation. The standard weighted summation calculation at JET (BOLO/TOPO) was determined

to be accurate within 10% for most plasmas (usually BOLO/TOPO underestimates the total

radiated power), but for some plasmas the total radiated power may be underestimated by as

much as 30%. Beam widths of the measuring system (the instrument function) do not significantly

affect the total radiated power determined by a weighted summation.
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