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ABSTRACT

Detection systems used for computerized tomography are often approximated by line integrals,
despite having non-negligible beam widths due to a finite detector size and a finite acceptance
angle. Ways to take into account these beam widths in algorithms for two-dimensional straight-
line emission tomography are discussed. It is shown that the full three-dimensional imaging
properties of the detection system, including filter functions, can be described in projection
space. The relationships with the geometric matrix and étendue, and the application to the Cormack
and Iterative Projection-space Reconstruction methods are discussed. Two techniques to
compensate for most of the beam-width effects have been developed, which can be combined
with many tomography algorithms. The two techniques are demonstrated to improve the quality
of tomographic reconstructions of measurements by the bolometer tomography system on the
JET (Joint European Torus) tokamak. The strengths and limitations of the methods are discussed.

1.INTRODUCTION

Physical detection systems for tomography have a finite detector surface and a finite acceptance
angle. The combination of these finite sizes results in what we will call “finite beam widths.”
The actual sizes are a trade-off between response (signal-to-noise ratio) and the required resolution.
Many tomography algorithms assume the measurements to be along infinitely thin lines, which
can result in the blurring of the image, or worse, an incorrect interpretation of the measurements,
if structures exist that are of the size of the beam widths. Although in the past several ways have
been developed to take into account beam widths, most have a limited applicability to specific
problems. For example, deconvolutidiis mainly applicable in detection systems with regular
spacing between lines of sight (we will use the term line of sight even when it has a finite width),
and when the reconstruction is made in Fourier space. A description of how to take into account
“elliptical” beams has been given by Bates and McDoririhe detection system properties are
usually only approximated and assumed to be identical for all detectors. Other methods, such as
the geometric function, are limited to series-expansion tomography algorithms. This paper studies
the beam-width effects of three-dimensional detection systems for two-dimensional (emission)
tomography and proposes algorithms, that do not require regular coverage, to improve the line-
integral approximation. It is assumed that effects from re-absorption, refraction, diffraction, and
scattering are negligible.

A finite beam width results in an averaging or blurring of features compared with what
would have been measured along thin lines. Our main concern is not to restore all features that
have been lost by the averaging process of the finite beam width, but to correctly take into
account the imaging properties. This is particularly useful when there are steep gradients in the
object, or localized peaks. This leads tdeablurring of the image, but not necessarily to a
restorationof all structures with high spatial frequency. Restoration is only possible if the spacing



between lines of sight is significantly smaller than the beam width (see Brage@eit
description of properties of detection systems can also be applied in the deconvolution methods
to take into account the beam widths.

The aim of the paper is two-fold. Firstly, in Sec. 2 a formalism is derived to fully describe
the three-dimensional properties of detection systems for two-dimensional tomography. This
formalism is in projection space, because projection space is natural for many tomography
algorithms. The relationship of the coveragemiection spacdy a detector and the geometric
function describing the imaging propertiesgnonstruction spacis shown. The approximation
by line integrals is discussed on basis on the conservation of the étendue of the imaging detection
system. Secondly, in Sec. 3 two variations of one method are described that compensate for
some beam-widths effects in tomography algorithms that assume pure line integrals. In Sec. 4
examples are given of the application of the algorithms and the results are discussed. General
conclusions are drawn in Sec. 5.

The application of the algorithms and the properties of detection systems in projection
space are illustrated with the bolometer tomography S)]/%tmnhe JET (Joint European Torus)
tokamak, a device for nuclear fusion research. Some of the bolometers are pin-hole cameras (i.e.
several detectors share one aperture), whereas other ones have collimators. The emission profiles
expected in a tokamak plasma are strongly asymmetric, which, in combination with the limited
access, determines the lay-out of lines of sight. The number of lines of sight (118) is limited by
the high cost of detectors and the access to the tokamak.

2. FINITE BEAM-WIDTH EFFECTS IN PROJECTION SPACE AND THE
APPROXIMATION BY LINE INTEGRALS

A. The tomography problem

The Radon transforiRis a straight-line integral transform that maps functgwih a compact

support inR’ (i.e. zero outside a certain closed region with maximum rajliosto functions
in a spacé:

F(p.E)=[RA(x Y =[[ ¢ x yo( pr( x Psin& —( y g)cog ) oy (1)

where the coordinatgsandé in M parametrize each line of sigptbeing the (signed) distance

from the origin(X,, y,) to the line and the angle of the line with the (horizontalpxis. The
spaceM is referred to as projection space and has the shape of a Mébius band witrawaiuth 2
“inverted” periodicityrt p=[-a,a] andf(p,é+m) = f(-p,&), so that =[0, 1] suffices for a
complete description. Many properties of projection space are derived in the literature, see for
instance Refs. 11 and 12. To distinguish, the actual space with coordiraaidy is called
“reconstruction space.” The relationship between the coordinates is:



X=X, — psiné +A cog ,
y=Y,+ pcost +A sirf ,

whereA is a parameter indicating distance along the line. Note thgt ihecoordinates depend
on the choice of the origifx,, y,). To simplify the expressions we will choose, without loss of
generality(X,, y,) = (0,0). Throughout this paper double integrals without limits implicitly imply
integration over the entire area.

Solvingg from a limited number of line-integral measuremémsalled the tomographic
inversion or reconstruction &fWe will consider emission tomography, whgfey) is the local
emissivity of an object. The graphical representation of the fung(ay) is often called
“tomogram” and the representation fdfp, &) “sinogram.” The latter name reflects the sine
shape off (p,¢) wheng(x, y) is a very localized peak. The sinogram for a typical emission
profile in the JET tokamak is shown in Fifya), where the marked points indicate the lines of
sight of the bolometer system.

In physical detection systems the measurements are not exact line integrals, but effects
such as the detector size, the width of the viewing chord and the viewing properties out of the
reconstruction plane need to be taken into account. The measurements of all discrete detectors
are written as the vectdr (the hat is used to distinguish it from the pure line-integral value). In
the following, the subscriptwill be used to indicate that the quantity is for one physical detector
numbered by. A conventional way to take into account the beam widths is by replacing Eq. (1)

by
fi =[x g y)dxdy, (@)

for each element of the measurement vector, whé¢€x, y) is the geometric or apparatus
function. The geometric function contains all relevant information about the viewing geometry
and calibration factors. Because the functoracts as a weight it is sometimes referred to as
weight function. Equation (2) can be discretized and written in matrix form.

£=3 kg 3)

This is the approach taken in so-caledes-expansion methoids tomographic reconstructidi.
Here, K, is the geometric matrix and the functig(x,y) has been discretized into a one-

dimensional vectog. Discretization is achieved by expansiorg@{y) on a basis of (possibly
orthonormal) functioné:

g y=>,9h(x Y. (4)
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Figure 1. (a) Contour plot of the sinogram of a typical emission profile in the JET tokamak [calculated from the

phantom in Fig. 4(a)]. The origin was chosen on the magnetic axis of the tokamak cross-section. The shaded area

indicates where lines of sight pass outside the boundary of the tokamak. The points (solid and open squares) mark

the(p,&) coordinates of the average lines of sight of the JET bolometer system. The Pegitihe detectors are

shown around these points (visible only as thin lines). (b-d) Blow up of three r&giocogered by bolometers,

where the contours indicakg( p,€): (b) a rectangular pin-hole system with parallel detector and aperture (contours

at intervals of 0.2% of the maximum); (c) a rectangular pin-hole system with non-parallel detector and aperture

(contours at 0.2% intervals); (d) a system with a rectangular detector, a round collimator, and several other bounding

apertures (contours at 5% intervals). In (b-d) the p axis has been stretched by subtpgg¢éhdEq. (23)]

corresponding to the centre of the front aperture as a functidn lof (b) and (c) the maximum contour is in the

lower-left corner of the shape, but for detectors straight behind the aperture the maximum is near the middle of the

shape.

The geometric matrix elements are obtained from
Ki = [ K (xR (x ydxdy (5)

A common discretization afis into pixels of a grid (see for example Ref. 13), in which case the
basis function@j are

o if (X,Yy)inside pixelj,
b (% ¥) = Ep otherwise. (©)



Another approach to obtain the tomographic reconstructipisdd use discretized versions
of the analytical inversion formula of Eq. (1). These are calietsform method¥' While it is
straightforward to take into account the imaging properties in series-expansion methods by means
of the geometric matrix of Eqgs. (3) and (5), in general it is more difficult to do so in transform
methods. Two methods to do this in an approximate way are described in this paper.

B. The relationship between the geometric function and the coverage of projection space

Due to the finite size of the detector and the finite acceptance angle many rays of light reach each
detector. The rays that reach a particular detector form one or more “clouds” of points in projection
space (see Fig. 1 and Appendix A). The set of all rays reaching deteetaiays that are within

the entrance pupil of the detection system, will cover a region of projection space designated by
D,. In lossless purely two-dimensional detection systems each ray will contribute fully to the
measuremenn?i. However, when there are losses in the optical detection system, e.g. angle-
dependent filter effects or contamination of optical surfaces, or effects of the three-dimensional
nature of the detection system, a modifying funckidm,é) has to be placed in front of each

line integralf (p,¢). The total radiation reaching detectas an integral over all rayB, that

reach that detector:

= [P0 F (PO = [[[[alx)K (PES(p+xsink -y cof I b

(7)
=jjg(x,y)ij(p,€) o(p+xsiné —y cos Ppdé ok dy .

Here, EqQ. (1) was used in the second step and the change of integration order in the last step is
possible becaud® depends only on the detector, but nokandy. The integral is independent

of the choice of origir{x,, y,) of (p,¢) since the Jacobian is unity for translation and rotation
aroundX,, ¥,). Comparison of Eq. (7) with Eq. (2) gives as a definition for the geometric function
K.(x,y) for detectot:

K, (6 ¥) = [[K(RE)S(p+ siné ~ yoof H e

(8)
:.ron.[mki(p’a 1 (p&)d ( p+ xsin€ — ycog J ¥

wherelT,(p, &) denotes the window function

[0, (p&)0D,
PO (gD,



If k (p.€) = k, i.e. constant over the regidn, as is the case in a lossless purely two-dimensional
system, evaluation of Eq. (8) yields

K. (X y) = k‘[o"ni (- XSinE + ycog & YE = K¥ | )

where/A¢ is the angle between the points where the cprwexsiné + yco< intersects the
boundary of the region whefé (p,¢) =1, see Fig. 2. This angle corresponds to the angle spanned
by the entrance pupil of the detection system as seen from thexpgintd simplify the notation

we definek (p,é) to be zero outside the regibnso that we can omi,(p, ). The following
properties ok ( p,é) are given for completeness; they are however not used in this paper.

ptxsin§—ycos =0

A
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Figure 2. Interpretation of the angl&é of Eq. (9). The thick solid lines indicate the bounds of coverage of projection
space of a purely two-dimensional system. The dashed curve corresponds to all lines throughg)point (

By inserting the inverse Radon transform (see for instance Ref. 15 for various forms of the
Radon inversion formula) farin Eq. (2) and changing the integration order in a similar way as
in Eq. (7), it can be shown that

B 1 Ki (x,y)
k(pg)= 2T[2.U(p+ xsiné - ycog §

dx dy, (20)

where the integral is understood in the Cauchy principal value sense. This inversion formula is
difficult to use because of the singularity and the factkh@t, y) has to be known in the entire

xy plane to fully determink ( p,¢). Although Eq. (10) is of little practical importance, it shows
that, in principle, the information containedip,¢) andK(x, y) is the same. The information

ink (p,¢) is more condensed because it is non-zero in a finite region in projection space. However,
knowledge oK (X, y) in a finite region in reconstruction space is sufficient to fully characterize
the detection system for tomography algorithms. Because the information contdir{ggkin

is the same as in the geometric functioreconstruction spade. (x, y), we will refer tok ( p,&)



as the geometric functian projection space
Whenk ( p,€) is shift-invariant for all detectors, ik.(p.&) = k( p— 0.€ =& ), it follows,
using the same steps as in Eqg. (7), that

——h)

= 1(m.&) = [[k(P-P.&=&) f(P.E)dpdE = [[R(P.& [xy)gky)kdy, (1)

with K(p,,&1x,y) =[] k(p-p £ =& )3 (p+xsirf —y coé 3 pdé, which is related to the point-
spread function in optics. Because of the convolution in Eq. {XBn be found fromf by
deconvolution, which is the basis of some of the deconvolution methods for beam-width correction
mentioned in the introduction (where generally the geometric transfer function, i.e. the Fourier
transform of the point-spread function, is used). This paper, however, is concerned with the
more general case wheg¢é p,&) can be very different for different detectors. It is important to

realise that Eq. (7) assigns a discrete vaium regionsof projection space, whereas Egs. (1)
and (11) assign a value to every point of projection space [hence the final step in Eq. (11) can be
seen a generalization of Eq. (1) for certain types of physical detector configurations].

C. Etendue in two dimensions

To determine quantities that are required for the approximation of an actual detection system by
a line integral, such as the average viewing direction and a scaling factor, it is relevant to examine
line integrals oK (X, y) along lines that do not pass through the entrance pupil of the detection
system. We parametrize such a linas

L(g = X(9Q % +sx0
=59t by, + sy

where(x,, ;) is a starting point on the line ax,, y,) the direction vector. The line integral
along this line is

dL 00 TT 00
[ K (9, y(s)‘}%ﬂdv [ L[ K(p&)S(p+ X psiné— | poog ) + Jd g d s
:Lnj_i P&+ ¥ K( pf)j:é( p+ Xsiné - ycos + xsif — ycas pl & g (12)

X +Y,

=L [ siné -y, cos

|K(p,€)dpd£= E (4, %)



Here, in the first step Eq. (8) was substituted, and the following property for delta functions was
used in the final step

[ T(2)8(a+bad z:ﬁf(—%),
with, in this casef (x) =1. If the lineL passes through the entrance pupil of the detection
system the result of Eg. (12) is not finite.
Because the resut(x,, y;) in Eq. (12) is independent O£, v, ), it shows that all integrals
of K, along parallel lines give the same result. Assuming a uniform emission from a strip in
direction(x,, y,) with width d, Fig. 3 shows that the effective thickness of the strip for the line

(p.€) is

—
d _ X+
cosa  x,Siné -y, cosé

di

whereq is the angle between the normal of the strip and thépie (independent of choice of
origin). This explains the factor in frontlgf p,¢) in Eq. (12): when the total contribution of the
uniformly emitting slab to the detector measurement is calculated with the integral over in
projection space according to the result of Eq. (12) the factor corrects for the varying contributions
from different linegp,¢).

Figure 3. Geometrical clarification of the factor in frontlg{ p,&) in the integrand of the last term of Eq. (12). The
symbols are as defined in the text. The factor is seen to stem from the correction of strip thickness by the factor
coxx.



Because in pinhole cameras the rays are not imaged, Eq. (12) shows that the integral along
the detector equals the integrals along all planes parallel to it. This result is clearly equivalent to
the well-known concept of conservation of étendue or throughput of an optical detection system.
For three-dimensional systems this will be discussed in more detail in the next subsection. It is
also clear that it is sufficient that the integral owir Eq. (12) extends over the entire length of
the lineL from which there are contributions to the detector, i.e. inside the viewing cone.

D. Extension to the third dimension

One purpose of this paper is to show how three-dimensional properties of detection systems can
be implemented in two-dimensional tomography. Two-dimensional tomography is only possible

if the variation in the third dimension of the object studied is negligible over the width measured
by the system. We will assume tlgét,y,z) = g(x,y), i.e. there is no variation in the third direction

z If this is not the case, but the variation in #hdirection is knowra priori, the methods
described in this article might still be partly applicable or the geometric function in reconstruction
spaceK(x, y) can be calculated and used in a tomographic series-expansion method by solving
Eq. (3).

To extend the formalism developed in the previous subsections to three dimensions it must
be shown that all properties of the third dimension of the detection system can be described
adequately by the functida( p,¢) of Eq. (7). We introduce a filter functiap for rays, which is
the attenuation of the ray, or zero if this ray does not go through the entrance pupil of the system
for detectoin from the right direction. The ray can be described completely by four parameters,
for which we choose, ¢,z and6. Here,p andé are the projection space coordinates for the
projection of the ray onto they plane,f the angle with they plane, and, is the distance from
thexy plane to a characteristic point on the line. If we chapse the point where the lif{@,¢)
in thexy plane has the shortest distance to the origin, zhenz—( xsiné + yco< )taf for a
line that goes through the poimnty,2). The solid angl&/(x, y, 2) spanned by the entrance pupil
of the detection system for deteci@een from the poinkfy,z), attenuated by a filter function,
is

K% ,2= [ [on (X YEVE 2( % ¥ £0 )0 ) o8 do & | (13)

wherecodf is the Jacobian of spherical coordinates, and the integrakaveeds only to be
over [0 instead of over [0,4] because, for rays going through the entrance pupil from the
wrong direction is zero, bt is the same for both directions. The two-dimensional geometric
function in reconstruction space is obtained by integrationover

K= Koewadz= [ [ [T n(8x¥)E. 2( x ygo p )coddd d & (14)



where in the second step the integration order has been changed. In Eqa(ld¢ substituted

by z without changing the integrand nor the integration range. The resulting innermost two
integrals therefore only depend pandé, and, substituting = —xsiné + y cos, comparison

of Eq. (14) with Eq. (8) shows that the innermost integrals correspond to the fun¢pgy),

which can therefore be calculated by

k(p&)=[[n(pé.z0)coddo dz (15)

In a simple pinhole system without fillgK p,¢) can be calculated analytically, see Appendix A.
Examples of the functiok ( p,¢) for three bolometer detectors at JET are shown in Figs. 1(b-d).

It has been shown that for arbitrary three-dimensional detection systems a flnction
exists that depends only prandé. Therefore, the validity of Eq. (12) has been extended to the
third dimension, which proves that all integralskofx,y,z) over parallel planes will give the
same value. This integral of solid angle over an area is usually called étendue or throughput in
the literature about optical systems, see for example Ref. 16. Its conservation through lossless
optical systems is a well-known concept. The étendue is the quantity that is required to approximate
a measurement by a line integral. When the optical system is not imaging (rays go straight
through, as in pinhole systems) the étendue is conserved on both sides of the imaging system (if
the medium is the same on both sides), i.e. the étendue calculated over the detector is the same as
over all planes parallel to it. This is also the case for imaging systems in the geometrical optics
approximation (taking into account the magnification), but not in systems where the imaging
plane is curved. In emission tomography we only need to consider the étendue of planes in the
emitting object, where it is conserved if the medium is non-absorbing and nonrefractive.

E. Approximation by line integrals

Because the étendue is conserved in parallel planes, the contribution of each plane to the detector
signal will be equal if the emission is constant on planes (inside the viewing cone). This is trivial

for an infinitesimally small viewing cone, because the area of the plane increase’s withreas

the solid angle spanned by the entrance pupil decreasebk Withherel is the distance to the
detection system. The previous sections have shown that this property is exact also for finite-
sized systems. When the emission is constant over surfaces (say perpendicutatitedhen)

within the viewing cone, the measurement can be approximated by a line integral as follows

f = [[K. (g0 yIdxdy = [0 K (V) oy &= E € =0)[ g(x) & =  (O)f,,  (16)

where Eq. (12) was used in the last step and the paramekgr intlicates the angle of the
direction perpendicular to the plane. Of course, Eq. (16) is true for any diréctidns

10



approximation is much used in tomography. Usually it is assumed that the emissivity is constant
perpendicular to the average viewing direcpi.e.E, () should be determined. The definition
of the average line of sight is not trivial in all cases, a matter we will come back to when it is
required for the algorithm. Such an definition is impossible(ip,¢) is nonzero in separated
parts of projection space, as can be the case if there are reflections or multiple viewing directions
of individual detector$’ Therefore, in such a case the approximation by line integrals is
impossible.

An approximates, for pin-hole systems is given by

E :I dQdA=Q 4 Ay, (17)

where Q_, is the effective solid angle that the aperture spans as seen from the centre of the
detector, andh, is the effective detector aréa’ It can be shown that Eq. (17) is the zeroth
order term in a Taylor expansion of the étendue (see Appendix A). Second order corrections can
be found in Ref. 20. Equation (12) gives as an alternative exact expression for the étendue

£ Q)= [[ e a8)

In many cases the approximation by Eq. (17) can be adequate. When both the aperture and the
detector are rectangular and their distance relatively large, Eq. (17) can be correct within 1%.
The second order corrections reduce this further. However, when the detection system is more
complex, for example multiple apertures with different shapes, it is much harder to approximate
the étendue with a simple calculation. In such cases, and when filters are present, Eq. (18) can be
used>"

F. Calculation of the geometric matrix

The geometric matrix of line integrals is obtained by integrating the basis functions along the
line of sight [Eq. (5)]. In the case of pixels [the basis function of Eq. (6)] the matrix contains the
lengths of the line of sight through each pixel. In a physical detection system, the geometric
matrix, if required for a tomographic reconstruction method, can be determined by calculating
the solid angle spanned by the detector seen from fgaiyg9 convolved with the basis function.

This is a cumbersome five-dimensional integral: two integrals in Eq. (5) and three in Eq. (14).
This five-dimensional integral can be separated beda(pg) depends only op andé. We

can therefore calculake( p,¢) from Eq. (15), a two-dimensional integral, on a gri¢iarf) and
tabulate these values. Equation (8) can then be used to calculate the geometric function in
reconstruction space (a one-dimensional integral), which should be averaged over the basis
function by Eqg. (5) (a two-dimensional integral). The gain in speed is due to the tabulating of

11



values ofk (p,¢) in grid points in projection space, between which the required value can be
found by interpolation becaukg p,¢) is usually a smooth function.

3. ALGORITHMS FOR THE APPROXIMATION OF LINE INTEGRALS IN
PROJECTION SPACE

Two algorithms have been developed to improve the approximation by line integrals of detection
systems with finite beam widths. The first algorithm is an iterative refinement of the average
lines of sight and an étendue weighted by a previous tomographic reconstruction. The second
algorithm calculates a weighted étendue based on assumptions of the sinogram. The second
method is less general than the first, but much faster. The furkcfipid) can be applied in

other ways as well. A way to take into account beam widths by means of the flq(@bign in

the Cormack reconstruction meth8d? which is still applied in tomography of soft x-ray
measurements in nuclear fusion research, is described in Appendix B. The beam-widths can be
included in a similar way in the Iterative Projection-space Reconstruction matsed
Appendix C. If the coverage is regular aqdp,¢) shift-invariant [see Eq. (11)], the Fourier
transform ok ( p,&) can be used in deconvolution methods in projection space, such as in Ref. 8,
replacing the approximations of the detection geometry used in most references. We do not
consider deconvolution methods further in this paper.

A. Iterative refinement of the weighted centre-of-mass and étendue

In many detection systems the best approximate line of sight seems to be obvious, for example
the line connecting the centre of the detector with the centre of the pinhole in a pinhole system.
In complicated detection systems it is less obvious and we have to define an average line of
sight. In general, the contour plot of the geometric function in reconstructionk§gacg) for

a particular detectarwill have an elongated shape along the “line of sight”. The approximate
line of sight can be said to be the one along the main axis of this shape. More exactly, it can be
defined as being the direction of the main axis of the equivalent @ﬁiwmch gives satisfactory
results'’ This definition in reconstruction space can be assumed to be equivalent to defining the
centre-of-mass of the regi@nin projection space to be the average line of sight. Both definitions
aread hog but they seem to be sound definitions of an average line of sight. However, if the
functiong(x,y) has steep gradients, and hence B{$p¢), a more proper average line of sight
should be shifted towards the higher emission side of the slope. Therefore, we postulate that a

good average line of sight is given by the weighted centre-of-@ags) over the regiom,:

jj P f(p.8) k(p&)dpd
fJ’ f(p.&) k(pé)dpd

(19)

12



and

z :J;nfmff(pf) k (p&)dpk

yi | (20)
[, . f(p&) k(p&)dpd

Both in the limit of an infinitely thin line and in the limit of uniform emission (of an object much
larger than the beam widths, so that the variation( pfé) is negligible) Egs. (19) and (20)
yield the expected result.

The function of the étendue is to scale the line intefgral the measuremerft. The
étendue as defined by Egs. (17) and (18) is only useful if the approximation of Eq. (16) is allowed,
l.e.g(x, y) does not vary over the beam width. If this assumption is not valid, we can define a
weighted or effective étendue as the ratio:

P ek yddy  [[(ROK(PE) dpdg

0.8 [otx)o(p + xsing - ycos, Jixdy (.8

. (21)

where the second step is an expression in reconstruction space and the last step [from Eq. (7)]
the equivalent in projection space. The expression in reconstruction space is equivalent to the
iterative scaling of measurementsdpyand the geometric matrix proposed in Ref. 23. Again,
this definition gives the expected result in both the limit of an infinitely thin line and in the limit
of uniform emission.

The algorithm for the iterative approximation of line integrals is as follows. First a
tomographic reconstructiomis made with the unweighted étendue and ave(r'agé ). The
data of which reconstructions are made will be inconsistent if beam widths are important because
of the approximations made. Therefore, we try to refine this data based on the sinogram of
Average weightedp, ,&) coordinates are calculated by Egs. (19) and (20) gsifige weighted
étendue is calculated according to Eq. (21), which is used to determine a better line-integral
approximatiorf from the measuremerfit. The reconstruction is then carried out again using the
new (P ,E) andf.. This process, using the lategtis iterated until the tomogram does not
change much any more.

It must be stressed that the result will not be exact because we still attempt to approximate
a detection system with finite beam widths by line integrals. The limitations in applicability of
the method are discussed after the results in Sec. 4. In certain cases it may be better to omit the
refinement ofp E ), necessarily when a tomography algorithm is used that assumes a regular
coverage of projection space and cannot cope with small changes in lines of sight. In such a
case, EqQ. (21) does still give a proper correction to the étendue. However(m,t_fné: are
updated, the weighted étendue has to be updated as well.
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B. Approximation by zero-sized aperture

For many actual tomography systems the width of the rdgjiamthep direction, which is of

the same order as the aperture size, will be smaller than length scales in the sinogram, i.e. the
variation of the functiorf (p,é) over theD, is negligible in thep direction whené is kept
constant (see for example Fig. 1). This means that it is possible to sepapedadidantegrals

as follows:

[[f(p.&)k(p&)dpds = [ F(p€)&)f k( B )d pk. (22)

In a pin-hole system, with the aperture in positigp, , y,; ), we can assign this value to the

“aperture curve”
pap,i (E) = _Xap', Sin‘f + yap, COf. (23)

This means that we approximate the system by a zero-sized aperture. Other choices for a
characteristic point of the system are of course possible, such as the centre of the detector. The
zero-sized aperture approximation is preferable in systems in which many channels share the
same aperture (“fan-beam systems”), as will be discussed in the next subsection.

The advantage of the separation of Eq. (22) is that the integkdl@m€) overp can be

carried out separately, yielding an “angular étendue” (dimemsforad)
(8 =] k(pd)dp. (24)

This approximation drastically reduces the calculation time of Eqgs. (19-21). If itis too complicated
to calculate the functiok ( p,¢) for a particular system, but a good approximatioa(df can

be found, this can also be used in the algorithms. In Appendix A examples of the angular étendue
for simple pin-hole systems are shown.

If the shape of the regidD, is very narrow along the aperture curve, but has a spaifioin
certainé that is of the order of the scale length of the sinogram, it could be a better choice in the
separation in Eq. (22), not to tagd¢), but to introduce new coordinatésandt, where the

runs along the aperture curve ahd locally perpendicular to it. In that case the angular étendue
has to be redefined as a function. difis possible to define such locally perpendicular coordinates
(see Appendix D), but their evaluation is unfortunately cumbersome (involving the solution of
integral or differential equations).

C. Simplified algorithm
When the zero-sized aperture approximation is valid and certain assumptions about the sinogram

can be made, the method for beam-width correction can be greatly simplified for fan-beam
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systems where several detectors share an aperture. This method is based on a beam-width
correction applied by Smeuldeérs?® With some modifications the method is also applicable to
parallel beam systems.

We taket as the variable along the aperture curve. In our application we have=uéed
We assume that along the aperture curve weaotatly approximate the sinogram by a second
order polynomial, i.e. around point (detector(t) = ait* + ht +c;. If we know the sinogram
values in the pointand its neighbour point§ (;, f, andf,, ,), we can solve the coefficierds h
andg aslinear functions of _, , f, andf,,; (see Appendix E). It is also possible to choose functions
different from second order polynomials, for example higher order polynomials and
correspondingly more neighbours, but it is essential for the method that the coefficients be linear
functions of the sinogram values in the measurement points. Given the coefficients, the actual

measuremenfi can be expressed as [Eq. (7)]

fi=[[k(p.&)f(p.EdpdE = [q M) f )k
=g [te(di+h[te(t)d+c et d.

Carrying out the integrals oveand making use of the linear expressions of the coefficents
b andg, we can write (see Appendix E)

fii =i fioa t 0 f 0, f (25)
and consequently
f=qQf, (26)

whereQ is a band-diagonal matrix. The coefficients have to be changed slightly for edge channels
which have only one neighbour. This matrix does only depend on the geometry and the fitting
function and not on the measurements or the sinogram, and thus does not change. The matrix

can be inverted, giving the corrections to the raw measurerdotdeam-width effects, which
yields approximate line-integral valuéghat can be used in the tomographic reconstructions.
Effectively, the beam-width correction by this method is similar to the deconvolution method,
cf. Bracewell:

4. RESULTS
A. Bolometer tomography at JET
The algorithms described in the previous section have been applied to the bolometer tomography

systerﬁ0 on the JET tokamak, which has large beam widths that differ for different viewing
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directions. When the plasma is toroidally symmetric, the JET bolometer system can be assumed
to view one poloidal cross-section of the tokamak. In this poloidal plane the emission is strongly
asymmetric: a strong peak is located in the so-called divertor region in the bottom of the cross
section, which typically is an order of magnitude higher than the bulk emission [see Fig. 4(a) for
an example]. The 118 detectors view the plasma from various directions limited by technical
constraints, to give a good coverage of both the bulk plasma and the divertor region [lines of
sight in the divertor region are also shown in Fig. 4(a), the coverage of projection space is shown
in Fig. 1(a)]. The detection systems have been designed such that the full widths of the viewing
cones extend roughly to the neighbouring line of sight, with the full-width-half-maximum of
neighbouring channels roughly coinciding. The beam widths are relatively large compared to
the emitting structures in the plasma and are determined by detector sensitivity and the limited
number of lines of sight.
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Figure 4. Grey-scale plots of the emission in the divertor region of a poloidal cross-section of the tokamak (scale:
white = 0 W, black = 3 MW). The separatrix, i.e. the last closed flux surface in the tokamak, is shown as a dashed
curve for reference. In (a—c) lines of sight are shown as dashed straight lines. The box in the lower left corner
indicates the grid size used in the reconstructions. (a) Phantom and the 118 lines of sight. (b) Tomogram of a
reconstruction with a reduced number of lines of sight assuming unmodified line integrals (method B). (c) Tomogram
of a reconstruction with a reduced number of lines of sight after three iterations of beam-width corrections (method
D3). (d) Lines of sight with method D of reconstructions with a limited number of lines of sight during two iterations
(solid line: original; dashed line: first iteration; dotted line: second iteration).
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The tomography algorithm applied in the simulations is the one used routinely for both
bolometer and soft x-ray tomography at JETItis a series-expansion method with local basis
functions, i.e. EQ. (3) is solved, which is suitable for detection systems with irregular coverage.
The reconstruction is obtained by a constrained optimization method, where the constraints are
(a) that the misfit between measurements and pseudo-measurements calculated from the tomogram
be equal to the estimated errors in the measurements, and (b) that the tomogram be positive. The
latter constraint is essential due to the peaked emission profile and the relatively sparse coverage
with few lines of sight. The regularization used is anisotropic smootﬁh‘ébe.algorithm uses
the geometric matrix, so that the beam-width correction algorithms applied with a geometric
matrix of line-integrals can be compared with reconstructions that use the actual geometric
matrix of the detection system calculated as described in Sec. 2.F.

B. Simulations

The assessment of beam-width correction algorithms has been carried out by means of phantom
simulations. Phantoms are pre-described emission profiles which are used to calculate pseudo-
measurements, i.e. what would be measured if the phantom were the actual emission profile. A
realistic level of noise was added to the pseudo-measurements: Gaussian noise with a standard
deviation of 3% of the measurement. Phantom simulations rather than tests with actual
measurements are presented because they give more control over the tests without disturbing
effects from experimental errors (such as noise and uncertainties in calibration factors and
positions), and make it possible to quantify the success of the algorithms by an objective quantifier:
the tomogram reconstruction errot,. This quantifier measures the relative deviation of the

tomogramg from the phantong,:

The phantom used, Fig. 4(a), is based on a tomographic reconstruction of actual measurements.
Although some structure has been lost in the phantom, it is suitable for our purpose to show the
differences between the algorithms.

Two cases are discussed: reconstructions using all 118 lines of sight [all points in Fig 1(a),
both solid and open squares], and reconstructions using a reduced number of lines of sight of
three fans [open squares in Fig 1(a)]. The quality of the reconstructions of the various algorithms
are summarized in Table 1. Two sets of simulations are shown for the118 line-of-sight case: one
with beam widths for all channels, and one with beam widths for most channels, but not the most
difficult ones. The methods compared are: (A) reconstructions with the proper geometric matrix
of the detection system; (B) reconstructions using the geometric matrix for line integrals along
the average lines of sight (neglecting the weighting by the sinogram); (C) reconstructions of
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Table 1. Reconstruction errorg | for phantom simulations using various beam-width correction methods.
The various cases are referred to by letter in the text. For the first number of the 118-line-of-sight column the beam
widths of all lines of sight were used, whereas for the second column some difficult lines of sight were assumed to be
pure line integrals in both the pseudo-measurements and the reconstructions. Note that a reconstruction error of
100% only means a large deviation from the phantom, not that the result is completely wrong.

og(%)
Reconstruction type 118 lines of sight 34 lines of sight in 3 fans
A: proper geometric matrix 21.2 23.3 46.3
B: lineintegrals 29.2 30.6 56.2
C: simplified method 27.5 30.6 54.5
D: 1st iteration of iterative method 23.7 28.4 50.1
D: 2nd iteration of iterative method 25.9 27.9 49.2
D: 3rd iteration of iterative method 26.0 27.5 49.0
E 1st iteration of iterative method, 278 9.4 516

no change of (p, )

measurements corrected by the simplified method of Sec. 3.C; (D) reconstructions of various
iterations of the iterative beam-width correction method (Sec. 3.A) where both the éﬂe,rége

and étendue are changed; and (E), as D, but without modifying the a(/ﬁr,gg)a Method E

was studied because it is relevant for tomography algorithms that do not allow an irregular
coverage of projection space. In methods D and E the quantities corrected were weighted with
the sinogram of the previous iteration, except in the first iteration where a unity sinogram was
assumed. The iterations were stopped when no significant improvement was found compared to
the previous iteration. The reconstruction etrgiis not the only quantifier for the quality of the

reconstructions: other ones are the magnitude of artefacts (for example negative values if no
non-negativity constraint is applied), and the speed of convergence when the non-negativity
constraint is applied. These quantifiers show the same tremg as

C. Discussion

Methods A and B in Table | are the reference cases: A takes beam widths fully into account; B
not at all. Table | shows that the beam-width correction algorithms give an improvement over B
in virtually all cases. The improvements in reconstructions obtained by the algorithms for the
case of a reduced number of lines of sight are illustrated in Figs 4 (tomograms) and 5 (“cross-
sections” of the tomogram along the aperture curve).

The improvement given by the simplified method (method C) is limited, and sometimes
not noticeable. This is probably due to the fit by a parabola not being very suitable for this
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phantom: although locally the sinogram can be approximated by parabola [see Fig. 5(a)], the
coverage is too coarse to support such a fit properly [Fig. 5(b)]. Of course, more suitably chosen
fitting functions may perform better. The correction to the étendue can be as large as 20% in the
channels observing the peak [see Fig. 5(a)]. In simulations with the soft x-ray tomography system
at JET, which has six fans with 35 to 36 channels each, a larger improvement was found.
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Figure5. (a) Sinogram values along the aperture curve of the vertical fan for reconstructions with a reduced number
of lines of sight. Sinograms of phantom (solid line), reconstructions with the proper geometric matrix (method A:
dashed line), line integrals (method B: dotted line), the first and third iteration of the iterative method (D1: dash-
dot-dot; D3: long dashes), and the simplified method (C: dash-dot). The symbols indicate: pseudo-measurements
divided by the unweighted étendue (filled squares), corrected values by the simplified method (B: open squares),
and corrected values in the first and third iteration of the iterative method (D1 and D3: plus sign and cross,
respectively). Note the shift nfor the points of D1 and D2. (b) For reference, the angular étendue of the relevant
channels along the aperture curve.

The simulations show that the iterative method (D and E) gives significant improvements
over method B in both the cases of all and a reduced number of lines of sight. The way the lines
of sight change in method D during the iterations is shown in Fig. 4(d), and can also be seen in
Fig. 5(a). As expected, the lines of sight move towards the peak emission and make it possible to
obtain a de-blurred, more peaked reconstruction. This de-blurring is visible when comparing
Fig. 4(b) with Fig. 4(c), and is very clear in Fig. 5(a). In these simulations the corrections to the
étendue were up to 5% for most channels and 10% for the channels seeing the peak [see Fig. 5(a)].
In most cases studied, subsequent iterations give improvements for method D, whereas little
improvement is found after the first iteration in method E. The simulation with beam widths for
all 118 lines of sight in Table | is an exception, where the first iteration of method D is better
than subsequent iterations. Method D performs better than method E, but method E can be
useful in certain cases. Other simulations, for example for the soft x-ray tomography system at
JET, a similar behaviour was found, although the improvements were small due to the less
significant beam widths.
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The de-blurring effect of taking into account the beam widths has also been observed in
reconstructions of actual measurements, in which case they can be even more pronounced. This
is probably because the gradients in the actual emission profiles are more pronounced than those
in the phantom, which was based on a reconstruction that probably was oversmoothed like all
reconstructions with a limited number of lines of sight. The application of the beam-width
correction methods on actual measurements are not considered further in this paper because of
the lack of an objective quality quantifier.

The simulations show that the beam-width correction algorithms are successful in improving
the reconstructions. They also show that for some cases they are more successful than in other
ones, depending on the detection system and the emission profile. Therefore, phantom calculations
should always be carried out to determine which algorithm improves the result most, before
applying the algorithms. Contrary to methods that take into account the full geometry of the
system (such as method A), the two proposed algorithms cannot be expected to function properly
in detection systems that certainly cannot be approximated by line integrals, for example in
systems where individual detectors have multiple viewing directions or when there are reflections
or scatter of radiation. Furthermore, the methods cannot be guaranteed to converge. They might
not converge when, for example, there are several local peaks smaller than the beams widths, or
when the reconstructed emissivities are negative. In many cases, however, when few structures
of the size of beam widths are present, both methods can perform well.

5. CONCLUSIONS

It has been shown that the full three-dimensional imaging properties of detection systems for
two-dimensional tomography can be described in projection space. This includes filter effects in
the detection system (see for example Refs. 17 and 21 for systems with filters). The description
in projection space is related to the conservation of the étendue in optical systems. The properties
of the detection system in projection space have been used to find approximations of the system
by line integrals that are an improvement over the straightforward use of the étendue and the
average line of sight. Furthermore, a fast method to calculate the geometric matrix from the
coverage of projection space has been indicated.

Two algorithms, based on the detection-system properties in projection space, to correct
for beam widths have been proposed and have been shown to work satisfactorily for an actual
tomography system. The algorithms are generally applicable to tomography methods that assume
pure straight-line integrals in an optically thin medium, and are more general than, for example,
correction methods based on deconvolution. Furthermore, the algorithms only modify the
geometry and étendues, and can therefore easily be used in combination with existing tomography
codes. However, the assumptions made in the algorithms are not always valid, and proper care
should be taken when applying them. Taking into account the full geometric matrix of the detection
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system, if possible, seems to be preferable. The proposed algorithms can be a solution if that is
not possible or the geometric matrix is too complicated to calculate. The algorithms also give a
means to assess the importance of beam-width effects.
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APPENDIX A: SOME PROJECTION-SPACE PROPERTIES OF PIN-HOLE
SYSTEMS

The description in projection space of a simple pin-hole system with rectangular detector and
rectangular aperture is straightforward and some quantities can be expressed analytically.
Furthermore, such systems are regularly applied in practice. Therefore, such a system has been
chosen to illustrate the coverage of projection space, the angular étendue, the étendue and the
geometric functions in reconstruction and projection space.
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Figure 6.(a) Geometry in thry plane of the pin-hole system discussed in Appendix A. (b) Boundaries in projection
space for two pin-hole systems with varying pinhole size. The detector and aperture were taken parallel. The angles
at which the curves start and end are given in Table Il. (¢c) Angular étendues for the systems of (b).

The geometry of the pin-hole system is shown in Fig. 6(a). It is assumed that the detector
and aperture are rectangular and have two edges parallelxptane, and that the detector
and aperture are perpendicular toxyplane. The boundaries of the region covered in projection
space are shown in Fig. 6(b). Two cases are considered: one where the aperture is larger than the
detector and vice versa. The coordinates of the bounding points | to IV and the angles are given
in Table Il. The functions of the boundary curves in Fig. 6(b) are
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P, (&) = =(X, = %) siné +(y, — ¥ ) co<, (A1)

wherehis | ... IV and(x,,Y,) is the origin of th€p,¢) coordinates. The width of the region in
thep direction is related to the aperture size.

Tablell. Bounding points and angles of the pin-hole system shown in Fig. 6.

Point h X Y, frange | Angle € tan &,
I X, + P sin @ Y, — P cos ®, $, -4, 1 V=Y XX,)
I X,+Dsng y,—Dcosq, $,-¢, 2 vy, ) (x=x,)
1 x,—Psng y +Pcosq $,—4, 3 VY (X=X
v X,—Dsin g y, +D cos @, ¢,—¢, 4 oY) (X=X

If for a given ling(p,&) the distance between the points of intersection on the detector and
aperture is(p,¢), and in thezdirection the detector extends betweeandz; , and the aperture
betweerg, andz, we can calculate

K(p,&) = fj I:cosede dz
=JLCPO+(F -7y -JE+HF-2° - E+(z-2°+] EH 2- 3%

(A2)

where thezintegral is carried out over the detector surface [Eq. (15) shows thairdegral for
constan{p,¢) will give the same result] and we have realised that the bourtdarefgiven by
sing* = (z* - z)/J B(pé)+ (2 - 2.

If the detector and aperture are parallelyill be independent gb, and so willk from
Eq. (A2). Therefore, the angular étendue of Eq. (24) can be expressed analytically as

&($) = k(&) Apd),

whereAp(§) is the difference of the curves of Eq. (Al) in the appropriate interval. The angular
étendue of the detectors of Fig. 6(b) is shown in Fig. 6(c).
The étendue can be obtained by combining Egs. (18) and (24), which yields

<)

cos€ —¢)

E@ =] dg.
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In general, the integrand will be a very complicated functic) Bnd can therefore only
be calculated numerically. However, if the detector and aperture dimeri3iandP, are small
compared to the perpendicular distahcketween the detector and aperture planes, a Taylor
expansion irf around , and expansions making use of the smallneBsasfdP with respect to
|, gives an expression consistent with Eq. (17). For a simple pin hole with parallel detector and
aperture the zeroth order term gives (cf. Ref. 18)

£ =2 cos € -0,) (A3)

whereA, andA, are the detector and aperture areas, respectively. If only the éeteqgus

required, and not the angular étendue or the geometric function, it can be more convenient to
obtain the étendue by integrating the solid angle spanned by the aperture over the detector. It

should be noted that, in general, we are interested in the élé(%)uso that the integral should
be over a plane perpendicular&pand not over the detector. Realising thé,) is only a
function ofp and¢, E(&) can still be calculated by an integral over the detector:

7\ — cos€ — @, )
E@ = [ 9899
whered is the coordinate along the detector surface imyipgane p(d) is thep of the line(p,¢)
that intersects the detectodaand the factacos€ — @, )arises due to geometrical considerations.
With the k(p,é) from Eq. (A2) the geometric function in reconstruction space can be
calculated by Eq. (8). Again the integrand is rather complicated and may only be solvable
numerically. If, however, the same approximations are valid as the ones that led to Eq. (A3),
k(p,¢) will be approximately constant and Eq. (9) can be used to calculate an approximation of
the geometric function in reconstruction space analytically.
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APPENDIX B: BEAM-WIDTH EFFECTS IN THE CORMACK METHOD

In the Cormack methd@?f (p, ) is expanded in

FPO=Y o ot b (P9,

wherep=¢+T11/ 2 (=10, 21, andp > 0), and the basis functioirs projection spaceare

2 _
bn(P@) = —mr 7V m+2|+1(?p)elm(p,

whereU , are Chebyshev functions of the second kind. These basis functions in projection space
correspond to global basis functionsxy) space:

[R™0,1(r,0) = R, ()€™, (B1)

whereR  are Zernike polynomials ar{d,6) are polar coordinates ofY).
With the help of Eq.(7), a measurement can be written as

i = [k(Po f(P.@)dpdg

(B2)
) o 2T _o© P o0

=Y w0 o[, k(PO (P@)dPdR =5 S a.By.
The integrals and summations may be swapped sinde, tlaee bounded on the integration
interval and the series converges. In Eq. (B2) the beam-width effects are taken into account in
the new basis functionB_,, which can be calculatea priori and do not depend on the

measurements or the emission profile. The tomographic reconstruction is obtained by solving

mli’

the coefficients,, for a limited number ofm andl from Eq. (B2). Multiplying Eq. (B1) bw,,
and summing over ath andl gives the tomogram.
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APPENDIX C: BEAM-WIDTH EFFECTS IN THE IPR METHOD

In the Iterative Projection-space Reconstruction (IPR) mé&ttibd sinogram is approximated
by an expansion into basis functiops(p,é) in projection space that represent a bi-linear
interpolation between regular grid points (or higher order interpolations), i.e.

f(p.&)=> b.(pd) fn, (C1)

wheref | are the sinogram values in the regular grid points in projection space [Idgatién)]
and

b, (p.&)=t, (P, ) L& £ ),

with

H0) if z<z -Az
(z-z +Az
if z —Az< z< Z,

L if z<z<z+Az
O Az ¢
=) if z2z +Az

wherezis p or &, andAp andA¢ indicate the grid size.
In the original IPR methddthe measurements are scaled iteratively to line-integral values
f.¢ by means of Eq. (21), making use of tomograms reconstructed in previous iterations, after

which the value$ in regular grid points are reconstructed from these vdtiés irregular
points by solving the system of equations

£l = zmaim fs (C2)

wherea,, =b,(p,¢;). The tomogram is then obtained by tomographically inverting the values
f. in regular grid points by standard tomography methods.

In a way very similar to the case of the Cormack method (Appendix B) the beam-width
effects can be included. Making use of Eq. (C1), we can write

f = [[K(p.O (PO = [[k (PO T bu(PE)s| b
=Y o foffk(p.Ob,(p.&)dpdE =S B, 1,

(C3)

which replaces Eq. (C2), and whé&e = [[k;(p,£) b, (pé) d pdé can be calculatealpriori and
does not depend on the measurements or the emission profile. Therefore, the (approximate)
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scaling to line-integral values of the original IPR method can be avoided and the full beam-
width effects can be included by means of the coefficiBpts

The main aim of the IPR method is to make it possible to make tomographic reconstructions
from measurements by systems with an irregular coverage in projection space. Equation (C3)
shows that it may even be useful to use the IPR method from an already regular coverage to
include the beam-width effects. This is possible if the approximation by Eq. (C1) is adequate.
This also demonstrates the similarity between taking into account the beam widths by Eq. (C3)
and by the simplified method of Seq. 3.C.
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APPENDIX D: ORTHOGONAL COORDINATES ON APERTURE CURVE

It is possible to construct curvilinear coordinateandt in projection space that are locally
perpendicular and parallel to the aperture curve of a given aperture. To be able to define an inner
product, we have to make the dimensionp ahdé equal, for example by normalizimto a.

Here, we normalize all spatial parameter@atdhe choice ofa is arbitrary [it depends, for
example, on the origifx,, Y,)], and therefore the constructed coordinateandt are, to a

certain extent, arbitrary as well. We choose an aperture with the geometry as in Fig. 7(a).

(@) (b)

© X
(Xapr yap) S 0*

/ d

= JG98.35/16¢

g

Figure 7. (a) Geometry irxy plane of the pin-hole system discussed in Appendix D. Several lines of sight (thin
lines) for twad = constare shown. (b) Example of a number of cutvesconst(solid linesd spaced equi-distantly)
andt = const(dashed lines) in projection space.

As coordinatel we choose the signed distance between the centre of the afgfiwre)
and the intersection of the lings,¢) with the aperture:

U e
(p&)=— X, SINE +y,,CO&

(D1)

A number of curved = constare shown in Fig. 7(b). The curve widh= O corresponds to the
aperture curve of Eq. (23). A singularity #parallel to(x,,, ¥,4) iS apparent, which means that
we can only define these curvilinear coordinates locally§taewhich the singularity occurs is
far away from the range dfthat is of interest).
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Requiring global orthogonality, i.e] ,dI .t =0 forall(p.£), one can construct

~ ) [l p 2 p U u []
(P.&) = C, (=%, COSE = Y, Siff )ex rg%;g* KoY o™ Y ol aef, O

(D2)
_( Xad COSE yad S”f )exﬁ_ H+ '\/_ K apy da~ ar?( daérfﬁ_ﬁ

whereC, andC, are constants of integration that have been set to one and zero, respectively, in
the final expression. A number of curies constare shown in Fig. 7(b).

It may be difficult to obtain closed expressionsggd,t) andé(d,t), but for giverd and
t thep andé can be solved numerically from Egs. (D1) and (D2). These, and the Jacobian of the
coordinate transform, are required to change the integrals of Eq. @2antt integrals.
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APPENDIX E: COEFFICIENTS OF SIMPLIFIED METHOD

The coefficients of Eq. (25) of the simplified method are derived. See Smélidiezs alternative
derivation. It is assumed that through any three neighbouring points of a fan a sinogram curve
f(t) =at® + bt +c can be fitted. For the pointand its neighbours one obtains the system of
equations

Sft)=at’ +bt +¢ =
Of (t.,) =at, +Rh 1, +(r: = fa
Hf (t)=at’, +ht, +¢ = f .

For knownf._, , f., andf.,, one can solva, b, andc, and express these in linear equations

as follows
a=af +o,,,f,+q —1if -1
b':ﬁl fl +ﬁ|+1|+1+ﬁ 1|—11
C=Vifi *Vinfautyf.
where
t+ _tl— ti— _tl tl _t|+
a; = = l’au+1 - y A = -,
n, n, n,
with n, :(tiz_ti2+l)(ti —t.) _(qz _1:2—1)“ _t+1),
ﬁ _ 2 au nab. a||+1nab. _l all—lna b _1
i T o P T P T T
Ny, n, n,

with n, =2t —t,, —t_, andn,, =2t? —t3, —t,, and

y — 1_a|| agci Bn nﬁc. — 1_ai|+l aci _Bu+1r&3 Ci — 1 an —1 _ﬁn —1'13 Ci
i nq ’ i+1 nq ’ i-1 nCI ’
withn, =3,n, . =t’ +t3, +t2,, andn, . =t, +t,, +t_,. For the channels at the edges of the

fan approprlate formulae can be obtained by replaciigbyi +2, andi +1 byi -2 for the
respective channels.
If we express the integrals as

A =[t’q(Ddt, B =[te(ddt and C =] e(}dt
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then the coefficients of Eq. (25) for detedt@an be expressed as

0 =0; A+8 B +y C,
Gin =0inA +8 4B +y ,,C,
Gia =0, A +4 4B +y . C.
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