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ABSTRACT

The poloidal variation of impurity densities over magnetic surfaces brings about an enhance-

ment of neoclasical transport coefficients, as shown by Romanelli and Ottaviani for impurities

in the Pfirsch Schlüter regime and by Helander for particles in the banana-plateau regime, both

in a large aspect ratio tokamak.

The same effect will occur in a finite aspect ratio tokamak and therefore it is considered to

be relevant for inclusion in transport codes [6] for comparison with the experimental measure-

ments of impurity transport.

Here an expression for the impurity-density poloidal-variation generated by the fast toroidal

rotation of the plasma column is presented in general coordinates.

INTRODUCTION

When the flow velocity of  a species becomes of the same order of its thermal velocity (Mach

number of order one) centrifugal effects start to play a role in the momentum balance equation

[1].

This condition is easily achieved in modern tokamaks and heavy impurities when neutral

beam heating is applied. The centrifugal force along the magnetic field lines is balanced by a

parallel pressure gradient which features as a poloidal asymmetry in the species density. This

poloidal asymmetry is difficult to see in the experimental data (where only radial profiles of

physical quantities are measured) unless specific experiments are carried out. The JET Soft X-

ray tomography revealed this feature in impurity injection experiments where nickel and other

impurities were introduced into the plasma [2]. The same feature has also been seen in other

tokamaks as well.

As shown later in this report any poloidal variation of physical quantities brings about an

enhancement of the neoclassical transport by modifying the surface averages and this effect

should be taken into account when comparing the neoclassical predictions with experimental

data.

ANALYSIS

In what follows the impurity species is taken to be a trace impurity (no effect on the background

magnetic field and electric field can be attributed to the presence of the impurity itself). The

momentum equation of the impurity  is [1]

− = − + + ×( )m n R p n ZeI I R I I IΩ2 e E V B∇∇ (1)

The term mn R RΩ2 e   is the centrifugal force, Ω is the toroidal rotation frequency (as-

sumed to be the same as that of the background plasma) and eR  is the unit vector in the direction

of the torus major radius R.
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Using the toroidal symmetry the unit vector in the direction of  the magnetic field can be

taken to be of the form
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where ψ is the flux coordinate. The component of equation (1) parallel to the magnetic field is

− ⋅ = − ⋅ + ⋅( )m n R p n ZeI I R I IΩ2 e b b E b∇∇ (2)

The parallel electric field is that generated by the background electron and ion momentum

balance:
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from which, assuming quasineutrality (n ne i= ) we find
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which substituted in equation (2) gives

− ⋅ = − ⋅m n R pI R I
* Ω2 e b b∇∇ (3)

Here we have introduced the reduced mass m m
Zm T

T TI
i e

e i

* = −
+

 , which is of the order of the

impurity mass for T Te i≤ .

Now we note that both the pressure gradient and the radial unit vector in equation (3) have

only a poloidal component parallel to the magnetic field,

e b e b b bR R⋅ = ⋅ ∇ ⋅ ∇ ⋅θ θ,         =     p p

where we adopt the reference system  (Ψ,θ,φ) with

∇ = × ∇θ φIe Ψ

ψ and θ are functions of the usual coordinates R and Z (and viceversa), where R is parallel to the

torus major radius and Z parallel to the torus symmetry axis.

We can write the poloidal component of the parallel impurity pressure gradient as
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where the metric elements of  the coordinate system are indicated with g, in particular

g
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The impurity temperature is assumed to be constant along the magnetic field line and

equal to the hydrogen temperature.

Equation (3) can be written as

1 2
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The integral of equation (4) can be explicitly calculated for any flux function ψ by notic-

ing that

g d dsθθ θ =

where s is the length of the magnetic field line projected on the poloidal cross section, and that

for any function f(R,Z) and any curve γ of the (R,Z) plane the following relation holds

∇ ⋅ =f
df

ds
tγ

here t denotes the unit vector tangent to the curve γ, follows that
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where eθ  is the unit vector tangent to the magnetic field line (magnetic surface) projected on the

torus poloidal cross section. Using the above relations we can write the integral
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The same result was obtained  by Wesson [3] where he takes into account also the effect of

an impure plasma. Within reference [3], in the expressions (10) and (12) the quantities R and nz

are functions of Ψ and θ while all other quantities are function of  ψ only; both nz0 and R0 are

taken at θ=0.

The flux surface average  <> of the impurity density will be

n n
m
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i
= ( )

( ) ( ) − ( )( )( , )exp , ,
*
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2
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and it can prove to be very different from the previously assumed n nI I= ( , )Ψ 0 .

EFFECT OF DENSITY ASYMMETRY ON TRANSPORT

The neoclassical expression of the average flux for the species a is [4]
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where the l ‘s are the transport coefficients proportional to the collision frequency, and hence to

the density of the species a. When the density and temperature of each species are assumed

constant over the magnetic surface the first parenthesis in the average of equation (5) can be

pulled out of the average leaving the magnetic field non uniformity the only contribution to the

neoclassical enhancement of collisional transport. On the other hand, when the density is not

uniform over the magnetic surfaces the proper flux surface average of the first parenthesis must

be calculated. One can show with a simple analysis that while the Pfirsh-Schlüter contribution

due to the magnetic field only in a large aspect ratio tokamak is of order ε2 (the Pfirsh-Schlüter

factor 2q2 which multiplies the classical diffusion coefficient) the contribution coming from an

outboard peaking of  particle densities would be of order ε and therefore one order of magnitude

larger. The above result was calculated in reference [1]. A less strong effect is found for particles

in the banana regime [5].

REFERENCES

[1] M Romanelli and M Ottaviani, 1998, Effects of density asymmetries on heavy impurity

transport in a rotating tokamak plasma, Plasma Physics and Controlled Fusion 40, pp.

1767

[2] B Alper, A W Edwards, R Giannella, R D Gill, L C Ingesson, M Romanelli, J Wesson, K D

Zastrow, Strong Asymmetries in Impurity Distributions of JET Plasmas, Proceedings of

the 23rd EPS Conference on Plasma Physics and Controlled Fusion (Kiev, 1996)

[3] J Wesson, Poloidal Distribution of Impurities in a Rotating Tokamak Plasma, Nuclear

Fusion 37, pp. 577.



5

[4] S P Hirshman, J D Sigmar (1981), Nuclear Fusion 21(9), pp. 1079.

[5] P Helander (1998), Phys. of Plasmas 5, pp.1209.

[6] W A Houlberg et al (1997), Phys. of Plasmas 4 (9), pp. 3230.


