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1. INTRODUCTION

In this report the development of a numerical model for studying interaction between LH waves
and thermonucleanw -particles in tokamak geometry is described in view of the DT experiments
on JET. Motivation for this work is the obvious fact that a considerable partdrticles are

born in a tokamak plasma as trapped particles. Their interaction with the LH waves can not be
described accurately enough using the standard quasilinear (Fokker-Planck) approach. In fact,
the RF effect on the-particles is adequately described as the quasilinear diffusion in the space
of variables which are constants of drift motion. In an axisymmetrical magnetic configuration,
particle drift orbits are determined by three independent integrals of motion which can be, for
example, the particle energy, the transverse adiabatic invariant and the canonical toroidal
momentum. Adding to that the fast ion spatial diffusion makes the problem at least four-
dimensional. This seems much too difficult for any comprehensive analysis. To keep the computer
run time and required memory amount for numerical calculations within acceptable limits one is
forced to sacrifice a part of the full description.

In the model adopted in this work, no spatial diffusion is assumed and the “thin banana”
approximation is used. This reduces calculation of the fast ion distribution function to solving a
two-dimensional Fokker-Planck equation for each radial grid point.

The computational basis of this work is an improved version of the fast ray tracing code
(FRTC) described in Ref.[1]. The most important modifications of the code are the possibility to
use arbitrary equilibrium configurations, including those with X-points and a module permitting
self-consistent treatment afparticles with the use of the 1D model of Ref.[2].

The report is organized as follows. Calculation of the magnetic toroidal coordinates is
described in Sec.2. For the reader’s convenience, the ray tracing procedure is outlined in Sec.3,
following Ref.[1]. Section 4 is devoted to the alpha particle treatment. It includes discussion of
the model, formulation of the Fokker-Planck equation, analytical investigation of the limiting
cases and outline of the used numerical approach. Finally, numerical calculations for JET
conditions and conclusions are given in Sec. 5.

2. EQUILIBRIUM AND COORDINATES

In this code all calculations are performed in toroidal coordinates related to the tokamak magnetic
field. The code itself, however, does not compute required equilibrium configurations. Instead,
an equilibrium determined independently is used as external input. The equilibrium codes usually
present their output data in a convenient laboratory coordinate system. To make these data
available, the simulation code has a program finding the toroidal coordinates for a given
equilibrium. In this Section, the method used for this purpose is described. The problem can be



formulated as follows. Introduce in the meridian tokamak cross-section general coordiates
with r=0 and &06<2m, related to the Cartesian coordinatgsby

x = X, +aX(r,6)
z=1z,+ aZ 10)
here thex axis is directed along the major radixg,z, denote the magnetic axis position, the
“minor radius”ais the last magnetic surface half-width af{d 6), Z(r,6) are arbitrary functions.
Fix these functions by the demand that curves described by Eq.(B=tpast and varying
from zero to Zt coincide, for allr, with the flux surfaces contours of the real magnetic
configuration. Then the quantities given by Eq.(2.1), together with the toroidal anfyl@re
the sought magnetic coordinates with the “radiudénoting the magnetic flux surface afd
being the poloidal generalized angle at this surface. In fact, required coordinate transformation
can be found only approximately with the use of the best-fit procedure.
Consider, first, equilibrium having up-down symmetry and no X-points. In this case, a
satisfactory result is obtained for any conventional tokamak configurationXwKk Z=2,,
where

(2.1)

X, =rcosd —A(r) +y(r) sirf 6

Z, =rA(r)sing (2:2)

Here the functionA, A andy characterize the Shafranov shift, ellipticity and triangularity
of the flux surface&=const, respectively. These functions together with the funcfighwhere
Y is the poloidal flux, are found in the following way. First, for N, typically 100, flux surfaces
Y(x,2=W,; values of the parameters A=A(r;), Ai=A(r;), yi=Y(r;) are determined demanding
extreme points of “theoretical” curves of Eqs.(2.1)-(2.2) to coincide with extreme points of the
real flux surface contours. These calculations are performed explicitly; in particular, they give
r=1 for the last magnetic surface. Then, each four sets of N found points are fitted, using the
least-square method, to a polynomiat @fith prescribed, if necessary behavior atO.

Consider now an equilibrium with a single X-point. Since the fulxas a singularity in
this point, we amend the functioksandZ by singular terms which describe correctly the field
behavior in the immediate vicinity of the X-point within the separatrix:

X=X, +®,
Z7=7,+0, (2.3)

Here

® =[A+BJdexp(-Cg)+ BV, (i=x3

s=1-cos@-6.)+tal-r), s =2-cos@ 6. )-r (2.4)



with A, B;, a andC; beingr-independent constants, aDdN) is a N-th order trigonometric
polynomial withr-dependent coefficients. Tt parameter is the angular coordinate of the X-
point on the separatrix1. This parameter can be chosen arbitrary. Assuming, for certainty, that
the X-point is located in the lower half-plame€0, we put, for convenienc&:=31v2. Fitted
parameters and functions in the coordinate transformation Eq.(2.3) are found iteratively. First,
the functionsr(W), A, A andy are determined ignoring the functiofsand applying above
procedure to the upper part of the magnetic configuratizeOatn further fitting process these
functions are hold unchanged. In the next step, paramfgt8rsvhich control location of the X-
point and direction of the separatrix branches are fixed. Since only a small angular interval
around theB+=3172 is involved at this stage, results are insensitive to the pararGetard the
calculations are performed wi@=0. Then, ignoring th®; terms, values of the paramet&s
minimizing the mean-squared difference between real and “theoretical” separatrix are found.
Having the separatrix properly described, the parameteadjusted to guarantee exact spatial
location of the poinB=6;0n a flux surface close to the separatrix, typically, wit®.8. This
takes account of a correct description of the field in the boundary layer. Finally, optimum values
of coefficients in the functior®;™ are found at 10 flux surfaces with the use of the least-square
method and fitted to second-order polynomials.decause of the relative simplicity of the
coordinate transformation Eq.(2.3) and step by step fitting routine finding the magnetic coordinates
is rather fast.

Results obtained with this procedure for a typical JET equilibrium are illustrated in Fig.1
for flux surfaces and in Fig.2 for the poloidal magnetic field which is much more sensitive to the
accuracy of used approximations.
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Fig.1. Poloidal flux surfaces for a typical JET equilibrium.Fig.2. Poloidal magnetic field for the case of Fig.1. on three
Dashed lines are from the numerical solution of the Gradlux surfaces.
Shafranov equation, solid lines from Eq.(2.3)



3. RAY TRACING PROCEDURE

In order to proceed with the ray calculations, one has to specify spatial co-ordifiates2, 3)
and express the left hand side of the dispersatattion H=0 in terms of these co-ordinates and
the canonical conjugate momenma Then ray trajectories in the phase spaxeg) (Obey the
canonical equations

oH dp_ oH

at dp dt . 9q (3.1)

The code uses coordinates described in Sec.2pwithg,=6, g;=¢. The canonical momenta
are denoted ag, m, n, respectively. Assuming an axisymmetric tokamak plasma geoetry
becomes a cyclic variable ané constant of motion. Then Egs.(3.1) are reduced to a system of
four equations for, k., 8 andm. This system, together with the power evolution equation, is
solved numerically in all known ray tracing codes. In the present code, however, we utilize a
different representation of ray equations taking the radial coordinate as the independent variable.
To perform a transformation to this variable one has toKinK(r,6,m) from the dispersion
relation and us& as a Hamiltonian function in canonical equationst{oy andm(r):

d6 _ 9K  dm_ K

(3.2)

dr om dd 06

Unlike the initial Hamiltonian functioi, the new HamiltoniaK is not preserved along
the ray. In the present version of the code we calculate the rays using the cold plasma approximation
for the background plasma and consideringatkparticles as a small minoritye. neglecting
their contribution in the real part of the dispersion relation. Then the latter takes the form

ent -6 +& e -n)-o7" +5 ke - ) - 92] =0 (3.3)

whereg=¢,,, £=¢,, and g=-¢, are the non-vanishing elements of the cold plasma dielectric
tensor in the coordinate system with zfaeis along the magnetic field. Then the new Hamiltoninan
functionK is given by an explicit expression. The thermal corrections should be added to the

terme N’ in the dispersion relation close to the lower hybrid resonans@ that makes the
determination of the Hamiltoniaf more difficult. We do not consider this case here, assuming
the wave frequencyo to be sufficiently high. The cold plasma dispersion relation has at most
four real root, (j=1, 2, 3, 4) which represent the slow and the fast wave modes propagating in
opposite directions. The root must be specified at the starting point of a ray together with the
initial values ofm and 6. The selected branch of the Hamiltoninan funckois to be used in



Egs.(3.2) until a “root intersection point” is reached. The intersection occurs at points where two
roots of the dispersion relation merge. It corresponds to a cut-off when merging roots belong to
the same type of wave modes or to a slow-fast (fast-slow) linear conversion in the opposite case.
Since the radial ray direction always changes at the root intersection points, these points can be
generally called “the turning points”. The ray is to be followed using the new braKchfter
each intersection. Therefore, the root nunjbieran additional variable changing its value at
isolated points along a ray. Representation of the ray equation in the form of Eqs(3.2) has proved
to be very helpful. First of all, the ray calculations can now be performed directly on the radial
grid prescribed for presentation of the RF driven current profile. More importantly, reducing the
number of ray equations from four to only two permits one to utilize with high efficiency the
Richardson-Bulirsch-Stoer (RBS) method Ref.[3] for solving them. In this method, a sequence
of separate attempts to cross the intelnwaj .1-r (Wherek is the flux surface number) is made
with an increasing number of substeps. The final answer is found by effective extrapolation of
the intermediate results obtained in these attempts to zero substep size. This procedure, applied
to Eqs(3.2), speeds up the calculations considerably. However, it has difficulties in dealing with
the root intersection points. The program recognizes the approach to an intersection point from
the current ray data and abandons the RBS procedure. Tracing is performed in a narrow vicinity
of the point by using the regular Runge-Kutta solution of four equations. Then the program
returns back to the fast computational mode (the RBS procedure). The relative lengths of the
trajectory portions traced with the Runge-Kutta method are short. Nevertheless, they consume
about half of the CPU time in a typical computer run. Although the described numerical procedure
may seem rather formidable, it actually works very effectively and provides a significant part of
the code speed enhancement.

The RF poweP,; assigned to thieth ray is calculated in parallel with ray tracing from the
relation

(e L
P(r..) =P.(x )expﬁf 2Kdr§ (3.4)

wherek is the spatial damping rate. It consists of three pexts,.+K ,+Kc, resulting from

electron Landau damping, hot ion damping and Coulomb collisions, respectiveky.. Téen
here has the form

K= M — (3.5)



with f being the one dimensional (“parallel”) electron distribution function normalized to unity
andl” is independent dt

2 U O 2 _ 2
M=-mc Dre nm[l_z %u n + (E]D_ ;)) (3.6)

Each individual ray is followed until its assigned power falls below a prescribed value.
The flux surface averaged electron quasilinear diffusion coeffi@lgm calculated on
each flux surface, on a flexiblev grid. To set limits to the grid we fix lower and upper extreme
points of thes axis reached by any of the rays in each iteration. If either of these points happens
to lie outside the existing grid, it is taken as a new extreme grid value; in the opposite gase the
range remains unchanged.Mgrid is divided into two intervals having different spacings, that
at lowerv being finer. The quasilinear diffusion coefficiéd is determined from the relation

of
Q = nerneDVW (3.7)

whereQ,(r,v) is the flux surface averaged RF power absorbed by plasma electrons via Landau
mechanism. The RF power going to electrons is found from

1
%= AV, Av, ZJ ol (38)
whereAV, is the volume between the flux surfaces represented by radial co-ordjngdeslr,,
AVp= Vi1~V is the interval between tlfe+1)-th andn-th points of the axis, APy, is the power
lost by the ray in itg-th transit through the phase space elemff\v, due to the Landau
damping and summation over rays and transits. The RF ggwaries smoothly over most of
the ray, therefore power calculations using Eq.(3.4) with the fixed step size present no problem
in nearly the entire phase space. The only exception may be thevsegadin wherg, . increases
sharply. One can expect thatRsvaries very rapidly here, the adoptedrid spacing is too
coarse to guarantee the necessary accuracy in power deposition calculations. However, this is
not the case. In fact, behaviour of the distribution fundtidose to the lower boundary of the
guasilinear plateau can be investigated analytically, independently of the ray tracing. The analysis
shows that the diffusion coefficieDt, is practically a linear function efin the region of interest.
As a result the described procedure provides a reliable self-consistent solution for the electron
distribution function and the diffusion coefficient at\alindr.



A self-consistent relation between the diffusion coefficient and the electron distribution
function is found in an iteration process that involves the Fokker-Planck and power evolution
equations. The ray data necessary for these calculations include four quantities: flux surface
number, velocity, collisional damping ratg and coefficient” . These quantities are calculated
in sequence for all rays and stored in four arrays in the form of a linear structure. More detailed
information concerning the last point of each ray is also recorded. If the length of any particular
ray increases in the iteration process due to a change of the electron distribution function, a new
fragment is calculated using this as the initial condition and stored in the same array. This operation
can be repeated for each ray as many times as necessary.

For each step of the iteration process the CPU time is mostly determined by the total
length of the newly calculated ray pieces. Typically, the ray length is a maximum at the Maxwellian
electron distribution and decreases as the quasilinear plateau is formed. Therefore, the first iteration
consumes most of the total run time when the initial distribution function is a Maxwellian. To
avoid calculation of excessive ray fragments at earlier stages of iteration, we may artificially
limit the ray length, increasing it gradually until rays are allowed to live their natural lifetime. In
this scenario, the total CPU time is reduced and distributed more uniformly over the iteration
steps.

The iteration convergence deteriorates dramatically in certain tokamak regimes due to the
presence of “overlong rays”. These regimes are characterized by a large number of small islands
in the phase space of the ray equations. A finite fraction of ray trajectories is launched inside the
islands and remains confined there with nearly constanthese rays, practically unaffected
by Landau damping, have extremely long lengths. In spite of their relatively small number and
negligible contribution to the current density, the overlong trajectories consume a considerable
part of the CPU time and are even capable of making the ray tracing impossible. To cope with
this problem, the code uses a special procedure for selecting the overlong rays. If the return of
the trajectory to a small vicinity of its starting point occurs periodically for a given number of
times, the ray is identified as overlong and terminated. This procedure may be helpful in certain
cases.

A simple 1-D model of the electron Fokker-Planck equation is used in the code to avoid
time consuming numerical solution of a partial differential equation in the iterative cycle.

4. MODEL FOR ALPHA PARTICLES
Fokker-Planck equation

The quasilinear diffusion of ions interacting with the LH waves is discussed in some detail in the
literature Refs.[2, 4] for the case of cylindrical geometry with uniform magnetic field. Including
toroidal effects requires certain modification in the approach which we briefly outline in this
section.



An important feature of interaction between energetic ions and RF fields in tokamaks is
the fact that the particle’s transit time is very small in both collisional and quasilinear time
scales. For example, in typical JET regimes the difference is more than 6 order of magnitude for
thermonuclean-particles. In these conditions, the quasilinear effect of the RF field is effectively
averaged over particle orbits. Then it is natural to describe-fiegticle population in terms of
variables that are constants of motion in the absence of the RF field. Transition to these variables
means that we consider quasi-particles represented by a proper fragment of the orbit (by the
“banana” in the case of the trapped ions) rather than by the particles themselves, in the same way
as the cyclotron circles are treated in the drift theory. The unperturbed particle motion in a
tokamak is adequately described by the drift approximation. Then, in an axisymmetrical
configuration, an orbit is determined by three integrals of drift motion. To reduce the number of
variables and thus make the problem treatable for the code intended for routine computation, we
assume that the unperturbed motion is along the field lines. In this approximation which ignores
passing particle excursions from the flux surfaces and finite “banana” width for trapped patrticles,
an orbit is fully determined by two constants of motion. They may be chosen in various ways,
for exampleg=V* and the transverse adiabatic invarjat/H can be used. The most preferable
variables are, however,;, andv,, which are values of; andy; at the extreme low field point of
the orbit. For further simplification, we also assume the absence of the fast ion spatial diffusion.
Then it is convenient to considerparticles confined in a shell between flux surfaces Ar
and introduce the functidf(vpo,Vio,r) describing their distribution over integrals of motion. The
argument of the function is actually a parameter denoting the shell.

Having the functiorF known, the “usual’a-particle distribution functiori,(vq,v,r,6)
which is the particle phase space density can be easily found (see Eq.(4.20)). This function is
required, in particular, for the calculation of the wave damping. The steady-state distribution
function F(vyo,Vo) satisfies the Fokker-Planck equation

JS
m = Q(Vnm VDO) 4.1)

where the right-hand side describes the birth-phrticles within the shell volume and the left-

hand side is the divergence in thig,(Vvi0) space of the flug=S"+S2- resulting from collisions

and RF diffusion respectively. The equation implies a sink.&. We begin with the RF induced

flux S2". Generally, two-dimensional diffusion is determined by a diffusion teDgofi, k=1,

2), where the subscripts 1 and 2 refer to the perpendicular and the parallel directions, respectively.
We find the diffusion tensor heuristically, using the random walk approximation. To this end, we
calculate in the linear approximation variatiafg (T) andAvo(T) of vgy andyvyg resulting

from the particle interaction with the RF field during the time intefvaihd define
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where, in the spirit of the quasilinear theory, variatims(T) andAv,o(T) are supposed to be
random quantities and the symhdlldenotes the ensemble averaging. To find the velocity
variations consider a particle with given valuespef/”/H and e&=v* and suppose that it
experiences an instant random “kick” in a moment of tmberesulting in a variatiodvy of vp.
Thenu ande also change with

g
Ou= Zﬁ\IH_ (4.3)

and

3¢ = Hop=2.[1H, &, (4.4)

whereH;=H(r, &(t))). Assuming that the “kicks” are generated continuously, we can calculate, in
linear approximation, total changesdrandu over the time interval, which includes many
bounce periods:

Au = ZJ_f f/\lﬁdt (4.5)
and

A =2, v, (H(D)dt (4.6)

whereH(t)=H(r, 6(t)) and the integration is performed along the unperturbed orbit. Now, using
definition of 4 ande, the required variation afy, andy,o can be found:

Y, (t)

Av, = f

T

(4.7)

Av”o: f%«/' T@v (t)at (4.8)

IIO T



hereh=H/H,,;, with H.;, being the minimum value of the magnetic field on the flux surface.
ConsideringAvy(t) as a random function we see that the random quaritiggandAv; are not
related functionally, although they are statistically correlated. This means that the random walk
is essentially two-dimensional and can not be reduced to one-dimensional diffusion along lines
in the ¢, Vin) plane.

Supposing the correlation time of the velocity variations to be short compared to the
integration timer, we can put

v, (t)oy, (t )= DAt t) (4.9)

to obtain
D,,= %‘fD—;dt (4.10)
D,,= @Vﬁ{g%f(h—l)z D—hodt (4.11)
D,,= %@%@f(h—l)%dt (4.12)

The quantity [ here is, obviously, the local diffusion coefficient. This can be easily confirmed
by the direct calculation. We should fidiy; from the linearized equation of motion in the
presence of the RF field. For LH waves havwng>k,, E;>>E, andkvo/w.>>1, wherewy, is
thea-particle cyclotron frequency, the “kick” from the field component with a divémgenerated

at the points of particle orbit where the Landau resonance condition

Ko ot)=w (4.13)

is locally satisfied. The contribution of an individual resonance is calculated in a straight-forward
way. Then, making standard quasilinear theory assumptions concerning the RF field we obtain

2:¢ EGM)Y ocd
ol G ) o

Do(vy)=

2
Here|ED is a local value (depending on spatial coordingées) of the LH perpendicular

spectral densityn,=k;c/w, n=k-c/w with n; being a function oh, determined by the LH

10



dispersion relatiowuzwlﬁvgo, Z, andm, are the charge number and the mass of the fast ions
and integration performed over thg region where(c2/ né\éz)<1. The functionDy(Vy) in

Eq.(4.14) is the familiar RF diffusion coefficient. To proceed with the calculation of the diffusion
tensor we may replace the time integration in Eqgs (4.10)-(4.12) by the integration along the field
line which, in turn, can be transformed, under condiliorT g whereTg is the bounce period,

into integration over the flux surface:

%J’...dt . J’...W(e)ds (4.15)

where W@) is a weight function normalized to unity. This expression implies that the orbit goes
many times round the torus during the integration time. Passing particles make these rotations
following the field lines. For trapped particles net toroidal displacement is due to precession of
“banana” orbits and the transit time is increased by a fatbgr wherep, is thea-particle
gyroradius. Nevertheless, it remains sufficiently small for Eq.(4.15) to be still valid. To find the
weight function we note that

dt
2nR( Wy g, dB=— (4.16)

B

wheredt in the right-hand side is the time which a particle spends within the poloidal angle
intervald@ during a single bounce peridd andg,, is the metric tensor element. Then with the
use of the relation

%=V =R i 417
VG2 g =V =i (4.17)
we obtain:
1 H
wW(0)=
( ) TB Hp 27TRV” (418)
with

11



The bounce period can be now written in the form
H %2
T, =¢—"—""-d6
s = o, (4.19)
For the elements of the diffusion tensor we obtain

— /\ik DOW
Dy = SJ(S,) —as (4.20)

whereAN; =1, A1o=h-1, /\22:(h-1)2 and the integration is performed over the flux surfacenst

Having the diffusion tensor found is still insufficient for formulation of the Fokker-Plank equation.
The problem here lies in the fact that the averaging according to Eq.(4.20) and the
differentiations are non-commutative operations. Therefore, the result depends on the position
of the diffusion tensor elements (or, generally, ohadgpendent factors) relative to differential
operators in the flux expression. The explicit form of the quasilinear operator in Eq.(4.1). can be
found in the following way. Consider, along with the functim, Vo) also the phase density
fa(Voo,Vio, 6). It can be easily shown that these functions are related by

H
fp=—2 F
' 4.21
w ArTBVIIO ( )
wherey/Ar is the poloidal flux confined within the shell. The expres&iéndSdl wheredl= /'Ar/
21RH, is the local thickness of the shell, has been used for the shell volume in the Eq.(4.21)
derivation. According to the above analysis, effect of the RF field orotiparticles can be
described as the “local” quasilinear diffusion given by the operator

1 0 U of L
——Vy Dy — 4.22
V. oy, N (4.22)

Let us calculate now the variation ra#& of the particle number within the shell volume
in the velocity intervatly, due to the quasilinear difusion. Expressing this quantity in terms of
the functiond= andf, respectively, we can write, by difinition,

dS*(F) _ dvgl_ 0 0 o % [Hdv
Y R VR Sl Ve (4.23)

12



wheredv/dy, is the Jacobian of the coordinate transformation and integration is performed over
the shell volume. Direct, although rather tedious calculation of the integral with the use of
EQs.(4.18)-(4.20) represents it in the form of the left-hand side of Eq.(4.23) with

F
QL — v
S = (v, T )@W Ewﬁ

I:Il:ll_|

(4.24)

wherel? is the diffusion tensor with the elemebig This expression determines the RF induced
flux of thea-particles.

Consider now the collisional fl&". The effect of the Colomb collisions on energetic ions
can be described as a superposition of the velocity space diffusion due to the pitch-angle scattering
and the slowing down resulting from the dynamical friction between the ions and background
plasma electrons. The relative role of these two processes depends on the relation between the
fast ion velocityv and the critical velocity, given by

v, —ﬁs\g mTj_ﬁ = 0,09, (4.25)

At v, both pitch-angle scattering and slowing down must be includet™ atvf the
slowing down dominates and the pitch-angle scattering can be ignored. Now we note that only
a-particles having sufficiently high velocity interact with the LH waves. According to Eq (4.13),
the necessary condition for the quasilinear diffusion of a particle with a giverhe presence
of the waves having’k-<v; in the spectrum. However, the minimum perpendicular phase velocity
wky is limited, sinceky is related td, via the dispersion relation atglis limited due to the
electron Landau damping:

Dwﬁ

> 5v.
% T (4.26)

WhereV$e = 2T,/ m.. Using for estimation the electrostatic approximatiorkfpmwe obtain for

the minimum value/;of the phase velocity'k- the expression
Vo= BV 0/ Wy, (4.27)

Only thea-particles withvg>vy experience the quasilinear diffusion. Companngith
the critical velocityv, we conclude that under the conditiofty,p>2.5 which is readily satisfied

13



in LHCD experiments, the pitch-angle scattering is negligible for these particlesuldésehe
deuterium ion frequency which is close to the lower hybrid frequency in low-density regimes
typical for LHCD experiments. Since particles born witkvy drift irreversibly downward in

the velocity space, the interaction between thermonualgerticles and the LH waves only

occurs atv<vy. This inequality can be written &8/ a)pD< 20/ JT: where the electron

temperature is ikeV.

Coming back to the calculation of the fig% we must find changes i, andv,, produced
by the collisions during the time intervll The slowing down rate due to dynamical friction is
given bydv/dt = -vv wherev is the collision frequency

Lo Memetn Zim
m,

3 12

In A (4.28)

with InA being the Colomb logarithm. Supposing th@ik<1 we findAe*=-vTe, Au"=-vTy,
where the superscript “c” stands for “collisional”. Then similar expressions also follafyfor
andVio: AV o =-VTVr, AVo =-VTV;o. Now neglecting the pitch-angle scattering we can write
the collisional fluxS® in the form:

S¢=-vvF (4.29)

To formulate finally the Fokker-Planck equation for the distribution funét{@no,vio) we
have to obtain the expression for thgarticle sourc&(vqo,Vio). The source represents te
particle birth-rate in the volume between flux surfaces Ar per unite volume in the velocity
spacévr, Vip). A straight-forward calculation gives

— YArTgv,
H

\3
Q prad v-v,) (4.30)

min

whereM is ana-particle birth-rate per unite volume. Now, collecting Egs.(4.1),(4.2) and (4.29)
we can finally write the Fokker-Planck equation

1 ¢ O oF oF m 2 oF oF O
_— —+ D, —+WwW  F+ +D +w, FO=Qv.. ,Vv
Vg OV o S/DOD lld"uo 12 YR 0o % T ﬁjzz R 210‘/10 o g Q( o, IIO) (431)

Unlike the cylindrical geometry case, Eq (4.31) can not be integrated,aeeobtain an
ordinary differential equation of an 1-D distribution function.

14



Computation of the alpha-particle quasilinear diffusion coefficient

The a-particle diffusion tensor is computed using a procedure which is a direct generalization of
one employed in the electron calculations and described in Sec.3. According to Egs.(4.15) and
(4.20), the perpendicular spectral denﬁili(j(n“)D2 integrated with a proper weight oveyr, @

and®, is required to find the diffusion tensor. Two of these integrations are performed in parallel
with ray tracing in the following way. Each shell between flux surfaces is additionally splitted
into toroidal cells with the poloidal angular siAé. The electron diffusion coefficield, is

found for each cell separately using Eqgs.(3.7) and (3.8) with the shell vAMmeplaced by

the cell volumeAV,, where the subscripksandl refers to the shell number and the cell number,
respectively. This quantity, being local with respect to the radius and the poloidal angle, is averaged
over the toroidal angle. Then thep-averaged parallel spectral densityE, (ny,r,8}) D2>¢ is
obtained from the relation

en,
M

D.=m

<|E|| (rh ’ qz> (4.32)

Further, thep averaged perpendicular spectral density is determined with the use of the
expression

) ORI
aEETR

Finally, <DED(n||,rk,a)D2>¢ is multiplied by the factor

z: E 1 Hq C g
T mczr Hé_— (02 / n%}ﬁz))/zgjqu\ﬁ [

taken in discrete pointg;, and integrated ovem, by then summing with the weight factor
(MiAvy/vy). The valueDg(vp . f,8) found in this way are stored in a 3D array. Remairéing
integration of Eq.(4.20) is performed numerically, as well as calculation of the bounce periods.
Obtained elements of the diffusion tensor are stored in three 3D arrays to be used in the Fokker-
Planck calculations.

The wave damping due ta -particles has to be included into the power deposition

o

calculations in a self-consistent analysis. For the LH waves weEug,v&E”. Further, in the
co-ordinate system witk=kp, k=0
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« S (4.34)

In nearly the whole plasma volunmé>>g and we can associ&ewith E,. Then the wave
damping due to ther -particles is determined by the quant&ﬁ which is thea -particle

contribution to the imaginary part of the,. For typical LH wave values of energetic ions are
effectively unmagnitized. Using the well known expression for the dielectric tensor in a hot
unmagnitized plasma we readily obtain

_smzie ¢ w00 o 0 dk

" — d — a
£, s Jk D vmfgk %gt T dv (4.35)

where
Pa(vu,9)= | f (v, .6) dy (4.36)
Using EQ.(4.29), it can be written
2 2H, ° F(Voo: Vio)
. vV ’9 — 0 gor *ilo d

( ’ ) Wiar VuOJ’Fﬁ TB'JV”O 0o (1 h) ”0 (437)

with Vo = /w/ﬁ. Now, recalling that the rays are calculated in FRTC using the cold plasma

approximation, an expression far-particle contributiorK ,, to the spatial damping rate can be

readily obtained

(4.38)

(4.39)

wherel” is given by Eq.(3.6).
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Analytical consideration

To make clear general features of the Fokker-Planck equation, we consider the simplest case of
a circular large aspect ratio tokamak with1+2¢ sin’(6/2), wheree=r/R<<1 is the inverse

aspect ratio. Also, we assume for simplicity thats independent d¥, D,=D (V). Then to the

lowest order ire we have from Eq.(4.20)

Dy = Do(Vy) g (k) (4.40)

wherek=v?,,/26V’ 1, 01:=1, 012 G, aNd Ty are expressed in terms of elliptic integrals. Particles
with k>1 are passing and those witl are trapped. We do not write down the explicit expressions
for 9,2 Oy, andTg. Instead, we consider two limiting cases. Kor o, that corresponds to the
cylindrical limit, g,,0k™* andg,,[k >. We see, that toroidal corrections die out very slowly and
the true cylindrical limit is hardly achieved in real tokamaks.

For the opposite case of deeply trapped particted, g, k andg,, [k*. Close to the
trapped-passing boundaky 1 all four elements of the diffusion tensor are of the same order of
magnitude.

Consider now the; dependence of the factdy in Eq.(4.40). According to Eq.(4.14),

Uvﬁ at largev. One can also expect thag vanishes rather rapidly &t - v since the LH
spectrum is cut here very sharply. Then, introducing a normalized diffusion coefficient

Ign =D,/vZv we can take, for the qualitative analy&,(/m) in the form

D, =D,/ v) V>V

D.=0 V<V (4.41)

n

whereD, is a constant.
Substituting Eq.(4.41) into Eq.(4.26) and introducing non-dimensional variables

—_ -1/5 VDO — -15 V|| 0
w = Dn V_D’ u= Dn '\/2__8\/D (442)
we obtain:
0H ., 9,0F GdFH 0, 0F gy, 0F 1
—HIF + 22 22 l‘l F+ £_+i_ =Q
w% w? dN w? oub wo”w%,v w2 du w? ow (4.43)
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The tensor elementg, are now functions of the ratigw, therefore the left-hand side of
Eq.(4.43) is independent of any numerical parameters. In the absence of the collisional velocity-
space diffusion, the “active zone’>w, wherew_= D *°, can be considered independently of
regionw<w The boundary conditions for the solution in wwew region are:

od
*t 01

g12£ W: 0, a w= W, (444)

ou
®=0 a u=u

where

-1/5

u,= D,

The second condition follows from the demand thaindS- are continuous at=w; the
last one implies that the flux is dominated by collisional slowing-dowz@t Suppose now
thatu>>1 and consider the regiovww- 1<<u<u neglecting the diffusion tensor elemegyis

andg,,, puttingg,;=1, introducings = U/ W= \(H’\é — V' and the normalized distribution
function

= s AV, F

4

whereAV, = W'ArT,v, ./ H, is the shell volume at- 0. Then Eq.(4.43) takes the form

— sCD)+ Wd—wng% W_EE_ 5(v v ) (4.45)

This equation is independentoénd describes the cylindrical case. The general solution
of Eq.(4.45) can be sought in the form

*=3 U (v (4.46)
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where the functiongV, satisfy the equation

1d 1 dw, 0,
—— W, +_— =0
W dw H (4.47)

Solutions vanishing at - o are

W, = Cn%exp -w° /10)/\{”1(\/\? /5) (4.48)

whereC, is a constant, and/, , are the Witteker functions with=(1+p,)/5 andg=3/10. The
boundary conditioN\/n'(V\b): 0, following from Eq.(4.44), determines an infinite spectrum of

positive eigenvaluep,. Thew; dependence of several first eigenvalues found numerically is
shown in Fig.3. Atw=0 which meand, - o, we havep,=5n. The eigenfunction¥V, are
orthogonal and we suppose that they are normalized by

/5

[we W W, dwe s, (4.49)
Wo

50

401

30—

ZLC
20—
10—
00 0.5 1%0 1%5 2.%
Wi

Fig.3. Eigenvalue spectrum of Eq. (4.47)

Consider now the functiond,(s) of Eq.(4.40). These functions satisfy the first-order
equation

dis(sun)— U, = A(9 (4.50)
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where

A(S) = Af we'™ Wa( v y) dw "AETS W W)

A= (v, /DI A andw(9 =4\ —( - V) $/ [ °y.
Solutions satisfying the boundary conditidn(1) = 0 are
U, (9)= [ X™ A ¥ dx (4.51)
Consider this expression at largdt can be shown, using the WKB approximation for the

W,(w) functions withn>>1, that the factor Ax) in Eq.(4.51) varies slowly comparedXo ™.
Then Eq.(4.51) gives

U(s) - 2O o (4.52)
Introduce
&(s w) = io A“p(ns) (4.53)
Then
0= 8+5 (9 -2 (w (4.5

According to Eq.(4.52), the infinite sum in this expression converges rather rapidly,
therefore, to a good approximation, only few first terms can be kept. A numerical analysis shows
that a fairly good result is achieved even with the singleterm retained. Omitted terms then
have a noticeable value only in the immediate vicinity of the boursddrythey just guarantee
fulfillment of the boundary conditio®(1)=0. Since the functioAy(s) is nearly constant over
the integration region in Eq.(4.51), we have

A O, 10
d= $+ngo ' -p—OEEXp(WS IS (W)WY (W) (4.55)

Recalling the definition of the functio®, we conclude that it satisfies the ordinary
differential equation

20



1ld ® ldo, O

—_— + 5 -
~dw W aw s (Vv-v,) (4.56)

with s entering as a parameter. Required solution of this equation is readily found by direct

integration. The functio® is a slowly varying function of the parameters andithependence
of the distribution functioP(s, w) is essentially determined by the second term in the left-hand
side of Eq.(4.55). Its form depends on the eigenvg}wehich increases with the normalized

diffusion coefficientDn:Dc/VéV. This function is shown in Fig.4. &,>2.7, whenp,<1, the
distribution has an integrable singularityaD. In this case, the smal|-fraction of the fast ion
population is increased significantly. B <2.7 the singularity vanishes and the distribution
becomes more uniform.

This solution of the Fokker-Planck equation is valid in the cylindrical geometry. In the
toroidal case it can be considered as an asymptotical solution in the passing particle domain. In
accordance with its behaviour, one can expect a significant growth in number of trapped particles
atD,>2.7 and only a weak effect of the RF field on ¢éheparticle population at smallé,,

Unfortunately, similar analysis for the trapped particles domain seems to be rather
speculative. In the asymptotical regigr>w the Fokker-Planck equation has an infinite set of

4

. | . |
O0 0.5 1.0

Dn

U1 JG97.450/4c

[y

Fig.4. The fundamental eigemaopleof Eq. (4.47) as a function of normalized diffusion coeffidignt

particular solutions of the forf®, = U™ W (W) whereW, are again expressed in terms of the
Witteker functions. However, the spectrum now includes eigenvalues$ both signs, the
eigenfunctionsW,, are not orthogonal and completeness of the system is an open question.
Assuming, nevertheless, that the solution is dominated by an eigenfunction with the smallest
positive eigenvalue (which appears to be close to unity) we obtain a reasonable, nearly uniform,
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0.

0.

distribution of deeply trapped particles owgr An absolute value of the distribution function
here can be found demanding that the calculated flux across the boupedawy to be in
agreement with the source of the particles. Asymptotical solutions found in this way at small and
largeu, can be connected by a smooth monotonic curve across the trapped-passing boundary.

5. NUMERICAL RESULTS AND CONCLUSIONS

In this section we illustrate the actual behaviour of the distribution funEtlmna numerical
example for an imaginary JET shot with central electron tempergisré.3keV, central ion
temperaturel,,=20keV, central plasma density,=1.9x10°m™ and RF poweP,_,=6Mw. In
Figs 5a-5c¢ the elements of normalized diiffusion teBgoare shown as functionswf, andy.

T
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Fig.5. Elements of the normalized diffusion tenSgr velocities are measured in units of alpha particle birth
velocity. a)Dy;, b) D15, €) Dy,
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Fig.6. Contours of the distribution functiénin the ¢,v,) plane for various values of the magnification fagfor
a) x=0, b) x=1, ¢) x=2, d) x=4. The direct line indicates the trapped-passing boundary, the figures denote relative
values of thé function.

Their shapes are in qualitative agreement with the above analysis, however, “toroidal” elements
D,, andD;, appear to be several times smaller then the “cylindrical” eleBgnio illustrate

the RF power effect on the distribution function, we have solved Eq.(4.31) with the above diffusion
tensor multiplied by a constant facppfor various values of this parameter. ResultsyfeD, 1,

2 and 4 are presented in Figs.6a-6d. One can see that the distribution function has no spherical
symmetry in co-ordinates,,, v, even in the absence of the RF power. Formation of the fast
particle tail with the groth of the quasilinear diffusion is predominantly observed in the trapped

particle region. This effect is again illustrated in Fig.7. Finaly, Fig.8 shows the furfg,t(ov@

,6) which determines the-particle wave damping.
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Fig.7. The distribution functioR vs. \j atv,=v,; Broken line  Fig.8. One-dimensional distribution functitﬁ’g, (v6)
X=0, dashed lingy=1, solid line xy=4. for x=4.

Principal conclusions one can draw from results of this work are that:

1. The quasilinear diffusion of fast ions interacting with the LH waves is essentually two-
dimensional.

2. Acylindrical model is a poor approximation for the fast ion minority in real tokamaks.

3. The mostimportant effect of LH waves ondhparticle population is, probably, an increase
of the trapped particle fraction which can influence the plasma stability. However, no large
change in the-particle wave damping due to the toroidal effects can be expected. This
means, taking into account a fairly sneadparticle contribution to the total wave damping,
that a simple 1D model can be, after all, used in self-consistent ray tracing calculations.
This assumption will be tested in a future work.
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