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1. INTRODUCTION AND BASIC CONCEPT

The numerical code SOL-One has been developed to enable the study of different regimes of

divertor plasmas in a simplified one dimensional geometry. The objectives of the code are to

solve the full time evolution of the scrape-off layer (SOL) equations. Also, to study various

different models the equations are implemented in a transparent way such that the equations can

be easily adjusted.

The model basically comprises a fluid description of a hydrogenic SOL plasma and of

background neutrals. The equations adopted for describing the transport in the scrape-off

(SOL) are derived from the general equations for conservation of particles momentum and

energy [1] with the following simplifications made:

M

(i1)

(ii1)

A simplified geometry as outlined in Fig. 1 is used (slab geometry with constant pitch). z
1s the coordinate along B, with the stagnation point being the origin, x is the transverse
coordinate which is removed by averaging. Because of axisymmetry all quantities
depend (apart from x ) only on the distance from the plate. However, in order to simplify
the presentation of data, we use z as a label throughout instead of y. At certain points in

the derivation of the equations it will also be convenient to use the coordinate systems
(é\.,,é'f) and (é;,éz) alternatively.

For the ions transverse transport inside a flux surface is neglected. The plasma equations
are averaged with respect to the transverse direction (x -direction, 1-D model), assuming

negligible particle, momentum and power fluxes to the wall.

The high collisionality limit with respect to i-n collisions (elastic and charge exchange, cx)

(Fluid Limit) 1s considered in the present version. This implies:

- After a few collisions slow neutrals are heated up and hence can only exist in the
immediate vicinity of the plate. Hence only fast neutrals (in what follows simply

called neutrals) have to be considered.

- T; = Tp and as far as energy transport is concerned ions and neutrals can be treated

as one fluid.

- If A,_, <</¢* where A;_ is the ion-neutral collision length and #* is the poloidal

width of the recyling zone, also transverse, neutrals induced transport is negligible

and a 1-D approximation can be applied by analogy with the ions.

However, different from the ions two independent components of the neutral momentum



balance have to be considered. (Along B and in the poloidal direction.)

The variables under consideration are the ion and neutral densities n;, n, , the ion and
electron temperature T; and 7T, the ion velocities, v; , and two neutral velocities.

In Sections 2 to 4 the general underlying physics is described. The coefficients are
described that are of universal character. Sources or transport coefficients which have model
character by themselves or may be subject to alteration for various code options, are considered
in Appendix L.

Besides the very high collisionality limit for neutrals, the long mean free path limit has
also been implemented. In the long mean free path limit neutrals collide mainly with the wall,
losing energy and momentum with each collision. The neutral gas experienced by the plasma
ions is therefore formed by neutrals that have not yet undergone an ion collision after their last
wall impact. It is a mixture of reflected atoms, molecules and Frank Condon atoms, which we
characterise by some average temperature 7 and prescribe as input parameter. Wall collisions
exert a force on the neutrals, which is taken into account in the neutral momentum balances.
The particle balance 1s unchanged in relation to the fluid limit. Transition to the long mean free
path limit is relatively straight forward and will not be dealt with in this report.

In Section 5, the numerical algorithms used in the code, i.e. Petrov-Galerkin finite
elements and implicit time stepping are discussed. Finally, as a first application, the detachment

of the divertor plasma in a static gas target is studied in Section 6.

2. DESCRIPTION OF UNDERLYING PHYSICS
2.1 2-D Plasma Equations

Ion Continuity Equation

on: P d on;
a—tlz—£(“i‘)i,7) ax(DLa jJrSfuelenon (Si = Stec) M

where S; is the ionisation rate, Sg,e] 1S a source of ions associated with external particle sources

and D is the perpendicular diffusion coefficient.!

Ion Momentum Balance (z-Direction)

onmv;, 9

. 82[ ni(T. +T;) +nmuu]

! The hydrogen atomic physics is described in Appendix 2.
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R,_, describes the momentum exchange with neutrals due to ionisation, charge exchange

and elastic 1-n collisions.
R ., =&, (mning(SiDp — Srec;) + mning(Sex + 1,0y )(Bo — ;) (3)

where S and S¢x are the 1onisation and charge exchange rates, respectively, ©;_,, is the elastic

i-n collision cross-section and v, is the ion thermal velocity. T; is the Braginskii ion collision

frequency.?

Ion Energy Equation (Ei = %niTi + %mni‘)iz,z)

oE: 0 5 1 oT: on;T
8_t1 = —g[nivi,l(a"ﬂ + Emuiz,zj —NiXii —azl } ~Viz a'Z .
0 oT, 5 1 on;
+$[nixl,ia—x‘+(ETi +5mui2,Z)Dla_xl}_QA,e +Q(),i (4)

Qo,; is the ion-neutral heat transfer which need not be specified (see below). The

electron-ion heat transfer is given by [1]

i 3
Qpe =+ 2(T, - T))

T. m

Classical parallel ion heat diffusivity is assumed [1]

3
Titi 3\/51}2
Xni=3.9—— TN=——— 24
m 4/mre*z n,
where A is the Coulomb logarithm. Perpendicular ion heat transport is small compared to the
typical anomalous convective heat transport and is neglected (x 1i= 0).

Electron Temperature Equation (EC = %niTe)

2 Frequently used terms are summarised in Appendix 1.
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Q; is the ionisation loss:
Q; =-ningS;§

£ is the energy consumed per ionisation event (ionisation energy + radiation) [2].

Classical parallel electron heat conduction is adopted [1]

3 3
i =316 Tt - 3fme T2  3.5x10* T,2
be ™" m, 742w he*n A/10 n;

while models for anomalous particle and heat diffusivities are used to describe perpendicular

electron transport.

2.3 Equations for Neutrals

2.3.1 General (Coordinate Independent) Form of Neutral Equations

Continuity Equation

% = —V(nof)()) —ngn;S; ©
ot
Momentum Equation
%(mno%) ==Y(noTo +nomVyVg) - Ri-n @
Energy Equation
JE =~
EQ =-V(ngVoHp - noxo¥To)~ Qo ®
where
3 1
HO = ETO +—Ngnvyg



2.3.2 Pseudo 2-D Equations for Neutrals

In the very high collisionality regime under consideration perpendicular transport is negligible
and all x-dependences can be removed by making the usual 1-D approximation by analogy with
the ions. For convenience, we therefore omit all x-dependences in the neutral transport
equations from the beginning.

The neutral flow velocity is basically two dimensional. However, because of
axysymmetry, quantities depend only on the distance from the plate. As a consequence all
equations can be brought into 1-D form. Different from the ions, however, one has to consider
separate equations for the transport of perpendicular and toroidal momentum. Perpendicular
transport inside a magnetic surface also has to be included.

In the coordinate system (Ey,él) where €; is the direction perpendicular to the plate and

¢, is the direction parallel to the magnetic field, the neutral velocity is defined as

Vg = Vg, 185 + Vo &, )

In the coordinate system (Ey,éz) where ¢€; is the toroidal direction:

When deriving the neutral equations both coordinate systems are used for convenience.

Toroidal symmetry leads to:

J d _cosyd d -1 d
0z dy siny dz" 9y siny oz

(11)

ong _ an()Uo,y 8( on;

= - 5 o DLa_xl) —nn;(Sj ~ Srec)
] M+E(DLE) ~ npny(S; = Srec) (12)
siny 0z ox ox
With the definition
Yoy = Vg siny (13)
one gets
Qaﬂg:a'g)%+%(nl%"x—i) ~nomi(S;  Srec) (14)



Neutral Momentum Equation (ES' Direction)

%(mnovovy) = ——a%(nOTO + nomuay) —%(mnouo,xuo,y) — Ri—n,y (15)

Using Eqs. (11) and (13) and v; 5 =v; ,siny one gets for the momentum exchange

term

Ri_py =-mning(Scx + chi—n)(UO,Sf - Ui,y) —njngmS;vy 5
= —mn;ng(Sc, + Dlo'i_n)(f)o - Ui’z)sin Y — ningmS; vy siny (16)

Treating the other terms in the same way yields

. d ~ 1 d ~2 .2 . 8( - on ]

siny —(mngVg ) = —|ngTg + ngmvgsin +siny —| my,D, | —2

S Wat( 0%) Smwaz( olo ™ NemMYo ‘V) my= 001730
—mninO(Scx + Dtci_n)(f)g + Di’z)sinw - mninO(Sif)O + Srecui’z)sin\p (17

Neutral Momentum Equation (€; Direction)
The corresponding equation for toroidal momentum is given by
%(mnovo,z) = —%(nom‘)o,y”o,z) - mnino(SiUo,z - Srchi,z)
—mn;ng(Sex +Utoi—n)(D0,2 —Ui,z) (18)

d .
where > =0 has been used. With vy ; =-vg,cosy and v,, =—V,,cosy one gets
Z L Rl A A

d -
g(mnovo,z) = %(nOmDOUO,Z) - mninO(SiUO,z - Srchi,z)

—mninO(Scx +V,6_p )(UO,Z - Di,Z) (19)

By analogy we can now also give an explicit expression for the momentum source term

in the ion equation

Ri—n,z = E52 '(mniHO(Si{)O - Srec{)i) + mninO(Scx + UlGi—n)({)O —Y ))

= mninO(SiUO,z - Srchi,z) —sinyningmS;vg | +ningm(Sey + VGi_p )(Uo,z - Ui.z)
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= —mninO(Si + Scx + Ulo-i—n)({)O + Di,Z)Sinz Y+ mnino(SiDOVZ - Srecvi,z)

+ninom(Scx +V,0i_n )(Vo,, ~ Vi) (20)
Energy Equation
dEg _ 9 & I E)( aTo) .
20 = Z (ngigHg ) + —5—— 9T0 ) 0n« +(x  direct
at az(nO 0 0) sinz(w) . noXo . Qp,; +(x — direction)
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0 =75 to t5 MU SIT{Y)+ vy cos (Y (21

2.4 1-D Equations
Following the standard procedure in deriving 1-D equations, model profiles of the form
Y(x,z) = Y(z)e***

are assumed for the basic variables with prescribed inverse decay length Ay, which may be
different for different variables. 1-D equations are then obtained from the equations given in

Sec. 3 by performing the integration J-....dx, thus assuming the wall to be sufficiently far away
0

from the plasma so that fluxes to the wall can be neglected. (This is a condition that has to be
fulfilled in any well designed tokamak and does not pose a real restriction.) For terms which
are products of powers of basic variables, the integration is performed explicitly. Otherwise,
(this applies mainly to terms containing atomic rate expressions) tabulated profile factors of the
form F (nj, T}, Te,..) = F (ni 0, Ti0, Te,0,..) Prg are used, where ¢ denotes separatrix values.

In what follows all variables are taken at the separatrix and ¢ is omitted for convenience.

Ion Continuity Equation

1 Bn,- - 1 _8_
Ap O Ay +Ay 3z

(I’liUi)'l'Sn +n0niSi Prsi (22)

where integration by parts yields the particle source across the separatrix into the scrape off

layer:




Ion Momentum Balance

:_i niTe + niTi + niml)iz +1281 niTiTi 81)i
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Ion Energy Equation

8{2 niTi +l mnil)iz ]

at 2hn, tA 2R, 424y
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_kni + Ay +Ae YT

where Qj is the power flux to the 1ons across the separatrix.



Electron Temperature Equation

—a_ EniTe =_i§ TeniDi B 1 N ir_g
ot| Ap +A. 0z| 2 Ay + e + 2y g)\ iXite 75
2 €
1 o(n;T,)
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where Qg is the power flux to the electrons across the separatrix.
Neutral Energy Equation

Integrating Eq. (21) in the x-direction yields

dEgy _d|[5 ngVeTy +lmn0f)(3) sin® y +lmn0f)oviz cos® y
dt  dz\2An Ay, +tAT ) 2 Ay, +3hy, 2 g tAy 2Ry

i 1 d { NoXo 8T0 " _5_ nof)oToDO 8n0 " l nomf)?) sin2 v

sin?y 9z\ Ay +Ar, 92 22h, +Ay +Aq, 9z 2 2h, +3hy

- 2 2
1 npmuav; ., COS
0MLOVL} , y 8noJ (26)

+_
220, +hy, + 24y, 02

Assuming equal temperatures for the ion and neutrals (T = Tp), the two energy equations

can be added into one equation for the total ion and neutral energy.

Continuity Equation Neutrals

| 8n0 1 anof)o
= —ngn;S; Prg. +ngn;Spe. Prg (27)
)‘no ot Kno + XUO 0z ik 1TeC T Srec
Neutral Momentum Equation (éy Direction)
sin \y—————-l o (mngd )
S 5. ovo
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1 9 ]
L ngTo+—
siny dz\ A, +AT, Any 2Ry,

nom{)(z) sin? y



B mn;ngS,, Vg sin y _ mnngVG;_pVysiny
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Neutral Momentum Equation (& Direction)
1 1 0 -
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_mnHO(SiDO,Z PrnnOSiDO,Z - SrecDi,z PrnnoSrechZ )

—mnngS Yo.z - Viz
O"H\ A+ g, +0.33h7 +hy, Ay +A, +0.33A7 +A,

—mnnyv,0; V0.2 - Viz (29)
0P A, #An, +0.5h, + Ay, Ag+Ay +0.5A7 +A,

The same decay length is assumed for the poloidal and toroidal neutral velocities Vg and
Vg ;. respectively.

2.5 Boundary Conditions

The boundary conditions for the fluid model are not obvious and little information can be found
in literature. This is, in particular, true of the ion momentum equation and the neutral fluids in
general, if realistic surface physics is taken into account. We therefore confine our analysis to
the limiting cases of perfectly reflecting and perfectly absorbing walls, where the physics is
relatively clear. Ad hoc models for the intermediate cases are implemented in the code, but will
not be described in this report.

In the relations given in this Section all quantities are to be taken at the plate (x = L).

2.5.1 Perfectly Reflecting Plate

In this subsection the limit of a perfectly reflecting plate is considered (specular reflection). For
practical purposes an ad hoc model for imperfect reflection is included by introducing particle
and energy reflection coefficients Ry and RE, respectively as described in Appendix 3. (The
perfectly reflecting limit corresponds to Ry =Rg = 1.)

In what follows sheath related expressions are taken from Refs. [3, 4]. The sheath

10



potential, in particular is given by

ety = %Te 1{2;&9(1 + %)(1 - ye)_z} (30)

m €
where 7, is the secondary electron emission coefficient.
Ion Particle Balance
Free outflow of ions
I'=nv, (31)

with the constraint (Bohm condition at the plate)

Yri +Te

vV2¢ = (32)
m
Neutral Particle Balance
The flux of incoming neutrals is equal to the outgoing ion flux
Ty = Toy/siny =TRy (33)

Electron and Ion Energy Balances

For the electron and ion energy balances the expressions for the electron and ion sheath

transmission factors of Ref. 4 are taken.

2T,
= —edq T 34
Je (I—Ye C(Df) (34)
m 2 5
q; = (E’Uz +5Ti)r (35)

These are essentially the fluid expressions for free outflow of energy into the sheath region,

modified by the effects of secondary electron emission and the sheath field.
Neutral Energy Balance

The energy flux by neutrals from the plate must be equal to the ion energy flux to the plate.
However, the energy gain of the ions in the sheath potential has to be added to the value at the

sheath entrance as given by Eq. (39).

11
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Momentum Balance lons
Free outflow of ion momentum

I1; = mnv;, (37)
Momentum Balance Neutrals

The boundary condition for the poloidal component of the momentum equation is obtained from
the requirement that the neutral momentum flux from the plate in the normal direction equals the
normal ion momentum flux to the plate. However, since our plate quantities are actually taken
at the sheath entrance, the momentum gain in the sheath has to be added to the ion momentum at
the sheath entrance. In a very simple way the momentum gain is estimated from the gain of a

single particle in the sheath field given by Eq. (30). This yields

sin? yT, = mnof)% sin y = mIsin Yooy =

‘ 2ned® ¢ty ) Zned;
=ml'sinyv, /1 - ————siny =mnvy |1 - 5—sin” y (38)
mu;, mv;

where the prescribed parameter fj,. < 1 crudely takes into account that the ions do not hit the

plate in normal direction [4].
The case of the toroidal component of the momentum equation is treated in exactly the

same way.

2.5.2 Perfectly Absorbing Plate

It is assumed that ions and neutrals hitting the wall are transferred into cold neutrals which are
recycled at some distance d away from the plate with zero energy and momentum and a
prescribed spatial source distribution. Under these conditions one has free outflow of particles,

energy and momentum for both ions and neutrals.
Ion Particle Balance
Free outflow of ions

['=nv

z (39)

with the constraint (Bohm condition at the plate)

12
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Neutral Particle Balance
Free outflow of neutrals
Ty =ngdy

Electron and Ion Energy Balances

(40)

(41)

For the electron and ion energy balances the expressions for the electron and ion sheath

transmission factors of Ref. 4 are taken.

Neutral Energy Balance
Free outflow of neutral energy
o =novoHp
Momentum Balance Ions
Free outflow of ion momentum
II, = mnl)%
Momentum Balance Neutrals

Free outflow of ion momentum

sin’ yll = sin? ymnu

The artificial source for the recyling of the cold neutrals is then given by

SO,sl()w = S(F - IﬂO)

where S is a normalised shape function.

(42)

(43)

(44)

(45)

(46)

(47)
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3. DESCRIPTION OF THE NUMERICAL SCHEME
3.1 Introduction

The main objective of the SOL-One code i1s to solve the equations with the appropriate
boundary conditions along a field line in the scrape-off layer as discussed in the previous
chapters. The solution consists of the full time dependence of the variables from the initial
conditions to steady state. To enable the study of different models and boundary conditions,
the code should allow for an easy implementation of the equations in the code.

The time scales of the physics in the scrape-off layer vary over many orders of
magnitude. For the numerical solution of the equation with respect to time one can use either an
explicit or an implicit scheme. With an explicit numerical scheme, (where the information of
the new time depends only on data from previous time points), it is necessary to resolve the
smallest time scale. This requires a very small time step and consequently many time steps to
reach steady state. The advantage of an explicit scheme is that each time step can be computed
relatively fast and the memory requirements are modest. For the solution of our
one-dimensional equations we use an implicit scheme. This allows much larger time steps and
consequently requires much fewer time steps. The memory requirements are not prohibitive for
our one-dimensional problem.

The spatial length scales of the solution of the SOL equations vary from a few centimetres
close to the target plate to typically many meters in the upstream region. To resolve these scale
lengths efficiently requires a flexible placement of grid points. Isoparametric finite elements are
well suited for this. The boundary conditions of the SOL equations at the target plate usually
take the form of an expression for the outflowing flux, which are natural boundary conditions.
Using finite elements for the representation of the solution allows for an elegant implementation

of these natural conditions.

3.2 Numerical Method

3.2.1 Petrov-Galerkin Finite Elements [6]
The SOL equations as described in Section 3 are of the convection-diffusion type:

2
MQI_J_:A_BE_D82U (48)
ot ox 90°x
where U is a vector containing the variables and M, A and D are the coefficient matrices.
The usual Galerkin weak form of Eq. (48) is obtained by multiplying with a weight
function v(x) and integrating over the domain of interest:

14



U(x) . U 22U
| V(XM= dx = | U(x)(Aa—x—Da—z;]dx (49)

Integration by parts of the diffusion term replaces the second derivative in U(x) with a
single derivative in v(x) and creates a boundary term. The boundary term can be used to
implement the natural boundary conditions, i.e. specifying of the flux instead of the value of U

at the boundaries.

| u(x)Mde = u(x)Aa—U+a—”Da—de - I:I)D

an|l
ot 0x o0x oOx

N (50)

0

The function U(x) 1s numerically represented with (isoparametric) finite elements. The
elements are defined in a local coordinate r which runs from -1 to +1. Both the function U and
the space coordinate x are represented with the same finite elements, so-called isoparametric

finite elements.
U(r) = Zuih(r),  x(r) = 2 x;h(r) (s1)

where u; are the expansion coefficients and h(r) the finite elements. Here we will use linear
finite elements, with the function h(r) defined as

h(r)=1-rpr 1H=-1 for-1<r<0

in=1 for O<r«l (52)

For standard Galerkin finite elements the functions v(r) are the same as the finite
elements h(r) used in the representation of U. However, in the case that the diffusion is much
smaller than the convection (i.e. large Peclet numbers) standard Galerkin finite elements (FE)
(as well as finite differences) can lead to non-physical oscillations in the space coordinate.
These oscillations occur mostly due to badly resolved boundary layers in the solution. One of
the simplest ways to resolve this problem is the use of weight functions v(r) which are not
identical to the shape functions h(r), so-called Petrov Galerkin finite elements. This scheme is
similar to upwind finite differences (but not identical to). One choice of weight function is:

h
u(r) = h(r)+o¢a— (53)
or

In this way more weight is given to downstream information. For the simple equation
(48) an optimum value for o can be derived:

1

Oopy = II:_e coth|P,| -

LY Y

Pe
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where P, is the numerical Peclet number defined as:

Alx; — xi_1)

p, = — 1=l 55

e D (55)
The choice o =1 leads to a full upwind scheme. In case A and D are functions of x, the

local value of P is to be used. The integrations in Eq. (50) are performed numerically using a

two-point Gaussian integration method. This is of sufficient accuracy, i.e. it does not degrade

the accuracy of the solution.

3.2.2 Implicit Time Stepping

For the time evolution of the system of equations, an implicit scheme has been chosen. This
allows the time step to be much larger that the smallest time scale present in the system, i.e.
Courant numbers much larger than unity are allowed. Especially as the system approaches
steady state very large time steps are possible. Another advantage is that the time scale on
which the time evolution is accurately approximated can be chosen by setting the maximum time
step smaller than the time scale of interest. Typically one is not interested in the very short time
scales, of, for example, the parallel electron diffusion time but more in the time scale of a
change in the sources or in the boundary conditions typically of the order of milliseconds.

The (non-linear) SOL systemn can be written in matrix form as:

oU
—=H
o (U,0) (56)

The generalised trapezoidal method is used for the time evolution of Eq. (56) [7]:

U - U = AdoH™! +(1-0)H") (57)

For 6 =0.5 the method is known as the Crank-Nicholson scheme (or the trapezoidal
rule). This scheme is second order accurate in time. However H ts a non-linear function of

the variable U and needs to be linearised.

) R (58)

Combining (57) and (58) gives the scheme used in the SOL-One code:

en oH(U")

° AU" = AtH" (59)

In practice, the SOL equations are not given in the form of Eq. (56) but rather in the form:
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dB(U)
ot

= A(U,x) (60)
Using dB/dt =(dB/0U)(dU/ dt) Eq. (59) can be written as:

oB(U") o oA(U")

Yo 50 AU" = AtA" 61)

where AU, = U, —U,. Thus at every time step a system of linear equations in AU, has to
be solved. The maitrices are non-symmetric and are of the block-diagonal form. The width of
the diagonal is 3 times the number of equations. The system of equations is solved using
Gaussian elimination. Some preconditioning of the matrix is essential due to the wide range of
numerical values that the different variables can assume, i.e. density 1013cm-3 and temperatures
of 1-100eV. At present the matrix and the vector are preconditioned by dividing by the value

on the diagonal of the matrix.

3.2.3 Numerical Evaluation of the Jacobian

The equations implemented in the SOL-One code are highly non-linear. Linearising the
equations analytically would be very cumbersome. Also, it would not allow for an easy change
or extension of the equations. Therefore, at the cost of some cpu time, the linearisation of the
equations is done numerically. This requires that each equation is split into two parts; one part
of the equation which is integrated by parts and the remaining part that is not. The linearisation
1s done with respect to both the variable and its derivative as independent variables. The

equations are therefore written in terms of the seven variables and their derivatives.

3.2.4 Boundary Conditions

The number of boundary conditions that have to be specified for each equation depends on the
characteristics of the equations at the boundary of the computational domain. At present, our
computational domain is one divertor leg, from the symmetry point where the velocity and
density and temperature gradients are zero to the outflow point at the sheath entrance at the
plate. For the momentum equation the boundary condition at the symmetry point is given (by
definition) by v; = 0. At the sheath entrance, the velocity is set to Mach 1 or larger. This is
implemented by first calculating, at each time step, the value of the velocity with free streaming
boundary conditions in the momentum equation. If this value is smaller than Mach 1, the
solution is recalculated with Mach 1 as a boundary condition. (Note that this hardly increases
the cpu time, the dominant factor in the cpu time is the evaluation of the two matrices A and B
of (61)). For the continuity equation, with no inflow and only supersonic outflow, no

boundary conditions can be specified. The upstream density cannot be specified as a boundary
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condition but will be determined by the source rate in the continuity equation. In the two
energy equations, the outstreaming energy flux has to be specified. This is a natural boundary
condition. Integration by parts of the diffusive terms of the weak form of the energy equations
creates a boundary term which allows specification of the energy fluxes in terms of any
combination of variables. In the continuity and perpendicular momentum equations for the
neutrals, there is an incoming flux of neutrals from the plate which has to be specified, i.e. both
the neutral density and the perpendicular neutral velocity at the plate have to be specified. The
toroidal neutral momentum also has an incoming flux of momentum. This requires the

specification of the neutral toroidal momentum at the plate.

3.2.5 Variable Time Stepping

The maximum time step that can be taken in the implicit scheme implemented in the SOL-One
code is not limited by a CFL condition. Rather, the maximum time step is determined by the
non-linear stability of the scheme. In practice, the time step is optimised at every iteration in
time such that the maximum change in any of the variables is less than 50% of the average
value. This requires several solutions (with a maximum of typically five) of the system of
linear equations at each step in time. A maximum value of the time step has to be introduced as
the system approaches steady state and the changes in the variables become small at each

iteration. A typical value for the maximum time step is 10ms.
3.3 Code Validation

In this section, the numerical properties of the code are discussed. As an example we calculate
the steady state solution of a typical case. The table below shows the input parameters used for
this case. The behaviour of the time step as a function of the iteration number is shown in Fig.
2. Also shown is the maximum change of the variables. As discussed in the previous
paragraph, initially the value of the time step is adjusted such that the relative change is fixed at
50%. After iteration n = 28 the maximum value of the time step is reached and the relative
change drops to a very small value when steady state is reached. After the initial fast evolution
of the initial conditions at time steps of 0.1us, the system rapidly approaches steady state after
typically 10ms. The steady state solution of the seven variables 1s shown in Fig. 3.

The convergence of the solution with the number of finite elements i1s shown in Fig. 4. It
shows the error in the ion continuity and the ion momentum equation. The error in the equation
1s seen to decrease linearly with the number of finite elements. The scaling is linear because the
weak form of the equations contains first derivatives. Linear finite elements give a linear
approximation for the derivatives. The error in the variables will scale quadratically with the
number of finite elements. Fig. 5 shows the convergence of the boundary condition of the
electron energy flux. This is a natural boundary condition which is satisfied with an accuracy

which scales with the number of grid points. The flux can be calculated from either
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F. =x.VT, or from I'; =7v.n;v;. As can be seen from Fig. 5, the error in the flux not

containing any derivatives scales quadratically with the finite element size, the error in the flux

with the first derivative scales linearly.

Parameters used for Convergence Study

Parameter Value Units
Field line length 2640 cm
Field line angle with target 0.05 rad
Total heating to electrons 2.5 MW
Total heating to ions 2.5 MW
Upstream density (feedback) 1.6 x 1013 cm3
Electron energy transmission coefficient 4.5

Ion energy transmission coefficient 2.5

Perpendicular scale length 0.66 cm!

4. APPLICATION TO DETACHMENT IN A STATIC GAS TARGET
DIVERTOR [8]

Experimentally, detachment is usually approached by increasing the density at otherwise fixed
plasma parameters. On most devices detachment is a gradual process, which exhibits a rollover
of the ion saturation current I

sat?

followed by a gradual decrease. Simultaneously, the D,
signal increases and the divertor pressure decreases by an order of magnitude at basically
unchanged or moderately changing upstream conditions.

In a static gas target (i.e. the model as described in the previous sections) the ion-neutral
mean free path is small compared to the scrape-off layer width and the momentum losses of the
neutrals to the walls is small. In this case the ion pressure gradient has to be balanced by the
neutral pressure gradient.

In this section, the potential of a static gas target to provide a drop in plasma pressure

along the magnetic field is investigated.
4.1 Time Evolution during Density Ramp

The detachment of a static gas target is modelled with the SOL-One code by introducing a
constant source rate of particles in the upstream region. Starting from a steady state solution,
the particle source is turned on and the SOL equations are solved as a function time. The
parameters used in the calculation are the same as for the test case in Section 5 (see Table,

Section 5). The source rate is such that the upstream density rises from 6 x 1012cm-3 to
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1.2 x 10!3cm-3 in one second.

Fig. 6 shows the time evolution of the ion density, the electron temperature and the ion
pressure profile. At t = 0.5s, the electron and ion temperatures drop to a low value of about
leV. At the same time, the pressure in the divertor, which is rising at earlier times, starts to
drop (detachment). The upstream pressure is increasing all the time except when detachment

begins, where the upstream is constant (or even slightly decreasing) for a short time.
4.2 Steady State Solutions

Alternatively, the detachment can be studied through a series of steady state solutions in which
the upstream density is set to a predetermined value. To obtain this present value a feedback
scheme is used on the upstream source rate. The results obtained this way are similar to the
results from the time dependent problem of the previous paragraph.

Fig. 7 shows the density and electron temperatures in the divertor as a function of the
total particle content Nyo. The upstream density increases monotonically with N;o,. The
divertor electron temperature falls rapidly with increasing particle content up to the point of
detachment (at a particle content larger than 7 x 1010, For higher densities the divertor
temperature decreases only slightly. Generally, after detachment the divertor quantities tend to
saturate while the upstream density and pressure increase linearly with the total particle content.
This indicates that the additional particles accumulate in the upstream region. The pressure drop
is therefore caused by an increasing upstream pressure at constant divertor pressure, not by a
reduction of the divertor pressure.

The particle flux towards the target, which is a measure of the ion saturation current, is
plotted in Fig. 8. Contrary to what is observed experimentally, the particle flux in our model is
not decreasing after detachment but levels off to a constant value at high density.

Examples of the high recycling solution at low density and of a typical detached solution
are shown in Figs. 9a and 9b respectively.

7. CONCLUSIONS

The fluid equations in the scrape-off layer for ions, electrons and neutrals along the magnetic
field lines have been successfully implemented in the numerical code SOL-One. The
combination of Petrov-Galerkin finite elements and a fully implicit scheme for the time
evolution yields a very robust code. Steady state solutions are typically obtained with less than
50 iterations (time steps). The cpu requirements are low, so that the code can be used
interactively.

As an initial application, the problem of detachment in a static gas target divertor has been
studied. With increasing density, the model does show momentum detachment with a divertor

temperature below one eV, but typically experimental observations, in particular the drop of
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sat?

are not reproduced.
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APPENDIX 1
General Expressions

In this appendix units are cgs units, except for T which is in eV. p is the mass number.

The Coulomb Logarithm [1]

T, <50eV:

A=23.4-115"10gn; +3.45"010g T,
Te > 50eV:

A =253-1.15"10gn; +2.330log T,
Charge Exchange Reaction Rate
Sex =9.28325x1077T)-33
Elastic Ion-Neutral Collision Cross-Section
Go =5.0x1071

The Thermal Ion Velocity

vy =9.79x10° L

u
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APPENDIX 11
Atomic Physics

Different models are used to describe the hydrogen atomic physics, depending on the required
accuracy and the processes involved.

A simple analytical model is used in the regime where recombination is negligible and
atomic processes are not dominant. This model basically relies on Ref. [2]. Units are cgs
units, except for Te, which is ineV.

Hydrogen Ionisation Rate

0
0 10/ n P
S; =Sill +T_C(10Tj ]

13
p0 = 0.5(1 ~1.36g"/10 )

s¥ = 1076 (P1+13.82)

pl = (((-9.94x 107> log(T, ) +4.5x1072)log(T, ) + 7.43x 1072 log(T, )
+.705)log(T, ) - 3.83)log(T, ) + 1 1.4)log(T,) — 31.74

Mean Energy Per Ionisation Event

15
E=17.5+ (5.0 + 3;—5j 1010g£&)

e 1

In general, data from Ref. [5] are used. The full model is always applied in the
evaluation of profile factors. The main reason for using the analytical model is a noticeable

saving in computation time.
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