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ABSTRACT

Detection systems used for computerized tomography are often approximated by line integrals,

despite having non-negligible beam widths due to a finite detector size and a finite acceptance

angle. Ways to take into account these beam widths in algorithms for two-dimensional straight-

line emission tomography are discussed. It is shown that the full three-dimensional imaging

properties of the detection system, including filter functions, can be described in projection

space. The relationships with the geometric matrix and étendue, and the application to the Cormack

and Iterative Projection-space Reconstruction methods are discussed. Two techniques to

compensate for most of the beam-width effects have been developed, which can be combined

with many tomography algorithms. The two techniques are demonstrated to improve the quality

of tomographic reconstructions of measurements by the bolometer tomography system on the

JET (Joint European Torus) tokamak. The strengths and limitations of the methods are discussed.

1. INTRODUCTION

Physical detection systems for tomography have a finite detector surface and a finite acceptance

angle. The combination of these finite sizes results in what we will call “finite beam widths.”

The actual sizes are a trade-off between response (signal-to-noise ratio) and the required resolution.

Many tomography algorithms assume the measurements to be along infinitely thin lines, which

can result in the blurring of the image, or worse, an incorrect interpretation of the measurements,

if structures exist that are of the size of the beam widths. Although in the past several ways have

been developed to take into account beam widths, most have a limited applicability to specific

problems. For example, deconvolution1-8 is mainly applicable in detection systems with regular

spacing between lines of sight (we will use the term line of sight even when it has a finite width),

and when the reconstruction is made in Fourier space. A description of how to take into account

“elliptical” beams has been given by Bates and McDonnell.9 The detection system properties are

usually only approximated and assumed to be identical for all detectors. Other methods, such as

the geometric function, are limited to series-expansion tomography algorithms. This paper studies

the beam-width effects of three-dimensional detection systems for two-dimensional (emission)

tomography and proposes algorithms, that do not require regular coverage, to improve the line-

integral approximation. It is assumed that effects from re-absorption, refraction, diffraction, and

scattering are negligible.

A finite beam width results in an averaging or blurring of features compared with what

would have been measured along thin lines. Our main concern is not to restore all features that

have been lost by the averaging process of the finite beam width, but to correctly take into

account the imaging properties. This is particularly useful when there are steep gradients in the

object, or localized peaks. This leads to a de-blurring of the image, but not necessarily to a

restoration of all structures with high spatial frequency. Restoration is only possible if the spacing
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between lines of sight is significantly smaller than the beam width (see Bracewell1). Our

description of properties of detection systems can also be applied in the deconvolution methods

to take into account the beam widths.

The aim of the paper is two-fold. Firstly, in Sec. 2 a formalism is derived to fully describe

the three-dimensional properties of detection systems for two-dimensional tomography. This

formalism is in projection space, because projection space is natural for many tomography

algorithms. The relationship of the coverage of projection space by a detector and the geometric

function describing the imaging properties in reconstruction space is shown. The approximation

by line integrals is discussed on basis on the conservation of the étendue of the imaging detection

system. Secondly, in Sec. 3 two variations of one method are described that compensate for

some beam-widths effects in tomography algorithms that assume pure line integrals. In Sec. 4

examples are given of the application of the algorithms and the results are discussed. General

conclusions are drawn in Sec. 5.

The application of the algorithms and the properties of detection systems in projection

space are illustrated with the bolometer tomography system10 on the JET (Joint European Torus)

tokamak, a device for nuclear fusion research. Some of the bolometers are pin-hole cameras (i.e.

several detectors share one aperture), whereas other ones have collimators. The emission profiles

expected in a tokamak plasma are strongly asymmetric, which, in combination with the limited

access, determines the lay-out of lines of sight. The number of lines of sight (118) is limited by

the high cost of detectors and the access to the tokamak.

2. FINITE BEAM-WIDTH EFFECTS IN PROJECTION SPACE AND THE

APPROXIMATION BY LINE INTEGRALS

A. The tomography problem

The Radon transform R is a straight-line integral transform that maps functions g with a compact

support in R2
 (i.e. zero outside a certain closed region with maximum radius a) onto functions f

in a space M:

f p Rg x y g x y p x x y y x y( , ) [ ]( , ) ( , ) ( ( )sin ( ) cos )ξ δ ξ ξ= = + − − −∫∫ 0 0 d d , (1)

where the coordinates p and ξ  in M parametrize each line of sight; p being the (signed) distance

from the origin ( , )x y0 0  to the line and ξ  the angle of the line with the (horizontal) x axis. The

space M is referred to as projection space and has the shape of a Möbius band with width 2a and

“inverted” periodicity π: p a a= −[ , ]  and f p f p( , ) ( , )ξ ξ+ = −π , so that ξ = [ , ]0 π  suffices for a

complete description. Many properties of projection space are derived in the literature, see for

instance Refs. 11 and 12. To distinguish, the actual space with coordinates x and y is called

“reconstruction space.” The relationship between the coordinates is:
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x x p

y y p

= − +
= + +

0

0

sin cos ,

cos sin ,

ξ λ ξ
ξ λ ξ

where λ  is a parameter indicating distance along the line. Note that the ( , )p ξ  coordinates depend

on the choice of the origin ( , )x y0 0 . To simplify the expressions we will choose, without loss of

generality, ( , )x y0 0 = (0,0). Throughout this paper double integrals without limits implicitly imply

integration over the entire area.

Solving g from a limited number of line-integral measurements f is called the tomographic

inversion or reconstruction of f. We will consider emission tomography, where g(x,y) is the local

emissivity of an object. The graphical representation of the function g(x,y) is often called

“tomogram” and the representation of f p( , )ξ  “sinogram.” The latter name reflects the sine

shape of f p( , )ξ  when g x y( , ) is a very localized peak. The sinogram for a typical emission

profile in the JET tokamak is shown in Fig. 1(a), where the marked points indicate the lines of

sight of the bolometer system.

In physical detection systems the measurements are not exact line integrals, but effects

such as the detector size, the width of the viewing chord and the viewing properties out of the

reconstruction plane need to be taken into account. The measurements of all discrete detectors

are written as the vector f̂  (the hat is used to distinguish it from the pure line-integral value). In

the following, the subscript i will be used to indicate that the quantity is for one physical detector

numbered byi. A conventional way to take into account the beam widths is by replacing Eq. (1)

by

ˆ ( , ) ( , )f K x y g x y x yi i= d d∫∫ , (2)

for each element i of the measurement vector, where K x yi ( , ) is the geometric or apparatus

function. The geometric function contains all relevant information about the viewing geometry

and calibration factors. Because the function Ki  acts as a weight it is sometimes referred to as

weight function. Equation (2) can be discretized and written in matrix form.

$f K gi ijj i=∑ (3)

This is the approach taken in so-called series-expansion methods for tomographic reconstruction.13

Here, Kij  is the geometric matrix and the function g(x,y) has been discretized into a one-

dimensional vectorg. Discretization is achieved by expansion of g(x,y) on a basis of (possibly

orthonormal) functions b:

g x y g b x yj jj
( , ) ( , )≈ ∑ . (4)
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Figure 1. (a) Contour plot of the sinogram of a typical emission profile in the JET tokamak [calculated from the

phantom in Fig. 4(a)]. The origin was chosen on the magnetic axis of the tokamak cross-section. The shaded area

indicates where lines of sight pass outside the boundary of the tokamak. The points (solid and open squares) mark

the ( , )p ξ  coordinates of the average lines of sight of the JET bolometer system. The regions Di of the detectors are

shown around these points (visible only as thin lines). (b-d) Blow up of three regions Di covered by bolometers,

where the contours indicate k pi ( , )ξ : (b) a rectangular pin-hole system with parallel detector and aperture (contours

at intervals of 0.2% of the maximum); (c) a rectangular pin-hole system with non-parallel detector and aperture

(contours at 0.2% intervals); (d) a system with a rectangular detector, a round collimator, and several other bounding

apertures (contours at 5% intervals). In (b-d) the p axis has been stretched by subtracting pap( )ξ  [Eq. (23)]

corresponding to the centre of the front aperture as a function of ξ . In (b) and (c) the maximum contour is in the

lower-left corner of the shape, but for detectors straight behind the aperture the maximum is near the middle of the

shape.

The geometric matrix elements are obtained from

K K x y b x y x yij i j= ∫∫ ( , ) ( , ) d d . (5)

A common discretization of g is into pixels of a grid (see for example Ref. 13), in which case the

basis functions bj
 are

b x y
x y j

j ( , )
( , ) ,

=




1

0

if  inside pixel 

otherwise.
(6)
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Another approach to obtain the tomographic reconstruction of f, is to use discretized versions

of the analytical inversion formula of Eq. (1). These are called transform methods.14 While it is

straightforward to take into account the imaging properties in series-expansion methods by means

of the geometric matrix of Eqs. (3) and (5), in general it is more difficult to do so in transform

methods. Two methods to do this in an approximate way are described in this paper.

B. The relationship between the geometric function and the coverage of projection space

Due to the finite size of the detector and the finite acceptance angle many rays of light reach each

detector. The rays that reach a particular detector form one or more “clouds” of points in projection

space (see Fig. 1 and Appendix A). The set of all rays reaching detector i, i.e. rays that are within

the entrance pupil of the detection system, will cover a region of projection space designated by

Di. In lossless purely two-dimensional detection systems each ray will contribute fully to the

measurement ̂fi . However, when there are losses in the optical detection system, e.g. angle-

dependent filter effects or contamination of optical surfaces, or effects of the three-dimensional

nature of the detection system, a modifying function k pi ( , )ξ  has to be placed in front of each

line integral f p( , )ξ . The total radiation reaching detector i is an integral over all rays Di that

reach that detector:

ˆ ( , ) ( , ) ( , ) ( , ) ( sin cos )

( , ) ( , ) ( sin cos ) .

f k p f p p g x y k p p x y x y p

g x y k p p x y p x y

i i

D

i

D

i

D

i i

i i

= = + −

= + −

∫∫ ∫∫∫∫

∫∫∫∫

ξ ξ ξ ξ δ ξ ξ ξ

ξ δ ξ ξ ξ

d d d d d d

d d d d
(7)

Here, Eq. (1) was used in the second step and the change of integration order in the last step is

possible because Di depends only on the detector, but not on x and y. The integral is independent

of the choice of origin ( , )x y0 0  of ( , )p ξ  since the Jacobian is unity for translation and rotation

around ( , )x y0 0 . Comparison of Eq. (7) with Eq. (2) gives as a definition for the geometric function

K x yi ( , ) for detector i:

K x y k p p x y p

k p p p x y p

i i

D

i i

i

( , ) ( , ) ( sin cos )

( , ) ( , ) ( sin cos ) ,

= + −

= + −

∫∫

∫∫ ∞

∞

ξ δ ξ ξ ξ

ξ ξ δ ξ ξ ξ

d d

d dΠ
−

π

0

(8)

where Π i p( , )ξ  denotes the window function

Π i

i

i

p
p D

p D
( , )

, ( , ) ,

, ( , ) .
ξ

ξ
ξ

=
∉
∈





0

1
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If k p ki ( , )ξ = , i.e. constant over the region Di, as is the case in a lossless purely two-dimensional

system, evaluation of Eq. (8) yields

K x y k x y ki i( , ) ( sin cos , ) ,= − + =∫ Π ξ ξ ξ ξ ξd
0

π
∆ (9)

where ∆ξ  is the angle between the points where the curve p x y= − +sin cosξ ξ  intersects the

boundary of the region where Π i p( , )ξ = 1, see Fig. 2. This angle corresponds to the angle spanned

by the entrance pupil of the detection system as seen from the point (x,y). To simplify the notation

we define k pi ( , )ξ  to be zero outside the region Di so that we can omit Π i p( , )ξ . The following

properties of k pi ( , )ξ  are given for completeness; they are however not used in this paper.

ξ

p

∆ξ

∏i (p,ξ)
p+xsinξ–ycosξ = 0

JG
97

.5
07

/2
c

Figure 2. Interpretation of the angle ∆ξ  of Eq. (9). The thick solid lines indicate the bounds of coverage of projection

space of a purely two-dimensional system. The dashed curve corresponds to all lines through a point (x,y).

By inserting the inverse Radon transform (see for instance Ref. 15 for various forms of the

Radon inversion formula) for g in Eq. (2) and changing the integration order in a similar way as

in Eq. (7), it can be shown that

k p
K x y

p x y
x yi

i( , )
( , )

( sin cos )
,ξ

ξ ξ
= −

+ −∫∫
1

2 2 2π
d d (10)

where the integral is understood in the Cauchy principal value sense. This inversion formula is

difficult to use because of the singularity and the fact that K x yi ( , ) has to be known in the entire

xy plane to fully determine k pi ( , )ξ . Although Eq. (10) is of little practical importance, it shows

that, in principle, the information contained in k pi ( , )ξ  and K x yi ( , ) is the same. The information

in k pi ( , )ξ  is more condensed because it is non-zero in a finite region in projection space. However,

knowledge of K x yi ( , ) in a finite region in reconstruction space is sufficient to fully characterize

the detection system for tomography algorithms. Because the information contained in k pi ( , )ξ
is the same as in the geometric function in reconstruction space K x yi ( , ), we will refer to k pi ( , )ξ
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as the geometric function in projection space.

When k pi ( , )ξ  is shift-invariant for all detectors, i.e. k p k p pi i i( , ) ( , )ξ ξ ξ= − − , it follows,

using the same steps as in Eq. (7), that

ˆ ˆ( , ) ( , ) ( , ) ˜ ( , | , ) ( , )f f p k p p f p p K p x y g x y x yi i i i i i i= = − − =∫∫ ∫∫ξ ξ ξ ξ ξ ξd d d d , (11)

with 
~

( , | , ) ( , ) ( sin cos )K p x y k p pi i p x y pi iξ ξ ξ δ ξ ξ ξ= − − + −∫∫ d d , which is related to the point-

spread function in optics. Because of the convolution in Eq. (11), f can be found from ̂f  by

deconvolution, which is the basis of some of the deconvolution methods for beam-width correction

mentioned in the introduction (where generally the geometric transfer function, i.e. the Fourier

transform of the point-spread function, is used). This paper, however, is concerned with the

more general case where k pi ( , )ξ  can be very different for different detectors. It is important to

realise that Eq. (7) assigns a discrete value f̂i  to regions of projection space, whereas Eqs. (1)

and (11) assign a value to every point of projection space [hence the final step in Eq. (11) can be

seen a generalization of Eq. (1) for certain types of physical detector configurations].

C. Étendue in two dimensions

To determine quantities that are required for the approximation of an actual detection system by

a line integral, such as the average viewing direction and a scaling factor, it is relevant to examine

line integrals of K x yi ( , ) along lines that do not pass through the entrance pupil of the detection

system. We parametrize such a line L as

L ( )
( )

( )
,s

x s

y s

x s x

y s y
=







 =

+
+







1

1

d

d

where ( , )x y1 1  is a starting point on the line and ( , )x yd d  the direction vector. The line integral

along this line is

K x s y s
s

s
s k p p x s y s x y p s

x y k p p x y s x y s p

x y

x y
k p

iL i d d

d d i

d d
i

( ( ), ( ))
( )

( , ) ( ( ) sin ( ) cos )

( , ) ( sin cos [ sin cos ])

sin cos
( ,

d

d
d d d d

d d dd d

d d

L
∫ ∫∫∫

∫∫∫

= + − +

= + + − + −

=
+

−

∞

∞

−∞

∞

−∞

∞

∞

∞

ξ δ ξ ξ ξ

ξ δ ξ ξ ξ ξ ξ

ξ ξ

2 2

0

2 2
1 10

2 2

−

π

−

π

ξ ξ) ( , ).d d d dp E x yi=
∞

∞

∫∫ −

π

0

(12)
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Here, in the first step Eq. (8) was substituted, and the following property for delta functions was

used in the final step

f z a bz z
b

f a
b( ) ( ) ( ),δ + = −

−∞

∞

∫ d
1

with, in this case, f x( ) ≡ 1. If the line L passes through the entrance pupil of the detection

system the result of Eq. (12) is not finite.

Because the result E x yi ( , )d d  in Eq. (12) is independent of ( , )x y1 1 , it shows that all integrals

of Ki  along parallel lines give the same result. Assuming a uniform emission from a strip in

direction ( , )x yd d  with width dl, Fig. 3 shows that the effective thickness of the strip for the line

( , )p ξ  is

d
dd d

d

l x y

x y
l

cos cosα ξ ξ
=

+2 2

sin - d

where α  is the angle between the normal of the strip and the line ( , )p ξ  (independent of choice of

origin). This explains the factor in front of k pi ( , )ξ  in Eq. (12): when the total contribution of the

uniformly emitting slab to the detector measurement is calculated with the integral over in

projection space according to the result of Eq. (12) the factor corrects for the varying contributions

from different lines ( , )p ξ .

d`

α

xd
yd

( )

yd
–xd

( )

cos ξ
sin ξ( )

ξ
JG97.507/3c

Figure 3. Geometrical clarification of the factor in front of k pi ( , )ξ  in the integrand of the last term of Eq. (12). The

symbols are as defined in the text. The factor is seen to stem from the correction of strip thickness by the factor

cosα .
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Because in pinhole cameras the rays are not imaged, Eq. (12) shows that the integral along

the detector equals the integrals along all planes parallel to it. This result is clearly equivalent to

the well-known concept of conservation of étendue or throughput of an optical detection system.

For three-dimensional systems this will be discussed in more detail in the next subsection. It is

also clear that it is sufficient that the integral over s in Eq. (12) extends over the entire length of

the line L from which there are contributions to the detector, i.e. inside the viewing cone.

D. Extension to the third dimension

One purpose of this paper is to show how three-dimensional properties of detection systems can

be implemented in two-dimensional tomography. Two-dimensional tomography is only possible

if the variation in the third dimension of the object studied is negligible over the width measured

by the system. We will assume that g(x,y,z) = g(x,y), i.e. there is no variation in the third direction

z. If this is not the case, but the variation in the z direction is known a priori, the methods

described in this article might still be partly applicable or the geometric function in reconstruction

space K x yi ( , ) can be calculated and used in a tomographic series-expansion method by solving

Eq. (3).

To extend the formalism developed in the previous subsections to three dimensions it must

be shown that all properties of the third dimension of the detection system can be described

adequately by the function k pi ( , )ξ  of Eq. (7). We introduce a filter function η i  for rays, which is

the attenuation of the ray, or zero if this ray does not go through the entrance pupil of the system

for detector i from the right direction. The ray can be described completely by four parameters,

for which we choose p, ξ , zL  and θ . Here, p and ξ  are the projection space coordinates for the

projection of the ray onto the xy plane, θ  the angle with the xy plane, and zL  is the distance from

the xy plane to a characteristic point on the line. If we choose zL  at the point where the line ( , )p ξ
in the xy plane has the shortest distance to the origin, then z z x yL = − +( sin cos ) tanξ ξ θ  for a

line that goes through the point (x,y,z). The solid angle ′K x y zi ( , , ) spanned by the entrance pupil

of the detection system for detector i seen from the point (x,y,z), attenuated by a filter function,

is

′ = ∫∫K x y z p x y z x y zi i( , , ) ( ( , , ), , ( , , , , ), ) cos ,η ξ ξ ξ θ θ θ θ ξL d d
−π / 2

π / 2

0

π
(13)

where cosθ  is the Jacobian of spherical coordinates, and the integral over ξ  needs only to be

over [0,π] instead of over [0,2π] because η i  for rays going through the entrance pupil from the

wrong direction is zero, but ξ  is the same for both directions. The two-dimensional geometric

function in reconstruction space is obtained by integration over z:

K x y K x y z z p x y z x y z zi i i( , ) ( , , ) ( ( , , ), , ( , , , , ), ) cos ,= ′ =
−∞

∞

− ∞

∞

∫ ∫∫∫d d d dLη ξ ξ ξ θ θ θ θ ξ
−π / 2

π / 2

0

π
(14)
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where in the second step the integration order has been changed. In Eq. (14) z can be substituted

by zL  without changing the integrand nor the integration range. The resulting innermost two

integrals therefore only depend on p and ξ , and, substituting p x y= − +sin cosξ ξ , comparison

of Eq. (14) with Eq. (8) shows that the innermost integrals correspond to the function k pi ( , )ξ ,

which can therefore be calculated by

k p p z zi i( , ) ( , , , ) cosξ η ξ θ θ θ= ∫∫ d d . (15)

In a simple pinhole system without filter k pi ( , )ξ  can be calculated analytically, see Appendix A.

Examples of the function k pi ( , )ξ  for three bolometer detectors at JET are shown in Figs. 1(b-d).

It has been shown that for arbitrary three-dimensional detection systems a function ki

exists that depends only on p and ξ . Therefore, the validity of Eq. (12) has been extended to the

third dimension, which proves that all integrals of K′(x,y,z) over parallel planes will give the

same value. This integral of solid angle over an area is usually called étendue or throughput in

the literature about optical systems, see for example Ref. 16. Its conservation through lossless

optical systems is a well-known concept. The étendue is the quantity that is required to approximate

a measurement by a line integral. When the optical system is not imaging (rays go straight

through, as in pinhole systems) the étendue is conserved on both sides of the imaging system (if

the medium is the same on both sides), i.e. the étendue calculated over the detector is the same as

over all planes parallel to it. This is also the case for imaging systems in the geometrical optics

approximation (taking into account the magnification), but not in systems where the imaging

plane is curved. In emission tomography we only need to consider the étendue of planes in the

emitting object, where it is conserved if the medium is non-absorbing and nonrefractive.

E. Approximation by line integrals

Because the étendue is conserved in parallel planes, the contribution of each plane to the detector

signal will be equal if the emission is constant on planes (inside the viewing cone). This is trivial

for an infinitesimally small viewing cone, because the area of the plane increases with   l
2 , whereas

the solid angle spanned by the entrance pupil decreases with   l
−2 , where   l is the distance to the

detection system. The previous sections have shown that this property is exact also for finite-

sized systems. When the emission is constant over surfaces (say perpendicular to the x direction)

within the viewing cone, the measurement can be approximated by a line integral as follows

ˆ ( , ) ( , ) ( ) ( , ) ( ) ( ) ( )f K x y g x y x y g x K x y y x E g x x E fi i i i i i= = = = =∫∫ ∫∫ ∫d d d d dξ 0 0 , (16)

where Eq. (12) was used in the last step and the parameter of Ei  indicates the angle of the

direction perpendicular to the plane. Of course, Eq. (16) is true for any directionξ . This
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approximation is much used in tomography. Usually it is assumed that the emissivity is constant

perpendicular to the average viewing direction ξ i , i.e. Ei i( )ξ  should be determined. The definition

of the average line of sight is not trivial in all cases, a matter we will come back to when it is

required for the algorithm. Such an definition is impossible if k pi ( , )ξ  is nonzero in separated

parts of projection space, as can be the case if there are reflections or multiple viewing directions

of individual detectors.17 Therefore, in such a case the approximation by line integrals is

impossible.

An approximate Ei  for pin-hole systems is given by

E A Ai = ≈∫∫ d d eff effΩ Ω , (17)

where Ωeff  is the effective solid angle that the aperture spans as seen from the centre of the

detector, and Aeff is the effective detector area.18,19 It can be shown that Eq. (17) is the zeroth

order term in a Taylor expansion of the étendue (see Appendix A). Second order corrections can

be found in Ref. 20. Equation (12) gives as an alternative exact expression for the étendue

E
k p

pi i
i

i

( )
( , )

cos( )
ξ

ξ
ξ ξ

ξ=
−∫∫ d d . (18)

In many cases the approximation by Eq. (17) can be adequate. When both the aperture and the

detector are rectangular and their distance relatively large, Eq. (17) can be correct within 1%.

The second order corrections reduce this further. However, when the detection system is more

complex, for example multiple apertures with different shapes, it is much harder to approximate

the étendue with a simple calculation. In such cases, and when filters are present, Eq. (18) can be

used.21

F. Calculation of the geometric matrix

The geometric matrix of line integrals is obtained by integrating the basis functions along the

line of sight [Eq. (5)]. In the case of pixels [the basis function of Eq. (6)] the matrix contains the

lengths of the line of sight through each pixel. In a physical detection system, the geometric

matrix, if required for a tomographic reconstruction method, can be determined by calculating

the solid angle spanned by the detector seen from points ( , )x y  convolved with the basis function.

This is a cumbersome five-dimensional integral: two integrals in Eq. (5) and three in Eq. (14).

This five-dimensional integral can be separated because k pi ( , )ξ  depends only on p and ξ . We

can therefore calculate k pi ( , )ξ  from Eq. (15), a two-dimensional integral, on a grid in ( , )p ξ  and

tabulate these values. Equation (8) can then be used to calculate the geometric function in

reconstruction space (a one-dimensional integral), which should be averaged over the basis

function by Eq. (5) (a two-dimensional integral). The gain in speed is due to the tabulating of
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values of k pi ( , )ξ  in grid points in projection space, between which the required value can be

found by interpolation because k pi ( , )ξ  is usually a smooth function.

3. ALGORITHMS FOR THE APPROXIMATION OF LINE INTEGRALS IN

PROJECTION SPACE

Two algorithms have been developed to improve the approximation by line integrals of detection

systems with finite beam widths. The first algorithm is an iterative refinement of the average

lines of sight and an étendue weighted by a previous tomographic reconstruction. The second

algorithm calculates a weighted étendue based on assumptions of the sinogram. The second

method is less general than the first, but much faster. The function k pi ( , )ξ  can be applied in

other ways as well. A way to take into account beam widths by means of the function k pi ( , )ξ  in

the Cormack reconstruction method,18,22 which is still applied in tomography of soft x-ray

measurements in nuclear fusion research, is described in Appendix B. The beam-widths can be

included in a similar way in the Iterative Projection-space Reconstruction method23; see

Appendix C. If the coverage is regular and k pi ( , )ξ  shift-invariant [see Eq. (11)], the Fourier

transform of k pi ( , )ξ  can be used in deconvolution methods in projection space, such as in Ref. 8,

replacing the approximations of the detection geometry used in most references. We do not

consider deconvolution methods further in this paper.

A. Iterative refinement of the weighted centre-of-mass and étendue

In many detection systems the best approximate line of sight seems to be obvious, for example

the line connecting the centre of the detector with the centre of the pinhole in a pinhole system.

In complicated detection systems it is less obvious and we have to define an average line of

sight. In general, the contour plot of the geometric function in reconstruction space K x yi ( , ) for

a particular detector i will have an elongated shape along the “line of sight”. The approximate

line of sight can be said to be the one along the main axis of this shape. More exactly, it can be

defined as being the direction of the main axis of the equivalent ellipse,24 which gives satisfactory

results.17 This definition in reconstruction space can be assumed to be equivalent to defining the

centre-of-mass of the region Di in projection space to be the average line of sight. Both definitions

are ad hoc, but they seem to be sound definitions of an average line of sight. However, if the

function g(x,y) has steep gradients, and hence also f p( , )ξ , a more proper average line of sight

should be shifted towards the higher emission side of the slope. Therefore, we postulate that a

good average line of sight is given by the weighted centre-of-mass ( , )pi iξ  over the region Di:

p
p f p k p p

f p k p p
i

i

i

= ∞

∞

∞

∞
∫∫
∫∫

( , ) ( , )

( , ) ( , )
,

ξ ξ ξ

ξ ξ ξ

d d

d d

−

π

−

π
0

0

(19)
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and

ξ
ξ ξ ξ ξ

ξ ξ ξ
i

i

i

f p k p p

f p k p p
= ∞

∞

∞

∞
∫∫
∫∫

( , ) ( , )

( , ) ( , )
.

d d

d d

−

π

−

π
0

0

(20)

Both in the limit of an infinitely thin line and in the limit of uniform emission (of an object much

larger than the beam widths, so that the variation of f p( , )ξ  is negligible) Eqs. (19) and (20)

yield the expected result.

The function of the étendue is to scale the line integral fi  to the measurement f̂i . The

étendue as defined by Eqs. (17) and (18) is only useful if the approximation of Eq. (16) is allowed,

i.e. g x y( , ) does not vary over the beam width. If this assumption is not valid, we can define a

weighted or effective étendue as the ratio:

E
f

f p

g x y K x y x y

g x y p x y x y

f p k p p

f pi
i

i i

i

i i i

i

i i
w

d d

d d

d d
≈ =

+ −
=∫∫

∫∫
∫∫ˆ

( , )

( , ) ( , )

( , ) ( sin cos )

( , ) ( , )

( , )ξ δ ξ ξ

ξ ξ ξ
ξ

, (21)

where the second step is an expression in reconstruction space and the last step [from Eq. (7)]

the equivalent in projection space. The expression in reconstruction space is equivalent to the

iterative scaling of measurements by g  and the geometric matrix proposed in Ref. 23. Again,

this definition gives the expected result in both the limit of an infinitely thin line and in the limit

of uniform emission.

The algorithm for the iterative approximation of line integrals is as follows. First a

tomographic reconstruction g is made with the unweighted étendue and average ( , )pi iξ . The

data of which reconstructions are made will be inconsistent if beam widths are important because

of the approximations made. Therefore, we try to refine this data based on the sinogram of g .

Average weighted ( , )pi iξ  coordinates are calculated by Eqs. (19) and (20) using g. The weighted

étendue is calculated according to Eq. (21), which is used to determine a better line-integral

approximation f from the measurement f̂i . The reconstruction is then carried out again using the

new ( , )pi iξ  and fi . This process, using the latest g, is iterated until the tomogram does not

change much any more.

It must be stressed that the result will not be exact because we still attempt to approximate

a detection system with finite beam widths by line integrals. The limitations in applicability of

the method are discussed after the results in Sec. 4. In certain cases it may be better to omit the

refinement of ( , )pi iξ , necessarily when a tomography algorithm is used that assumes a regular

coverage of projection space and cannot cope with small changes in lines of sight. In such a

case, Eq. (21) does still give a proper correction to the étendue. However, if the ( , )pi iξ  are

updated, the weighted étendue has to be updated as well.
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B. Approximation by zero-sized aperture

For many actual tomography systems the width of the region Di in the p direction, which is of

the same order as the aperture size, will be smaller than length scales in the sinogram, i.e. the

variation of the function f p( , )ξ  over the Di is negligible in the p direction when ξ  is kept

constant (see for example Fig. 1). This means that it is possible to separate the p and ξ  integrals

as follows:

f p k p p f p k p pi i i( , ) ( , ) ( ( ), ) ( , )ξ ξ ξ ξ ξ ξ ξd d d d∫∫ ∫∫= . (22)

In a pin-hole system, with the aperture in position ( , )x yi iap, ap, , we can assign this value to the

“aperture curve”

p x yi i iap ap, ap,, ( ) sin cosξ ξ ξ= − + . (23)

This means that we approximate the system by a zero-sized aperture. Other choices for a

characteristic point of the system are of course possible, such as the centre of the detector. The

zero-sized aperture approximation is preferable in systems in which many channels share the

same aperture (“fan-beam systems”), as will be discussed in the next subsection.

The advantage of the separation of Eq. (22) is that the integral of k pi ( , )ξ  over p can be

carried out separately, yielding an “angular étendue” (dimension m rad2 )

e k p pi i( ) ( , )ξ ξ= ∫ d . (24)

This approximation drastically reduces the calculation time of Eqs. (19–21). If it is too complicated

to calculate the function k pi ( , )ξ  for a particular system, but a good approximation of ei ( )ξ  can

be found, this can also be used in the algorithms. In Appendix A examples of the angular étendue

for simple pin-hole systems are shown.

If the shape of the region Di is very narrow along the aperture curve, but has a span in p for

certain ξ  that is of the order of the scale length of the sinogram, it could be a better choice in the

separation in Eq. (22), not to take pi ( )ξ , but to introduce new coordinates d and t, where the t

runs along the aperture curve and d is locally perpendicular to it. In that case the angular étendue

has to be redefined as a function of t. It is possible to define such locally perpendicular coordinates

(see Appendix D), but their evaluation is unfortunately cumbersome (involving the solution of

integral or differential equations).

C. Simplified algorithm

When the zero-sized aperture approximation is valid and certain assumptions about the sinogram

can be made, the method for beam-width correction can be greatly simplified for fan-beam
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systems where several detectors share an aperture. This method is based on a beam-width

correction applied by Smeulders.25,26 With some modifications the method is also applicable to

parallel beam systems.

We take t as the variable along the aperture curve. In our application we have used t = ξ .

We assume that along the aperture curve we can locally approximate the sinogram by a second

order polynomial, i.e. around point (detector) i: f t a t bti i( ) = + +2 ci. If we know the sinogram

values in the point i and its neighbour points (fi−1 , fi  and fi+1), we can solve the coefficients ai , bi

and ci  as linear functions of fi−1 , fi  and fi+1 (see Appendix E). It is also possible to choose functions

different from second order polynomials, for example higher order polynomials and

correspondingly more neighbours, but it is essential for the method that the coefficients be linear

functions of the sinogram values in the measurement points. Given the coefficients, the actual

measurement ̂fi  can be expressed as [Eq. (7)]

ˆ ( , ) ( , ) ( ) ( )

( ) ( ) ( ) .

f k p f p p e t f t t

a t e t t b t e t t c e t t

i i i

i i i i i i

= ≈

= + +

∫∫ ∫
∫ ∫ ∫

ξ ξ ξd d d

d d d2

Carrying out the integrals over t and making use of the linear expressions of the coefficients ai ,

bi  and ci , we can write (see Appendix E)

f̂ q f q f q fii ii i ii i ii i= + +− − + +1 1 1 1, (25)

and consequently

f̂ Qf= , (26)

where Q is a band-diagonal matrix. The coefficients have to be changed slightly for edge channels

which have only one neighbour. This matrix does only depend on the geometry and the fitting

function and not on the measurements or the sinogram, and thus does not change. The matrix

can be inverted, giving the corrections to the raw measurements f̂  for beam-width effects, which

yields approximate line-integral values f that can be used in the tomographic reconstructions.

Effectively, the beam-width correction by this method is similar to the deconvolution method,

cf. Bracewell.1

4. RESULTS

A. Bolometer tomography at JET

The algorithms described in the previous section have been applied to the bolometer tomography

system10 on the JET tokamak, which has large beam widths that differ for different viewing
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directions. When the plasma is toroidally symmetric, the JET bolometer system can be assumed

to view one poloidal cross-section of the tokamak. In this poloidal plane the emission is strongly

asymmetric: a strong peak is located in the so-called divertor region in the bottom of the cross

section, which typically is an order of magnitude higher than the bulk emission [see Fig. 4(a) for

an example]. The 118 detectors view the plasma from various directions limited by technical

constraints, to give a good coverage of both the bulk plasma and the divertor region [lines of

sight in the divertor region are also shown in Fig. 4(a), the coverage of projection space is shown

in Fig. 1(a)]. The detection systems have been designed such that the full widths of the viewing

cones extend roughly to the neighbouring line of sight, with the full-width-half-maximum of

neighbouring channels roughly coinciding. The beam widths are relatively large compared to

the emitting structures in the plasma and are determined by detector sensitivity and the limited

number of lines of sight.
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Figure 4. Grey-scale plots of the emission in the divertor region of a poloidal cross-section of the tokamak (scale:

white = 0 W, black = 3 MW). The separatrix, i.e. the last closed flux surface in the tokamak, is shown as a dashed

curve for reference. In (a–c) lines of sight are shown as dashed straight lines. The box in the lower left corner

indicates the grid size used in the reconstructions. (a) Phantom and the 118 lines of sight. (b) Tomogram of a

reconstruction with a reduced number of lines of sight assuming unmodified line integrals (method B). (c) Tomogram

of a reconstruction with a reduced number of lines of sight after three iterations of beam-width corrections (method

D3). (d) Lines of sight with method D of reconstructions with a limited number of lines of sight during two iterations

(solid line: original; dashed line: first iteration; dotted line: second iteration).
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The tomography algorithm applied in the simulations is the one used routinely for both

bolometer and soft x-ray tomography at JET.21,27 It is a series-expansion method with local basis

functions, i.e. Eq. (3) is solved, which is suitable for detection systems with irregular coverage.

The reconstruction is obtained by a constrained optimization method, where the constraints are

(a) that the misfit between measurements and pseudo-measurements calculated from the tomogram

be equal to the estimated errors in the measurements, and (b) that the tomogram be positive. The

latter constraint is essential due to the peaked emission profile and the relatively sparse coverage

with few lines of sight. The regularization used is anisotropic smoothness.21 The algorithm uses

the geometric matrix, so that the beam-width correction algorithms applied with a geometric

matrix of line-integrals can be compared with reconstructions that use the actual geometric

matrix of the detection system calculated as described in Sec. 2.F.

B. Simulations

The assessment of beam-width correction algorithms has been carried out by means of phantom

simulations. Phantoms are pre-described emission profiles which are used to calculate pseudo-

measurements, i.e. what would be measured if the phantom were the actual emission profile. A

realistic level of noise was added to the pseudo-measurements: Gaussian noise with a standard

deviation of 3% of the measurement. Phantom simulations rather than tests with actual

measurements are presented because they give more control over the tests without disturbing

effects from experimental errors (such as noise and uncertainties in calibration factors and

positions), and make it possible to quantify the success of the algorithms by an objective quantifier:

the tomogram reconstruction error σ g . This quantifier measures the relative deviation of the

tomogram g from the phantom g0 :

σ g

g g

g
=

− 0

0

.

The phantom used, Fig. 4(a), is based on a tomographic reconstruction of actual measurements.

Although some structure has been lost in the phantom, it is suitable for our purpose to show the

differences between the algorithms.

Two cases are discussed: reconstructions using all 118 lines of sight [all points in Fig 1(a),

both solid and open squares], and reconstructions using a reduced number of lines of sight of

three fans [open squares in Fig 1(a)]. The quality of the reconstructions of the various algorithms

are summarized in Table I. Two sets of simulations are shown for the118 line-of-sight case: one

with beam widths for all channels, and one with beam widths for most channels, but not the most

difficult ones. The methods compared are: (A) reconstructions with the proper geometric matrix

of the detection system; (B) reconstructions using the geometric matrix for line integrals along

the average lines of sight (neglecting the weighting by the sinogram); (C) reconstructions of
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Table I. Reconstruction errors σ g  for phantom simulations using various beam-width correction methods.

The various cases are referred to by letter in the text. For the first number of the 118-line-of-sight column the beam

widths of all lines of sight were used, whereas for the second column some difficult lines of sight were assumed to be

pure line integrals in both the pseudo-measurements and the reconstructions. Note that a reconstruction error of

100% only means a large deviation from the phantom, not that the result is completely wrong.

σ
g

)%(

epytnoitcurtsnoceR thgisfosenil811 snaf3nithgisfosenil43

:A xirtamcirtemoegreporp 2.12 3.32 3.64

:B slargetnienil 2.92 6.03 2.65

:C dohtemdeifilpmis 5.72 6.03 5.45

:D dohtemevitaretifonoitaretits1 7.32 4.82 1.05

:D dohtemevitaretifonoitaretidn2 9.52 9.72 2.94

:D dohtemevitaretifonoitaretidr3 0.62 5.72 0.94

:E
,dohtemevitaretifonoitaretits1

(foegnahcon p, ξ)
8.72 4.92 6.15

measurements corrected by the simplified method of Sec. 3.C; (D) reconstructions of various

iterations of the iterative beam-width correction method (Sec. 3.A) where both the average ( , )pi iξ

and étendue are changed; and (E), as D, but without modifying the average ( , )pi iξ . Method E

was studied because it is relevant for tomography algorithms that do not allow an irregular

coverage of projection space. In methods D and E the quantities corrected were weighted with

the sinogram of the previous iteration, except in the first iteration where a unity sinogram was

assumed. The iterations were stopped when no significant improvement was found compared to

the previous iteration. The reconstruction error σ g  is not the only quantifier for the quality of the

reconstructions: other ones are the magnitude of artefacts (for example negative values if no

non-negativity constraint is applied), and the speed of convergence when the non-negativity

constraint is applied. These quantifiers show the same trend as σ g .

C. Discussion

Methods A and B in Table I are the reference cases: A takes beam widths fully into account; B

not at all. Table I shows that the beam-width correction algorithms give an improvement over B

in virtually all cases. The improvements in reconstructions obtained by the algorithms for the

case of a reduced number of lines of sight are illustrated in Figs 4 (tomograms) and 5 (“cross-

sections” of the tomogram along the aperture curve).

The improvement given by the simplified method (method C) is limited, and sometimes

not noticeable. This is probably due to the fit by a parabola not being very suitable for this
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phantom: although locally the sinogram can be approximated by parabola [see Fig. 5(a)], the

coverage is too coarse to support such a fit properly [Fig. 5(b)]. Of course, more suitably chosen

fitting functions may perform better. The correction to the étendue can be as large as 20% in the

channels observing the peak [see Fig. 5(a)]. In simulations with the soft x-ray tomography system

at JET, which has six fans with 35 to 36 channels each, a larger improvement was found.
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Figure5. (a) Sinogram values along the aperture curve of the vertical fan for reconstructions with a reduced number

of lines of sight. Sinograms of phantom (solid line), reconstructions with the proper geometric matrix (method A:

dashed line), line integrals (method B: dotted line), the first and third iteration of the iterative method (D1: dash-

dot-dot; D3: long dashes), and the simplified method (C: dash-dot). The symbols indicate: pseudo-measurements

divided by the unweighted étendue (filled squares), corrected values by the simplified method (B: open squares),

and corrected values in the first and third iteration of the iterative method (D1 and D3: plus sign and cross,

respectively). Note the shift in ξ  for the points of D1 and D2. (b) For reference, the angular étendue of the relevant

channels along the aperture curve.

The simulations show that the iterative method (D and E) gives significant improvements

over method B in both the cases of all and a reduced number of lines of sight. The way the lines

of sight change in method D during the iterations is shown in Fig. 4(d), and can also be seen in

Fig. 5(a). As expected, the lines of sight move towards the peak emission and make it possible to

obtain a de-blurred, more peaked reconstruction. This de-blurring is visible when comparing

Fig. 4(b) with Fig. 4(c), and is very clear in Fig. 5(a). In these simulations the corrections to the

étendue were up to 5% for most channels and 10% for the channels seeing the peak [see Fig. 5(a)].

In most cases studied, subsequent iterations give improvements for method D, whereas little

improvement is found after the first iteration in method E. The simulation with beam widths for

all 118 lines of sight in Table I is an exception, where the first iteration of method D is better

than subsequent iterations. Method D performs better than method E, but method E can be

useful in certain cases. Other simulations, for example for the soft x-ray tomography system at

JET, a similar behaviour was found, although the improvements were small due to the less

significant beam widths.
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The de-blurring effect of taking into account the beam widths has also been observed in

reconstructions of actual measurements, in which case they can be even more pronounced. This

is probably because the gradients in the actual emission profiles are more pronounced than those

in the phantom, which was based on a reconstruction that probably was oversmoothed like all

reconstructions with a limited number of lines of sight. The application of the beam-width

correction methods on actual measurements are not considered further in this paper because of

the lack of an objective quality quantifier.

The simulations show that the beam-width correction algorithms are successful in improving

the reconstructions. They also show that for some cases they are more successful than in other

ones, depending on the detection system and the emission profile. Therefore, phantom calculations

should always be carried out to determine which algorithm improves the result most, before

applying the algorithms. Contrary to methods that take into account the full geometry of the

system (such as method A), the two proposed algorithms cannot be expected to function properly

in detection systems that certainly cannot be approximated by line integrals, for example in

systems where individual detectors have multiple viewing directions or when there are reflections

or scatter of radiation. Furthermore, the methods cannot be guaranteed to converge. They might

not converge when, for example, there are several local peaks smaller than the beams widths, or

when the reconstructed emissivities are negative. In many cases, however, when few structures

of the size of beam widths are present, both methods can perform well.

5. CONCLUSIONS

It has been shown that the full three-dimensional imaging properties of detection systems for

two-dimensional tomography can be described in projection space. This includes filter effects in

the detection system (see for example Refs. 17 and 21 for systems with filters). The description

in projection space is related to the conservation of the étendue in optical systems. The properties

of the detection system in projection space have been used to find approximations of the system

by line integrals that are an improvement over the straightforward use of the étendue and the

average line of sight. Furthermore, a fast method to calculate the geometric matrix from the

coverage of projection space has been indicated.

Two algorithms, based on the detection-system properties in projection space, to correct

for beam widths have been proposed and have been shown to work satisfactorily for an actual

tomography system. The algorithms are generally applicable to tomography methods that assume

pure straight-line integrals in an optically thin medium, and are more general than, for example,

correction methods based on deconvolution. Furthermore, the algorithms only modify the

geometry and étendues, and can therefore easily be used in combination with existing tomography

codes. However, the assumptions made in the algorithms are not always valid, and proper care

should be taken when applying them. Taking into account the full geometric matrix of the detection
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system, if possible, seems to be preferable. The proposed algorithms can be a solution if that is

not possible or the geometric matrix is too complicated to calculate. The algorithms also give a

means to assess the importance of beam-width effects.
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APPENDIX A: SOME PROJECTION-SPACE PROPERTIES OF PIN-HOLE

SYSTEMS

The description in projection space of a simple pin-hole system with rectangular detector and

rectangular aperture is straightforward and some quantities can be expressed analytically.

Furthermore, such systems are regularly applied in practice. Therefore, such a system has been

chosen to illustrate the coverage of projection space, the angular étendue, the étendue and the

geometric functions in reconstruction and projection space.
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Figure 6. (a) Geometry in the xy plane of the pin-hole system discussed in Appendix A. (b) Boundaries in projection

space for two pin-hole systems with varying pinhole size. The detector and aperture were taken parallel. The angles

at which the curves start and end are given in Table II. (c) Angular étendues for the systems of (b).

The geometry of the pin-hole system is shown in Fig. 6(a). It is assumed that the detector

and aperture are rectangular and have two edges parallel to the xy plane, and that the detector

and aperture are perpendicular to the xy plane. The boundaries of the region covered in projection

space are shown in Fig. 6(b). Two cases are considered: one where the aperture is larger than the

detector and vice versa. The coordinates of the bounding points I to IV and the angles are given

in Table II. The functions of the boundary curves in Fig. 6(b) are
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p x x y yh h h( ) ( ) sin ( ) cosξ ξ ξ= − − + −0 0 , (A1)

where h is I … IV and ( , )x y0 0  is the origin of the ( , )p ξ  coordinates. The width of the region in

the p direction is related to the aperture size.

TableII. Bounding points and angles of the pin-hole system shown in Fig. 6.
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If for a given line ( , )p ξ  the distance between the points of intersection on the detector and

aperture is L p( , )ξ , and in the z direction the detector extends between zd
−  and zd

+ , and the aperture

between zp
−  and zp

+ , we can calculate

k p z

L p z z L z z L z z L z z

z

z
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d
-

d
+

p d p d p d p d
2 2 2 2 2 2 2 2

(A2)

where the z integral is carried out over the detector surface [Eq. (15) shows that any z integral for

constant ( , )p ξ  will give the same result] and we have realised that the bounds of θ  are given by

sin ( ) / ( , ) ( )θ ξ± ± ±= − + −z z L p z zp p
2 2 .

If the detector and aperture are parallel, L will be independent of p, and so will k from

Eq. (A2). Therefore, the angular étendue of Eq. (24) can be expressed analytically as

e k p( ) ( ) ( )ξ ξ ξ= ∆ ,

where ∆p( )ξ  is the difference of the curves of Eq. (A1) in the appropriate interval. The angular

étendue of the detectors of Fig. 6(b) is shown in Fig. 6(c).

The étendue can be obtained by combining Eqs. (18) and (24), which yields

E
e

( )
( )

cos( )
ξ

ξ
ξ ξ

ξ=
−∫ d .
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In general, the integrand will be a very complicated function in ξ , and can therefore only

be calculated numerically. However, if the detector and aperture dimensions, D and P, are small

compared to the perpendicular distance l  between the detector and aperture planes, a Taylor

expansion in ξ  around ξ , and expansions making use of the smallness of D and P with respect to

l , gives an expression consistent with Eq. (17). For a simple pin hole with parallel detector and

aperture the zeroth order term gives (cf. Ref. 18)

E
A A

( ) cos ( )ξ ξ φ≈ −
d p

dl 2
4 , (A3)

where Ad  and Ap are the detector and aperture areas, respectively. If only the étendue E( )ξ  is

required, and not the angular étendue or the geometric function, it can be more convenient to

obtain the étendue by integrating the solid angle spanned by the aperture over the detector. It

should be noted that, in general, we are interested in the étendue E( )ξ , so that the integral should

be over a plane perpendicular to ξ , and not over the detector. Realising that k p( , )ξ  is only a

function of p and ξ , E( )ξ  can still be calculated by an integral over the detector:

E k p d d( ) ( ( ), )
cos( )

cos( )
ξ ξ

ξ φ
ξ ξ

ξ=
−
−∫∫ d d d ,

where d is the coordinate along the detector surface in the xy plane, p(d) is the p of the line ( , )p ξ
that intersects the detector at d, and the factor cos( )ξ φ− d  arises due to geometrical considerations.

With the k p( , )ξ  from Eq. (A2) the geometric function in reconstruction space can be

calculated by Eq. (8). Again the integrand is rather complicated and may only be solvable

numerically. If, however, the same approximations are valid as the ones that led to Eq. (A3),

k p( , )ξ  will be approximately constant and Eq. (9) can be used to calculate an approximation of

the geometric function in reconstruction space analytically.
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APPENDIX B: BEAM-WIDTH EFFECTS IN THE CORMACK METHOD

In the Cormack method18,22 f p( , )ξ  is expanded in

f p a b pml mllm
( , ) ( , )φ φ=

=

∞

=

∞ ∑∑ 00
,

where φ ξ= + π/ 2  (φ = [ , ]0 2π , and p > 0), and the basis functions in projection space are

( )b p
m l

Uml m l

p
a

im( , )φ φ=
+ + + +

2

2 1 2 1 e ,

where U n  are Chebyshev functions of the second kind. These basis functions in projection space

correspond to global basis functions in (x,y) space:

( )[ ]( , )R− =1b r R eml ml
r
a

imθ θ , (B1)

where Rml are Zernike polynomials and ( , )r θ  are polar coordinates of (x,y).

With the help of Eq.(7), a measurement can be written as

ˆ ( , ) ( , )

( , ) ( , ) .

f k p f p p

a k p b p p a B

i i

ml i mllm ml mlilm

=

= =

∞

∞

=

∞

=

∞

=

∞

=

∞

∫∫
∫∫∑∑ ∑∑

φ φ φ

φ φ φ

d d

d d

00

2

00

2

00 00

π

π
(B2)

The integrals and summations may be swapped since the bml are bounded on the integration

interval and the series converges. In Eq. (B2) the beam-width effects are taken into account in

the new basis functions Bmli, which can be calculated a priori and do not depend on the

measurements or the emission profile. The tomographic reconstruction is obtained by solving

the coefficients aml for a limited number of m and l from Eq. (B2). Multiplying Eq. (B1) by aml

and summing over all m and l gives the tomogram.
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APPENDIX C: BEAM-WIDTH EFFECTS IN THE IPR METHOD

In the Iterative Projection-space Reconstruction (IPR) method23 the sinogram is approximated

by an expansion into basis functions b pm( , )ξ  in projection space that represent a bi-linear

interpolation between regular grid points (or higher order interpolations), i.e.

f p b p fm mm
( . ) ( , )ξ ξ≈ ∑ r , (C1)

where f m
r  are the sinogram values in the regular grid points in projection space [location ( , )pm mξ ]

and

b p t p p tm p m m( , ) ( , ) ( , )ξ ξ ξξ= ,

with

t z z

z z z
z z z

z
z z z z

z z z

z
z z z z

z z z

z ( , )

,

,

,

,

c

c

c
c c

c
c c

c

if

if

if

if

=

< −
− +

− ≤ <
+ −

≤ < +
≥ +














0

0

∆
∆

∆
∆

∆
∆

∆
∆

where z is p or ξ , and ∆p and ∆ξ  indicate the grid size.

In the original IPR method23 the measurements are scaled iteratively to line-integral values

fi
d  by means of Eq. (21), making use of tomograms reconstructed in previous iterations, after

which the values f m
r  in regular grid points are reconstructed from these values fi

d  in irregular

points by solving the system of equations

f a fi im mm

d r= ∑ , (C2)

where a b pim m i i= ( , )ξ . The tomogram is then obtained by tomographically inverting the values

f m
r  in regular grid points by standard tomography methods.

In a way very similar to the case of the Cormack method (Appendix B) the beam-width

effects can be included. Making use of Eq. (C1), we can write

ˆ ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ,

f k p f p p k p b p f p

f k p b p p B f

i i i m mm

m i mm im mm

= = [ ]
= =

∫∫ ∑∫∫
∫∫∑ ∑
ξ ξ ξ ξ ξ ξ

ξ ξ ξ

d d d d

d d

r

r r
(C3)

which replaces Eq. (C2), and where B k p b p, pim i m= ∫∫ ( , ) ( )ξ ξ ξd d  can be calculated a priori and

does not depend on the measurements or the emission profile. Therefore, the (approximate)
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scaling to line-integral values of the original IPR method can be avoided and the full beam-

width effects can be included by means of the coefficients Bim.

The main aim of the IPR method is to make it possible to make tomographic reconstructions

from measurements by systems with an irregular coverage in projection space. Equation (C3)

shows that it may even be useful to use the IPR method from an already regular coverage to

include the beam-width effects. This is possible if the approximation by Eq. (C1) is adequate.

This also demonstrates the similarity between taking into account the beam widths by Eq. (C3)

and by the simplified method of Seq. 3.C.
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APPENDIX D: ORTHOGONAL COORDINATES ON APERTURE CURVE

It is possible to construct curvilinear coordinates d and t in projection space that are locally

perpendicular and parallel to the aperture curve of a given aperture. To be able to define an inner

product, we have to make the dimensions of p and ξ  equal, for example by normalizing p to a.

Here, we normalize all spatial parameters to a. The choice of a is arbitrary [it depends, for

example, on the origin ( , )x y0 0 ], and therefore the constructed coordinates d and t are, to a

certain extent, arbitrary as well. We choose an aperture with the geometry as in Fig. 7(a).

0 π

0

(b)

p/
a

ξ

(a)

(xap, yap)

xad
yad

d

JG
98

.3
5/

16
c

d=0

t=0

Figure 7. (a) Geometry in xy plane of the pin-hole system discussed in Appendix D. Several lines of sight (thin

lines) for two d = const are shown. (b) Example of a number of curves d = const (solid lines, d spaced equi-distantly)

and t = const (dashed lines) in projection space.

As coordinate d we choose the signed distance between the centre of the aperture ( , )x yap ap

and the intersection of the lines ( , )p ξ  with the aperture:

d p
p x y

x y
( , )

sin cos

sin cos
ξ

ξ ξ
ξ ξ

=
+ −

− +
ap ap

ad ad

. (D1)

A number of curves d = const are shown in Fig. 7(b). The curve with d = 0  corresponds to the

aperture curve of Eq. (23). A singularity for ξ  parallel to ( , )x yad ad  is apparent, which means that

we can only define these curvilinear coordinates locally (the ξ  at which the singularity occurs is

far away from the range of ξ  that is of interest).
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Requiring global orthogonality, i.e. ∇ ∇p pd t, ,ξ ξ⋅ = 0  for all ( , )p ξ , one can construct

t p C x y
p

C x y y x
u

u

x y
p

x y y x
p

C

p

( , ) ( cos sin )exp ( ) exp

( cos sin ) exp ( ) ,

ξ ξ ξ

ξ ξ

= − − −






 + − −









= − − −






 + −







∫1

2

1

2

2

2

2 2

2 2

2
ad ad ap da ap da

ad ad ap da ap da

d

erfπ

(D2)

where C1 and C2  are constants of integration that have been set to one and zero, respectively, in

the final expression. A number of curves t = const are shown in Fig. 7(b).

It may be difficult to obtain closed expressions for p d t( , ) and ξ ( , )d t , but for given d and

t the p and ξ  can be solved numerically from Eqs. (D1) and (D2). These, and the Jacobian of the

coordinate transform, are required to change the integrals of Eq. (22) to d and t integrals.
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APPENDIX E: COEFFICIENTS OF SIMPLIFIED METHOD

The coefficients of Eq. (25) of the simplified method are derived. See Smeulders25 for an alternative

derivation. It is assumed that through any three neighbouring points of a fan a sinogram curve

f t a t bt c( ) = + +2  can be fitted. For the point i and its neighbours one obtains the system of

equations

f t a t b t c f

f t a t b t c f

f t a t b t c f

i i i i i i i

i i i i i i i

i i i i i i i

( ) ,

( ) ,

( ) .

= + + =
= + + =
= + + =









+ + + +

− − − −

2

1 1
2

1 1

1 1
2

1 1

For known fi −1 , fi , and fi +1  one can solve ai , bi , and ci , and express these in linear equations

as follows

a f f f

b f f f

c f f f

i ii i ii i ii i

i ii i ii i ii i

i ii i ii i ii i

= + +
= + +
= + +

+ + − −

+ + − −

+ + − −

α α α
β β β
γ γ γ

1 1 1 1

1 1 1 1

1 1 1 1

,

,

,

where

α α αii
i i

a
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i i

a
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i i

a

t t

n

t t

n

t t

n
i i i
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=
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−+ −

+
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−
+1 1

1
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1
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with n t t tb i i ii
= − −+ −2 1 1 and n t t tb i i iiα , = − −+ −2 2

1
2

1
2 , and

γ
α β

γ
α β

γ
α βα β α β α β

ii

ii c ii c

c
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ii c ii c

c
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ii c ii c

c

n n
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, , ,

with nci
= 3, n t t tc i i iiα , = + ++ −

2
1

2
1

2 , and n t t tc i i iiβ , = + ++ −1 1. For the channels at the edges of the

fan appropriate formulae can be obtained by replacing i −1 by i + 2 , and i +1 by i − 2  for the

respective channels.

If we express the integrals as

A t e t t B te t t C e t ti i i i i i= = =∫ ∫ ∫2 ( ) , ( ) , ( ) ,d d and d
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then the coefficients of Eq. (25) for detector i can be expressed as

q A B C

q A B C

q A B C

ii ii i ii i ii i

ii ii i ii i ii i

ii ii i ii i ii i

= + +
= + +
= + +

+ + + −

− − − −

α β γ
α β γ
α β γ

,

,

.
1 1 1 1

1 1 1 1
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