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1. INTRODUCTION

In this report the development of a numerical model for studying interaction between LH waves

and thermonuclear α -particles in tokamak geometry is described in view of the DT experiments

on JET. Motivation for this work is the obvious fact that a considerable part of α -particles are

born in a tokamak plasma as trapped particles. Their interaction with the LH waves can not be

described accurately enough using the standard quasilinear (Fokker-Planck) approach. In fact,

the RF effect on the α-particles is adequately described as the quasilinear diffusion in the space

of variables which are constants of drift motion. In an axisymmetrical magnetic configuration,

particle drift orbits are determined by three independent integrals of motion which can be, for

example, the particle energy, the transverse adiabatic invariant and the canonical toroidal

momentum. Adding to that the fast ion spatial diffusion makes the problem at least four-

dimensional. This seems much too difficult for any comprehensive analysis. To keep the computer

run time and required memory amount for numerical calculations within acceptable limits one is

forced to sacrifice a part of the full description.

In the model adopted in this work, no spatial diffusion is assumed and the “thin banana”

approximation is used. This reduces calculation of the fast ion distribution function to solving a

two-dimensional Fokker-Planck equation for each radial grid point.

The computational basis of this work is an improved version of the fast ray tracing code

(FRTC) described in Ref.[1]. The most important modifications of the code are the possibility to

use arbitrary equilibrium configurations, including those with X-points and a module permitting

self-consistent treatment of α-particles with the use of the 1D model of Ref.[2].

The report is organized as follows. Calculation of the magnetic toroidal coordinates is

described in Sec.2. For the reader’s convenience, the ray tracing procedure is outlined in Sec.3,

following Ref.[1]. Section 4 is devoted to the alpha particle treatment. It includes discussion of

the model, formulation of the Fokker-Planck equation, analytical investigation of the limiting

cases and outline of the used numerical approach. Finally, numerical calculations for JET

conditions and conclusions are given in Sec. 5.

2. EQUILIBRIUM AND COORDINATES

In this code all calculations are performed in toroidal coordinates related to the tokamak magnetic

field. The code itself, however, does not compute required equilibrium configurations. Instead,

an equilibrium determined independently is used as external input. The equilibrium codes usually

present their output data in a convenient laboratory coordinate system. To make these data

available, the simulation code has a program finding the toroidal coordinates for a given

equilibrium. In this Section, the method used for this purpose is described. The problem can be
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formulated as follows. Introduce in the meridian tokamak cross-section general coordinates r, θ,

with r≥0 and 0≤θ≤2π, related to the Cartesian coordinates x,z by

( )
( )

x x aX r

z z aZ r

= +

= +
0

0

,

,

θ
θ

(2.1)

here the x axis is directed along the major radius, x0, z0 denote the magnetic axis position, the

“minor radius” a is the last magnetic surface half-width and X(r,θ), Z(r,θ) are arbitrary functions.

Fix these functions by the demand that curves described by Eq.(2.1) at r=const and θ varying

from zero to 2π coincide, for all r, with the flux surfaces contours of the real magnetic

configuration. Then the quantities r, θ given by Eq.(2.1), together with the toroidal angle ϕ, are

the sought magnetic coordinates with the “radius” r denoting the magnetic flux surface and θ
being the poloidal generalized angle at this surface. In fact, required coordinate transformation

can be found only approximately with the use of the best-fit procedure.

Consider, first, equilibrium having up-down symmetry and no X-points. In this case, a

satisfactory result is obtained for any conventional tokamak configuration with X=X0, Z=Z0,

where
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(2.2)

Here the functions ∆, λ and γ characterize the Shafranov shift, ellipticity and triangularity

of the flux surface r=const, respectively. These functions together with the function r(Ψ) where

Ψ is the poloidal flux, are found in the following way. First, for N, typically 100, flux surfaces

Ψ(x,z)=Ψi values of the parameters ri, ∆i=∆(ri), λi=λ(ri), γi=γ(ri) are determined demanding

extreme points of “theoretical” curves of Eqs.(2.1)-(2.2) to coincide with extreme points of the

real flux surface contours. These calculations are performed explicitly; in particular, they give

r=1 for the last magnetic surface. Then, each four sets of N found points are fitted, using the

least-square method, to a polynomial of r with prescribed, if necessary behavior at r→0.

Consider now an equilibrium with a single X-point. Since the flux Ψ has a singularity in

this point, we amend the functions X and Z by singular terms which describe correctly the field

behavior in the immediate vicinity of the X-point within the separatrix:

X X

Z Z
X

Z

= +
= +

0

0

Φ
Φ (2.3)
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with Ai, Bi, α and Ci being r-independent constants, and Di
(N) is a N-th order trigonometric

polynomial with r-dependent coefficients. The θ∗ parameter is the angular coordinate of the X-

point on the separatrix r=1. This parameter can be chosen arbitrary. Assuming, for certainty, that

the X-point is located in the lower half-plane z<0, we put, for convenience, θ∗=3π/2. Fitted

parameters and functions in the coordinate transformation Eq.(2.3) are found iteratively. First,

the functions r(Ψ), ∆, λ and γ are determined ignoring the functions Φ and applying above

procedure to the upper part of the magnetic configuration at z>0. In further fitting process these

functions are hold unchanged. In the next step, parameters Ai, Bi which control location of the X-

point and direction of the separatrix branches are fixed. Since only a small angular interval

around the θ∗=3π/2 is involved at this stage, results are insensitive to the parameters Ci and the

calculations are performed with Ci=0. Then, ignoring the Di terms, values of the parameters Ci,

minimizing the mean-squared difference between real and “theoretical” separatrix are found.

Having the separatrix properly described, the parameter α is adjusted to guarantee exact spatial

location of the point θ=θ∗ on a flux surface close to the separatrix, typically, with r=0.8. This

takes account of a correct description of the field in the boundary layer. Finally, optimum values

of coefficients in the functions Di
(N) are found at 10 flux surfaces with the use of the least-square

method and fitted to second-order polynomials of r. Because of the relative simplicity of the

coordinate transformation Eq.(2.3) and step by step fitting routine finding the magnetic coordinates

is rather fast.

Results obtained with this procedure for a typical JET equilibrium are illustrated in Fig.1

for flux surfaces and in Fig.2 for the poloidal magnetic field which is much more sensitive to the

accuracy of used approximations.
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Fig.1. Poloidal flux surfaces for a typical JET equilibrium.

Dashed lines are from the numerical solution of the Grad-

Shafranov equation, solid lines from Eq.(2.3)
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Fig.2. Poloidal magnetic field for the case of Fig.1. on three

flux surfaces.
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3. RAY TRACING PROCEDURE

In order to proceed with the ray calculations, one has to specify spatial co-ordinates qi (i=1, 2, 3)

and express the left hand side of the dispersion  relation H=0 in terms of these co-ordinates and

the canonical conjugate momenta pi. Then ray trajectories in the phase space (p,q) obey the

canonical equations

dq

dt

H

p
=

∂
∂   

dp

dt

H

q
= −

∂
∂ (3.1)

The code uses coordinates described in Sec.2 with q1=r, q2=θ, q3=ϕ. The canonical momenta

are denoted as kr, m, n, respectively. Assuming an axisymmetric tokamak plasma geometry ϕ
becomes a cyclic variable and n a constant of motion. Then Eqs.(3.1) are reduced to a system of

four equations for r, kr, θ and m. This system, together with the power evolution equation, is

solved numerically in all known ray tracing codes. In the present code, however, we utilize a

different representation of ray equations taking the radial coordinate as the independent variable.

To perform a transformation to this variable one has to find kr=K(r,θ,m) from the dispersion

relation and use K as a Hamiltonian function in canonical equations for θ(r) and m(r):

d

dr

K

m

θ ∂
∂

= −       
dm

dr

K
=

∂
∂θ

(3.2)

Unlike the initial Hamiltonian function H, the new Hamiltonian K is not preserved along

the ray. In the present version of the code we calculate the rays using the cold plasma approximation

for the background plasma and considering the α-particles as a small minority, i.e. neglecting

their contribution in the real part of the dispersion relation. Then the latter takes the form

( )[ ( ) ] ( )[ ]ε ε ε ε ε ε⊥ ⊥ ⊥ ⊥ ⊥ ⊥− + − − + − − =n n g n n gll ll ll ll
4 2 2 2 2

2
2 0 (3.3)

where ε⊥=εxx, εll=εzz  and g=-iεxy  are the non-vanishing elements of the cold plasma dielectric

tensor in the coordinate system with the z axis along the magnetic field. Then the new Hamiltoninan

function K is given by an explicit expression. The thermal corrections should be added to the

term ε ⊥ ⊥n
4  in the dispersion relation close to the lower hybrid resonance ε ⊥ =0  that makes the

determination of the Hamiltonian K more difficult. We do not consider this case here, assuming

the wave frequency ω to be sufficiently high. The cold plasma dispersion relation has at most

four real roots Kj, (j=1, 2, 3, 4) which represent the slow and the fast wave modes propagating in

opposite directions. The root must be specified at the starting point of a ray together with the

initial values of m and θ. The selected branch of the Hamiltoninan function K is to be used in
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Eqs.(3.2) until a “root intersection point” is reached. The intersection occurs at points where two

roots of the dispersion relation merge. It corresponds to a cut-off when merging roots belong to

the same type of wave modes or to a slow-fast (fast-slow) linear conversion in the opposite case.

Since the radial ray direction always changes at the root intersection points, these points can be

generally called “the turning points”. The ray is to be followed using the new branch of K after

each intersection. Therefore, the root number j is an additional variable changing its value at

isolated points along a ray. Representation of the ray equation in the form of Eqs(3.2) has proved

to be very helpful. First of all, the ray calculations can now be performed directly on the radial

grid prescribed for presentation of the RF driven current profile. More importantly, reducing the

number of ray equations from four to only two permits one to utilize with high efficiency the

Richardson-Bulirsch-Stoer (RBS) method Ref.[3] for solving them. In this method, a sequence

of separate attempts to cross the interval h=rk +1-rk (where k is the flux surface number) is made

with an increasing number of substeps. The final answer is found by effective extrapolation of

the intermediate results obtained in these attempts to zero substep size. This procedure, applied

to Eqs(3.2), speeds up the calculations considerably. However, it has difficulties in dealing with

the root intersection points. The program recognizes the approach to an intersection point from

the current ray data and abandons the RBS procedure. Tracing is performed in a narrow vicinity

of the point by using the regular Runge-Kutta solution of four equations. Then the program

returns back to the fast computational mode (the RBS procedure). The relative lengths of the

trajectory portions traced with the Runge-Kutta method are short. Nevertheless, they consume

about half of the CPU time in a typical computer run. Although the described numerical procedure

may seem rather formidable, it actually works very effectively and provides a significant part of

the code speed enhancement.

The RF power Pi assigned to the i-th ray is calculated in parallel with ray tracing from the

relation

( ) ( )P r P r dri k i k

r

r

k

k

+ =












+

∫1 2
1

exp κ (3.4)

where κ is the spatial damping rate. It consists of three parts, κ=κLe+κ α +κC, resulting from

electron Landau damping, hot ion damping and Coulomb collisions, respectively. The κLe term

here has the form

κ
∂
∂Le

f

v
= Γ (3.5)
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with f being the one dimensional (“parallel”) electron distribution function normalized to unity

and Γ  is independent of f:
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(3.6)

Each individual ray is followed until its assigned power falls below a prescribed value.

The flux surface averaged electron quasilinear diffusion coefficient De is calculated on

each flux surface rk on a flexible v grid. To set limits to the grid we fix lower and upper extreme

points of the v axis reached by any of the rays in each iteration. If either of these points happens

to lie outside the existing grid, it is taken as a new extreme grid value; in the opposite case the v

range remains unchanged.The v grid is divided into two intervals having different spacings, that

at lower v being finer. The quasilinear diffusion coefficient De  is determined from the relation

Q n m D v
f

vL e e e=
∂
∂ (3.7)

where QL(r,v) is the flux surface averaged RF power absorbed by plasma electrons via Landau

mechanism. The RF power going to electrons is found from

Q
V v

PL
k n

ijkn
i j

= ∑1
∆ ∆

∆
,

(3.8)

where ∆Vk is the volume between the flux surfaces represented by radial co-ordinates rk+1 and rk,

∆vn= vn+1-vn is the interval between the (n+1)-th and n-th points of the v axis, ∆Pijkn is the power

lost by the ray in its j-th transit through the phase space element ∆Vk∆vn due to the Landau

damping and summation over rays and transits. The RF power Pi varies smoothly over most of

the ray, therefore power calculations using Eq.(3.4) with the fixed step size present no problem

in nearly the entire phase space. The only exception may be the small-v region where γLe increases

sharply. One can expect that as Pi varies very rapidly here, the adopted r-grid spacing is too

coarse to guarantee the necessary accuracy in power deposition calculations. However, this is

not the case. In fact, behaviour of the distribution function f close to the lower boundary of the

quasilinear plateau can be investigated analytically, independently of the ray tracing. The analysis

shows that the diffusion coefficient De is practically a linear function of v in the region of interest.

As a result the described procedure provides a reliable self-consistent solution for the electron

distribution function and the diffusion coefficient at all v and r.
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A self-consistent relation between the diffusion coefficient and the electron distribution

function is found in an iteration process that involves the Fokker-Planck and power evolution

equations. The ray data necessary for these calculations include four quantities: flux surface

number, velocity v, collisional damping rate γC and coefficient Γ . These quantities are calculated

in sequence for all rays and stored in four arrays in the form of a linear structure. More detailed

information concerning the last point of each ray is also recorded. If the length of any particular

ray increases in the iteration process due to a change of the electron distribution function, a new

fragment is calculated using this as the initial condition and stored in the same array. This operation

can be repeated for each ray as many times as necessary.

For each step of the iteration process the CPU time is mostly determined by the total

length of the newly calculated ray pieces. Typically, the ray length is a maximum at the Maxwellian

electron distribution and decreases as the quasilinear plateau is formed. Therefore, the first iteration

consumes most of the total run time when the initial distribution function is a Maxwellian. To

avoid calculation of excessive ray fragments at earlier stages of iteration, we may artificially

limit the ray length, increasing it gradually until rays are allowed to live their natural lifetime. In

this scenario, the total CPU time is reduced and distributed more uniformly over the iteration

steps.

The iteration convergence deteriorates dramatically in certain tokamak regimes due to the

presence of “overlong rays”. These regimes are characterized by a large number of small islands

in the phase space of the ray equations. A finite fraction of ray trajectories is launched inside the

islands and remains confined there with nearly constant Nll . These rays, practically unaffected

by Landau damping, have extremely long lengths. In spite of their relatively small number and

negligible contribution to the current density, the overlong trajectories consume a considerable

part of the CPU time and are even capable of making the ray tracing impossible. To cope with

this problem, the code uses a special procedure for selecting the overlong rays. If the return of

the trajectory to a small vicinity of its starting point occurs periodically for a given number of

times, the ray is identified as overlong and terminated. This procedure may be helpful in certain

cases.

A simple 1-D model of the electron Fokker-Planck equation is used in the code to avoid

time consuming numerical solution of a partial differential equation in the iterative cycle.

4. MODEL FOR ALPHA PARTICLES

Fokker-Planck equation

The quasilinear diffusion of ions interacting with the LH waves is discussed in some detail in the

literature Refs.[2, 4] for the case of cylindrical geometry with uniform magnetic field. Including

toroidal effects requires certain modification in the approach which we briefly outline in this

section.
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An important feature of interaction between energetic ions and RF fields in tokamaks is

the fact that the particle’s transit time is very small in both collisional and quasilinear time

scales. For example, in typical JET regimes the difference is more than 6 order of magnitude for

thermonuclear α-particles. In these conditions, the quasilinear effect of the RF field is effectively

averaged over particle orbits. Then it is natural to describe the α-particle population in terms of

variables that are constants of motion in the absence of the RF field. Transition to these variables

means that we consider quasi-particles represented by a proper fragment of the orbit (by the

“banana” in the case of the trapped ions) rather than by the particles themselves, in the same way

as the cyclotron circles are treated in the drift theory. The unperturbed particle motion in a

tokamak is adequately described by the drift approximation. Then, in an axisymmetrical

configuration, an orbit is determined by three integrals of drift motion. To reduce the number of

variables and thus make the problem treatable for the code intended for routine computation, we

assume that the unperturbed motion is along the field lines. In this approximation which ignores

passing particle excursions from the flux surfaces and finite “banana” width for trapped particles,

an orbit is fully determined by two constants of motion. They may be chosen in various ways,

for example, ε=v2 and the transverse adiabatic invariant µ=v⊥
2/H can be used. The most preferable

variables are, however, v⊥0 and vll0  which are values of v⊥ and vll  at the extreme low field point of

the orbit. For further simplification, we also assume the absence of the fast ion spatial diffusion.

Then it is convenient to consider α-particles confined in a shell between flux surfaces r, r+ ∆r

and introduce the function F(v⊥0,vll0,r) describing their distribution over integrals of motion. The

argument r of the function is actually a parameter denoting the shell.

Having the function F known, the “usual” α-particle distribution function fα(v⊥,vll,r,θ)

which is the particle phase space density can be easily found (see Eq.(4.20)). This function is

required, in particular, for the calculation of the wave damping. The steady-state distribution

function Fα(vll0,v⊥0) satisfies the Fokker-Planck equation

( )∂
∂

S
v0

0 0= ⊥Q v vll , (4.1)

where the right-hand side describes the birth of α-particles within the shell volume and the left-

hand side is the divergence in the (v⊥0, vll0) space of the flux S=SC +SQL resulting from collisions

and RF diffusion respectively. The equation implies a sink at v→0. We begin with the RF induced

flux SQL. Generally, two-dimensional diffusion is determined by a diffusion tensor Dik, (i, k=1,

2), where the subscripts 1 and 2 refer to the perpendicular and the parallel directions, respectively.

We find the diffusion tensor heuristically, using the random walk approximation. To this end, we

calculate in the linear approximation variations ∆v⊥0 (T) and ∆vll0(T) of v⊥0 and vll0 resulting

from the particle interaction with the RF field during the time interval T and define
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D
v

T
D

v v

T
D

v

T
ll ll

1 1
0

2

1 2
0 0

2

2 2
0

2

2 2 2
=

〈 〉
=

〈 〉
=

〈 〉⊥ ⊥, ,
∆ ∆ ∆

(4.2)

where, in the spirit of the quasilinear theory, variations ∆v⊥0(T) and ∆vl0(T) are supposed to be

random quantities and the symbol 〈 〉 denotes the ensemble averaging. To find the velocity

variations consider a particle with given values of µ=v⊥
2/H and ε=v2 and suppose that it

experiences an instant random “kick” in a moment of time t=t i resulting in a variation ∆v⊥ of v⊥.

Then µ and ε also change with

δµ µ δ
= ⊥2

v

Hi
(4.3)

and

δε δµ µ δ= = ⊥H H vi2 (4.4)

where Hi=H(r,θ(ti)). Assuming that the “kicks” are generated continuously, we can calculate, in

linear approximation, total changes in ε and µ over the time interval T, which includes many

bounce periods:

( )
( )

∆µ µ
δ

= ⊥∫2
v t

H t
dt

T
(4.5)

and

( )∆ε µ δ= ⊥∫2 v t H t dt
T

( )
(4.6)

where H(t)=H(r,θ(t)) and the integration is performed along the unperturbed orbit. Now, using

definition of µ and ε, the required variation of v⊥0 and vll0 can be found:

( )
( )

∆v
v t

h t
dt

T

⊥
⊥= ∫0

δ
(4.7)

( )∆v
v

v
h

h
v t dtll

ll T

0
0

0

1
= −





⊥
⊥∫ δ (4.8)
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here h=H/Hmin with Hmin  being the minimum value of the magnetic field on the flux surface.

Considering ∆v⊥(t) as a random function we see that the random quantities ∆v⊥0 and ∆vll0 are not

related functionally, although they are statistically correlated. This means that the random walk

is essentially two-dimensional and can not be reduced to one-dimensional diffusion along lines

in the (v⊥0, vll0) plane.

Supposing the correlation time of the velocity variations to be short compared to the

integration time T, we can put

( ) ( ) ( )〈 ′ 〉 = − ′⊥ ⊥δ δ δv t v t D t t0 (4.9)

to obtain

D
T

D

h
dt1 1

01
= ∫ (4.10)

( )D
v

v T
h

D

h
dt

ll
2 2

0

2
2 01

1=






 −⊥ ∫ (4.11)

( )D
T

v

v
h

D

h
dt

ll
1 2

0 01
1=







 −⊥ ∫ (4.12)

The quantity D0 here is, obviously, the local diffusion coefficient. This can be easily confirmed

by the direct calculation. We should find ∆v⊥ from the linearized equation of motion in the

presence of the RF field. For LH waves having k⊥>>kll, E⊥>>Ell  and k⊥v⊥/ωcα>>1, where ωcα is

the α-particle cyclotron frequency, the “kick” from the field component with a given k⊥ is generated

at the points of particle orbit where the Landau resonance condition

( )k v⊥ ⊥ =0 t ω (4.13)

is locally satisfied. The contribution of an individual resonance is calculated in a straight-forward

way. Then, making standard quasilinear theory assumptions concerning the RF field we obtain

( ) ( )
( )( )

D v
Z e

m
dn

E n

c n v

c

n vll
ll

0

2 2

2

2

2 2 2
1 2

3

1
⊥

⊥

⊥ ⊥ ⊥ ⊥

=
−







∫α

αω /
/ (4.14)

Here E⊥

2

 is a local value (depending on spatial coordinates r,θ,ϕ) of the LH perpendicular

spectral density, nll=kllc/ω, n⊥=k⊥c/ω with n⊥ being a function of nll determined by the LH
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dispersion relation, v⊥= hv⊥ 0 , Zα and mα are the charge number and the mass of the fast ions

and integration performed over the nll  region where ( )c n v2 2 2/ ⊥ ⊥ <1. The function D0(v⊥)  in

Eq.(4.14) is the familiar RF diffusion coefficient. To proceed with the calculation of the diffusion

tensor we may replace the time integration in Eqs (4.10)-(4.12) by the integration along the field

line which, in turn, can be transformed, under condition T>>TB where TB is the bounce period,

into integration over the flux surface:

( )1

T
dt W dS. . . . . .→ ∫∫ θ (4.15)

where W(θ) is a weight function normalized to unity. This expression implies that the orbit goes

many times round the torus during the integration time. Passing particles make these rotations

following the field lines. For trapped particles net toroidal displacement is due to precession of

“banana” orbits and the transit time is increased by a factor r/ρα, where ρα is the α-particle

gyroradius. Nevertheless, it remains sufficiently small for Eq.(4.15) to be still valid. To find the

weight function we note that

( )2 2 2π θ θR W g d
dt

TB

= (4.16)

where dt in the right-hand side is the time which a particle spends within the poloidal angle

interval dθ during a single bounce period TB and g22 is the metric tensor element. Then with the

use of the relation

g
d

dt
v v

H

Hp ll
p

2 2

θ
≡ = (4.17)

we obtain:

( )W
T

H

H RvB p ll

θ
π

=
1

2 (4.18)

with

( )v v v hll ll= − −⊥0
2

0
2 1
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The bounce period can be now written in the form

T
H

H

g

v
dB

p ll

= ∫ 2 2 θ (4.19)

For the elements of the diffusion tensor we obtain

( )
D

D W

h
dsik

ik

S r

= ∫
Λ 0

(4.20)

where Λ11=1, Λ12=h-1, Λ22=(h-1)2 and the integration is performed over the flux surface r=const.

Having the diffusion tensor found is still insufficient for formulation of the Fokker-Plank equation.

The problem here lies in the fact that the averaging according to Eq.(4.20) and the v0

differentiations are non-commutative operations. Therefore, the result depends on the position

of the diffusion tensor elements (or, generally, of any v-dependent factors) relative to differential

operators in the flux expression. The explicit form of the quasilinear operator in Eq.(4.1). can be

found in the following way. Consider, along with the function F(v⊥0,vll0) also the phase density

fα(v⊥0,vll0,θ). It can be easily shown that these functions are related by

f
H

rT v
F

B ll

α
ψ

=
′

0

0∆ (4.21)

where ψ′∆r is the poloidal flux confined within the shell. The expression ∆V=dSdl, where dl=ψ′∆r/

2πRHp is the local thickness of the shell, has been used for the shell volume in the Eq.(4.21)

derivation. According to the above analysis, effect of the RF field on the  α-particles can be

described as the “local” quasilinear diffusion given by the operator

1
0

0v v
v D

f

v⊥ ⊥
⊥

⊥











∂
∂

∂
∂

α
(4.22)

Let us calculate now the variation rate δ&N of the particle number within the shell volume

in the velocity interval dv0 due to the quasilinear difusion. Expressing this quantity in terms of

the functions F and fα respectively, we can write, by difinition,

( )∂
∂

∂
∂

∂
∂

αS
v

QL F
dV

v v
v D

f

v

dv

dv0
0

0 0

1
=



















⊥ ⊥
⊥

⊥
∫ (4.23)
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where dv/dv0 is the Jacobian of the coordinate transformation and integration is performed over

the shell volume. Direct, although rather tedious calculation of the integral with the use of

Eqs.(4.18)-(4.20) represents it in the form of the left-hand side of Eq.(4.23) with

( )S
v

QL
ll B

ll B

v T D
F

v T
=







0

0 0

$ ∂
∂ (4.24)

where $D  is the diffusion tensor with the elements Dik. This expression determines the RF induced

flux of the α-particles.

Consider now the collisional flux SC. The effect of the Colomb collisions on energetic ions

can be described as a superposition of the velocity space diffusion due to the pitch-angle scattering

and the slowing down resulting from the dynamical friction between the ions and background

plasma electrons. The relative role of these two processes depends on the relation between the

fast ion velocity v and the critical velocity vc given by

v Z
T

m m
vc

e

p e

Te
=









 ≈3

2
0 09

3 2
1 3

π ~
.

/
/

(4.25)

At v≅vc both pitch-angle scattering and slowing down must be included, at v3>> vc
3
 the

slowing down dominates and the pitch-angle scattering can be ignored. Now we note that only

α-particles having sufficiently high velocity interact with the LH waves. According to Eq (4.13),

the necessary condition for the quasilinear diffusion of a particle with a given v⊥ is the presence

of the waves having ω/k⊥<v⊥ in the spectrum. However, the minimum perpendicular phase velocity

ω/k⊥ is limited, since k⊥ is related to kll  via the dispersion relation and kll  is limited due to the

electron Landau damping:

ω
k

v
ll

Te







 >

2

5 (4.26)

where v T mT e ce

2 2= / . Using for estimation the electrostatic approximation for k⊥, we obtain for

the minimum value v∗ of the phase velocity ω/k⊥ the expression

v vT pee∗ = 5 ω ω/ (4.27)

Only the α-particles with v⊥>v∗ experience the quasilinear diffusion. Comparing v∗ with

the critical velocity vc we conclude that under the condition ω/ωpD>2.5 which is readily satisfied
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in LHCD experiments, the pitch-angle scattering is negligible for these particles. Here ωpD is the

deuterium ion frequency which is close to the lower hybrid frequency in low-density regimes

typical for LHCD experiments. Since particles born with v⊥<v∗ drift irreversibly downward in

the velocity space, the interaction between thermonuclear α-particles and the LH waves only

occurs at v∗<vα. This inequality can be written as ω ω/ /pD < 20 Te  where the electron

temperature is in keV.

Coming back to the calculation of the flux SC, we must find changes in v⊥0 and vll0 produced

by the collisions during the time interval T. The slowing down rate due to dynamical friction is

given by d dtv v= −ν  where ν is the collision frequency

ν
π α

α

=
4 2

3

4

3 2

2e n

T

Z m

m
e

e

e

/
ln Λ (4.28)

with lnΛ being the Colomb logarithm. Supposing that νT<<1 we find ∆εc=-νTε, ∆µc=-νTµ,

where the superscript “c” stands for “collisional”. Then similar expressions also follow for vc
⊥0

and vc
ll0: ∆vc

⊥0 =-νTv⊥0, ∆vc
ll0 =-νTvll0. Now neglecting the pitch-angle scattering we can write

the collisional flux SC in the form:

S vC = −ν 0F (4.29)

To formulate finally the Fokker-Planck equation for the distribution function F(v⊥0,vll0) we

have to obtain the expression for the α-particle source Q(v⊥0,vll0). The source represents the α-

particle birth-rate in the volume between flux surfaces r, r+ ∆r per unite volume in the velocity

space(v⊥0, vll0). A straight-forward calculation gives

( )Q
rT v

H

N

v
v vB ll=

′
−

ψ
π

δ
α

α
∆ 0

24min

&
(4.30)

where &N  is an α-particle birth-rate per unite volume. Now, collecting Eqs.(4.1),(4.2) and (4.29)

we can finally write the Fokker-Planck equation

( )1

0 0
0 1 1

0
1 2

0
0

0
2 2 2 1

0
0 0v v

v D
F

v
D

F

v
v F

v
D

F

v
D

F

v
v F Q v v

ll ll llo
ll o ll

⊥ ⊥
⊥

⊥
⊥

⊥
⊥+ +



















+ + +








=
∂

∂
∂

∂
∂

∂
ν

∂
∂

∂
∂

∂
∂

ν , , (4.31)

Unlike the cylindrical geometry case, Eq (4.31) can not be integrated over vll to obtain an

ordinary differential equation of an 1-D distribution function.
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Computation of the alpha-particle quasilinear diffusion coefficient

The a-particle diffusion tensor is computed using a procedure which is a direct generalization of

one employed in the electron calculations and described in Sec.3. According to Eqs.(4.15) and

(4.20), the perpendicular spectral density E⊥(n||)
2 integrated with a proper weight over nll , φ

and θ, is required to find the diffusion tensor. Two of these integrations are performed in parallel

with ray tracing in the following way. Each shell between flux surfaces is additionally splitted

into toroidal cells with the poloidal angular size ∆θ. The electron diffusion coefficient De is

found for each cell separately using Eqs.(3.7) and (3.8) with the shell volume ∆Vk replaced by

the cell volume ∆Vkl where the subscripts k and l refers to the shell number and the cell number,

respectively. This quantity, being local with respect to the radius and the poloidal angle, is averaged

over the toroidal angle ϕ. Then the ϕ-averaged parallel spectral density <Ell(nll,rk,θl})2>ϕ is

obtained from the relation

( )D
e n

m
E n re

ll

e
ll ll= π

ω

2

2

2
, (4.32)

Further, the ϕ averaged perpendicular spectral density is determined with the use of the

expression

( )
( )( )

( )
( )E n

n n g

n n n
E n rll

ll

ll ll⊥

⊥

⊥

=
− − +







−

2

2 2
2

2

2 2 2
2

2
η ε

ε
, (4.33)

Finally, <E⊥(nll,rk,θl)
2>ϕ is multiplied by the factor

( )( )
Z m

m c n v

c

n v
eα

απ

2 2

2
2 2 2

1 2

3
1

1−






















⊥ ⊥ ⊥ ⊥/
/

taken in discrete points v⊥,ρ and integrated over nll  by the n summing with the weight factor

(nll∆vn/vn). The values D0(v⊥,ρ,rk,θl) found in this way are stored in a 3D array. Remaining θ
integration of Eq.(4.20) is performed numerically, as well as calculation of the bounce periods.

Obtained elements of the diffusion tensor are stored in three 3D arrays to be used in the Fokker-

Planck calculations.

The wave damping due to α -particles has to be included into the power deposition

calculations in a self-consistent analysis. For the LH waves we have E ⊥ >>Ell . Further, in the

co-ordinate system with kx=k⊥, ky=0
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E
n

igx =
−2 ε

(4.34)

In nearly the whole plasma volume, n2>>g and we can associate E⊥ with Ex. Then the wave

damping due to the α -particles is determined by the quantity ′′ε α  which is the α -particle

contribution to the imaginary part of the ε xx. For typical LH wave values of nll  energetic ions are

effectively unmagnitized. Using the well known expression for the dielectric tensor in a hot

unmagnitized plasma we readily obtain

′′ = −






 −







⊥ ⊥

∞

⊥ ⊥ ⊥ ⊥

−

⊥⊥

∫ε
π

ω
ω ω

α
α

α ω

α8
1

2 2 2

2
2

3 2

2 2

1 2
Z e

m
dv v

k v k v

df

dv
k/

/ )

(4.35)

where

( )
)
f v f v v dvll llα αθ θ( , ) , ,⊥ ⊥

−∞

∞

= ∫ (4.36)

Using Eq.(4.29), it can be written

( ) ( )
( )

)
f v

H

r

F v v

T v v h
dvll

B llo

ll

v h

α θ⊥
⊥

⊥−

∞

=
′ − −⊥

∫,
,2

1

0 0 0

2
0

2 0

10
Ψ ∆ (4.37)

with v v h⊥ ⊥=0 / . Now, recalling that the rays are calculated in FRTC using the cold plasma

approximation, an expression for α -particle contribution κ α  to the spatial damping rate can be

readily obtained

( ) ( )
( )

κ
ω

ε η
∂
∂

η
η

ε
α α= ′′ − +

−

−

































⊥
⊥ ⊥

−

c
n

n

n
n g

n

nr

ll
2

2 2
2 2

2
2

2
2

1

(4.38)

The damping rate κ α  can also be presented in the form

( )
κ

π
ω
ω

η
εα α= −

−
′′⊥

⊥

Γ
c

n

npe
2

2

2

2
2

2 (4.39)

where Γ  is given by Eq.(3.6).
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Analytical consideration

To make clear general features of the Fokker-Planck equation, we consider the simplest case of

a circular large aspect ratio tokamak with h=1+2ε sin2(θ/2), where ε=r/R<<1 is the inverse

aspect ratio. Also, we assume for simplicity that D0 is independent of θ, D0=D0(v⊥). Then to the

lowest order in ε we have from Eq.(4.20)

( ) ( )D D v gik ik= ⊥0 κ (4.40)

where κ=v2
ll0/2εv2

⊥0, g11=1, g12, g22 and TB are expressed in terms of elliptic integrals. Particles

with κ>1 are passing and those with κ<1 are trapped. We do not write down the explicit expressions

for g12, g22 and TB. Instead, we consider two limiting cases. For κ → ∞ , that corresponds to the

cylindrical limit, g12∼κ-1 and g22∼κ−2. We see, that toroidal corrections die out very slowly and

the true cylindrical limit is hardly achieved in real tokamaks.

For the opposite case of deeply trapped particles κ<<1, g12∼κ and g22 ∼κ2. Close to the

trapped-passing boundary κ=1 all four elements of the diffusion tensor are of the same order of

magnitude.

Consider now the v⊥ dependence of the factor D0 in Eq.(4.40). According to Eq.(4.14), D0

∼ v⊥
−3

 at large v⊥. One can also expect that D0 vanishes rather rapidly at v⊥→v∗ since the LH

spectrum is cut here very sharply. Then, introducing a normalized diffusion coefficient
∼ /D D vn = ∗0

2ν  we can take, for the qualitative analysis, ( )∼D vn ⊥  in the form

( )~
/D D v vn n= ∗ ⊥

3
                 v⊥>v∗

~
Dn = 0                               v⊥<v∗ (4.41)

where Dn is a constant.

Substituting Eq.(4.41) into Eq.(4.26) and introducing non-dimensional variables

ω
ε

= =− ⊥

∗

−

∗

D
v

v
u D

v

v
n n

ll1 5 0 1 5 0

2
/ /, (4.42)

we obtain:
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∂
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1 1

2
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(4.43)
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The tensor elements gik are now functions of the ratio u/w, therefore the left-hand side of

Eq.(4.43) is independent of any numerical parameters. In the absence of the collisional velocity-

space diffusion, the “active zone” w>w∗, where w Dn∗
−= 1 5/ , can be considered independently of

region w<w∗. The boundary conditions for the solution in the w>w∗ region are:

Φ → → ∞0 at w

g
u

g
w

at w w1 2 1 1 0
∂
∂

∂
∂

Φ Φ
+ = = ∗, (4.44)

Φ = =0 at u u*

where

u D
v v

vn∗
− ∗

∗

=
−

1 5
2 2

2
/ α

ε

The second condition follows from the demand that Φ and S⊥ are continuous at w=w∗; the

last one implies that the flux is dominated by collisional slowing-down at u≥u∗. Suppose now

that u∗>>1 and consider the region w>w∗, 1<<u<u∗, neglecting the diffusion tensor elements g12

and g22, putting g11=1, introducing s u u v v vll= = −∗ ∗/ α
2 2  and the normalized distribution

function

Φ ∆=
&N
v

V F
4 2 0πµ α

where ∆ Ψ ∆V rT v HB ll0 0 0= ′  is the shell volume at ε→0. Then Eq.(4.43) takes the form

( ) ( )∂
∂

∂
∂

∂
∂

δ α
s

s
w w

w
w w

v vΦ Φ
Φ

+ +








 = −

1 12

2 (4.45)

This equation is independent of ε and describes the cylindrical case. The general solution

of Eq.(4.45) can be sought in the form

() ( )Φ = ∑U s W wn
n

(4.46)
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where the functions Wn satisfy the equation

1 1
02

2w

d

dw
w W

w

dW

dw
p Wn

n
n n+





+ = (4.47)

Solutions vanishing at w→∞ are

( ) ( )W C
w

w W wn n q= −
1

10 55 5exp / /,η (4.48)

where Cn is a constant, and Wη,q are the Witteker functions with η=(1+pn)/5 and q=3/10. The

boundary condition ( )′ =∗W wn 0, following from Eq.(4.44), determines an infinite spectrum of

positive eigenvalues pn. The w∗ dependence of several first eigenvalues found numerically is

shown in Fig.3. At w∗=0 which means Dn→∞, we have pn=5n. The eigenfunctions Wn are

orthogonal and we suppose that they are normalized by

we W W dww
n m nm

w

5 5/ =
∗

∞

∫ δ (4.49)
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Fig.3. Eigenvalue spectrum of Eq. (4.47)

Consider now the functions Un(s) of Eq.(4.40). These functions satisfy the first-order

equation

( ) ( )d

ds
sU p U A sn n n n− = (4.50)
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where

A s A we W v v dw Ae W w sn
w

n
w s

n

w

( ) ( ) ( ( )),/ ( ) /

*

= − =
∞

∫
5 55 5δ α

A v v D An= ∗( / )/
α

2 2 5   and  w s v v v s D vn( ) ( ) / /= − − ∗α α α
2 2 2 2 1 5 .

Solutions satisfying the boundary condition U n( )1 0=  are

U s s x A x dxn
p p

n

s

n n( ) ( )= − −
∞

∫1
(4.51)

Consider this expression at large n. It can be shown, using the WKB approximation for the

Wn(w) functions with n>>1, that the factor An(x) in Eq.(4.51) varies slowly compared to x pn− .

Then Eq.(4.51) gives

U s
A s

pn
n

n

( )
( )

→    n>>1 (4.52)

Introduce

$( , )
( )

Φ s w
A s
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nn

=
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∞

∑
0

(4.53)

Then

Φ Φ= + −



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
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∞

∑$ ( )
( )

( )U s
A s

p
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n

nn
n

0
(4.54)

According to Eq.(4.52), the infinite sum in this expression converges rather rapidly,

therefore, to a good approximation, only few first terms can be kept. A numerical analysis shows

that a fairly good result is achieved even with the single n=0 term retained. Omitted terms then

have a noticeable value only in the immediate vicinity of the boundary s=1; they just guarantee

fulfillment of the boundary condition Φ(1)=0. Since the function A0(s) is nearly constant over

the integration region in Eq.(4.51), we have

Φ Φ= +
−

−










−
∗ ∗

$ exp( / ) ( ) ( )
A

p
s

p
w W w W wp

1

1
5

0

1

0

5
0 0

0

(4.55)

Recalling the definition of the function Φ, we conclude that it satisfies the ordinary

differential equation
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1 12
2w

d

dw
w

w

d

dw
v vn

nΦ
Φ

+
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
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= −δ α( ) (4.56)

with s entering as a parameter. Required solution of this equation is readily found by direct

integration. The function $Φ  is a slowly varying function of the parameters and the s dependence

of the distribution function Φ( , )s w  is essentially determined by the second term in the left-hand

side of Eq.(4.55). Its form depends on the eigenvalue p0 which increases with the normalized

diffusion coefficient Dn=Dc/v∗
2ν . This function is shown in Fig.4. At Dn>2.7, when p0<1, the

distribution has an integrable singularity at u=0. In this case, the small-vll  fraction of the fast ion

population is increased significantly. At Dn<2.7 the singularity vanishes and the distribution

becomes more uniform.

This solution of the Fokker-Planck equation is valid in the cylindrical geometry. In the

toroidal case it can be considered as an asymptotical solution in the passing particle domain. In

accordance with its behaviour, one can expect a significant growth in number of trapped particles

at Dn>2.7 and only a weak effect of the RF field on the α -particle population at smaller Dn.

Unfortunately, similar analysis for the trapped particles domain seems to be rather

speculative. In the asymptotical region u>>w the Fokker-Planck equation has an infinite set of
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Fig.4. The fundamental eigemode p0 of Eq. (4.47) as a function of normalized diffusion coefficient Dn.

particular solutions of the form Φn
p

nu W wn= ( )  where Wn are again expressed in terms of the

Witteker functions. However, the spectrum now includes eigenvalues pn of both signs, the

eigenfunctions Wn are not orthogonal and completeness of the system is an open question.

Assuming, nevertheless, that the solution is dominated by an eigenfunction with the smallest

positive eigenvalue (which appears to be close to unity) we obtain a reasonable, nearly uniform,
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distribution of deeply trapped particles over vll . An absolute value of the distribution function

here can be found demanding that the calculated flux across the boundary v v⊥ ∗=  to be in

agreement with the source of the particles. Asymptotical solutions found in this way at small and

large u, can be connected by a smooth monotonic curve across the trapped-passing boundary.

5. NUMERICAL RESULTS AND CONCLUSIONS

In this section we illustrate the actual behaviour of the distribution function F by a numerical

example for an imaginary JET shot with central electron temperature Teo=4.3keV, central ion

temperature Tio=20keV, central plasma density neo=1.9×1019m-3 and RF power PLH=6Mw. In

Figs 5a-5c the elements of normalized diiffusion tensor Dik are shown as functions of v⊥0 and vll0.
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Fig.5. Elements of the normalized diffusion tensor Dik; velocities are measured in units of alpha particle birth

velocity. a) D11, b) D12, c) D22.



23

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0.4

0.6

0.8

1.0

1.2

1.4

1.6

Vparallel

V
pe

rp

3.9
2.7

3.3 1.7
1.1

2.2

0.55

JG
97

.4
50

/5
c

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0.4

0.6

0.8

1.0

1.2

1.4

1.6

Vparallel

V
pe

rp

JG
97

.4
50

/6
c

3.0 4.2
2.4

1.8
1.2

0.60

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0.4

0.6

0.8

1.0

1.2

1.4

1.6

Vparallel

V
pe

rp

JG
97

.4
50

/7
c

4.2 3.5

2.8
2.1 0.70

1.4

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0.4

0.6

0.8

1.0

1.2

1.4

1.6

Vparallel

V
pe

rp

JG
97

.4
50

/8
c

4.0 3.2

1.6
2.4

0.80

0.80

Fig.6. Contours of the distribution function F in the (v⊥,vll) plane for various values of the magnification factor χ:

a) χ=0, b) χ=1, c) χ=2, d) χ=4. The direct line indicates the trapped-passing boundary, the figures denote relative

values of the F function.

Their shapes are in qualitative agreement with the above analysis, however, “toroidal” elements

D12 and D12 appear to be several times smaller then the “cylindrical” element D11. To illustrate

the RF power effect on the distribution function, we have solved Eq.(4.31) with the above diffusion

tensor multiplied by a constant factor χ for various values of this parameter. Results for χ=0, 1,

2 and 4 are presented in Figs.6a-6d. One can see that the distribution function has no spherical

symmetry in co-ordinates v⊥0 , vll0 even in the absence of the RF power. Formation of the fast

particle tail with the groth of the quasilinear diffusion is predominantly observed in the trapped

particle region. This effect is again illustrated in Fig.7. Finaly, Fig.8 shows the function 
)
fα (v⊥

,θ) which determines the α-particle wave damping.
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for χ=4.

Principal conclusions one can draw from results of this work are that:

1. The quasilinear diffusion of fast ions interacting with the LH waves is essentually two-

dimensional.

2. A cylindrical model is a poor approximation for the fast ion minority in real tokamaks.

3. The most important effect of LH waves on the α-particle population is, probably, an increase

of the trapped particle fraction which can influence the plasma stability. However, no large

change in the α-particle wave damping due to the toroidal effects can be expected. This

means, taking into account a fairly small α-particle contribution to the total wave damping,

that a simple 1D model can be, after all, used in self-consistent ray tracing calculations.

This assumption will be tested in a future work.
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