JET-R(96)01

Efficient Time Dependent
Modelling of the Physics of
NBI Heating in JET

W G F Core, K-D Zastrow.

JET Joint Undertaking, Abingdon, Oxfordshire, OX14 3EA, UK.



“© ~ Copyright ECSC/EEC/EURATOM, Luxembourg — 1998
Enquiries about Copyright and reproduction should be addressed to the
Publications Officer, JET Joint Undertaking, Abingdon, Oxon, OX14 3EA, UK.




ABSTRACT

The time dependent modelling used in the interpretation and validation of data obtained from
charge exchange spectroscopy measurements of the JET plasma during neutral beam injection
heating is presented. The results obtained are primarily intended to form the basis for the
efficient calculation of the effect of neutral beam injection heating on the plasma in transport
simulations and in the interpretation of JET data.

1. INTRODUCTION

In neutral injection heating of a tokamak plasma fast ions are initially injected as neutrals, which
after ionisation slow down to thermal energy through Coulomb scattering on the background
plasma ions and electrons. The total energy of the plasma, including that carried by fast
particles, is enhanced at the moment of ionisation. In this context the injected power is
instantaneous. During the slowing down process the fast ions transfer their energy to the
thermal plasma. For calculations of the thermal energy confinement time in transient phases of
the discharge one has to use this delayed heating power. The injected power would be used in
combination with the total plasma energy to obtain the total energy confinement time. During the
slowing down process, the fast ions in addition to heating the plasma impart momentum to the
system, and furthermore the fast ions can undergo thermonuclear reactions with the plasma ions
or in self collisions. The efficient calculation of these quantities is not only important in the
interpretation of data, but also in transport studies of the evolving JET plasma [1].

In this report these quantities are calculated using models obtained from a Fokker-Planck
treatment of the slowing down process in which the plasma thermal species density and
temperature are assumed to be slowly varying functions of time t > t5, where T is the Spitzer
slowing down time. From the time dependent solution models of the fast ion energy, transfer
rates of energy and momentum to the plasma bulk ion and electron species are first obtained.
Then approximations for the beam-plasma and beam-beam thermonuclear reaction rates are
calculated. Finally a simplified model of the effect of plasma rotation on these quantities is
included.

In the next chapter we introduce the ion Fokker Planck equation and its solution. The
energy balance and transfer rates are presented in chapter 3, and the momentum transfer rates
are given in chapter 4. Thermonuclear reactions are treated in chapter 5. Inchapter 6 we
introduce a model to include the effect of rotation on the calculated quantities. Typical results for
the analysis of JET data are shown in chapter 7.



2. THE FAST ION FOKKER PLANCK EQUATION AND SOLUTION

The Fokker Planck equation describing the slowing down process and evolution of the fast ion
distribution in the velocity space variables v, {=v;/v,where v is the projection of the fast

ion velocity along the magnetic field is [2]
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1s the effective charge of the plasma, mj, me, m are the plasma ion, electron and fast ion mass

respectively, S(t) is the rate of injection of fast beam ions onto a magnetic surface, In A is the
Coulomb logarithm and finally, v, C0(= Vi, / vo) are the initial fast ion velocity and pitch

) . 1
respectively. The electron density ne and temperature Te, where > m evg = T, are assumed

to be slowly varing functions of time t. And a solution of Eq. (1) based upon a Laplace
transform in the time variable is indicated.

Following a Laplace transform in time and a Legendre polynomial decomposition in the
cosine of the pitch-angle
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the solution of Eq. (1) is obtained in a straight forward manner and the fast ion distribution

function takes the form
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3. CALCULATION OF FAST ION ENERGY BALANCE AND ENERGY

TRANSFER TO PLASMA BULK IONS AND ELECTRONS
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Using the results of the previous section the fast ion energy balance and energy transfer rates to

the bulk plasma ion and electron species can be calculated. Multiplying each term of Eq. (1) by

—lz—mv2 and integrating over spherical coordinates in velocity space d3 v= v2dvd(;d<p gives

(i). The Fast ion Energy Content of the Plasma

Ef(t)=%mJ- vzf(v, ¢, t)dy
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Substitution of the distribution function Eq. (3) and integrating over the gyro-phase ¢ and

the pitch  gives
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Under the change of variable
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(ii) The Transfer of Fast Ion Energy to the Plasma Electrons
P.(t)= lmL i{v?’f(v, ¢, t)}d3v
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Following the above procedure of reduction and a further integration by parts over

velocity yields
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(iii) The Transfer of Fast Ion Energy to the Plasma Ions

Pi(t)=%m%j %{vgf(v, ¢, t)}d3y

and
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Following the reduction procedure of (ii) we obtain
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4. PLASMA ROTATION AND THE TRANSFER OF FAST BEAM ION
MOMENTUM TO THE PLASMA IONS AND ELECTRONS

The equations describing the evolution of the plasma toroidal rotation during neutral beam
injection are in the large aspect ratio tokamak approximation [2]
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where Vo is the toroidal velocity, mj, me nj, ne are the plasma ion and electron mass and
density respectively, D, D&, 11, 1%, are the diffusion coefficients and viscous damping
times which are obtained from the viscosity tensor m, Rje is the momentum gained by the
plasma ions through collisions with the electrons, Rje + Rqj = 0, and finally F}) , Fg are the

rates of momentum transfer from the fast ions to the plasma ions and electrons.



In the high field, Tj = T, approximation D}, >> D%, 1% >> 15 and taking me<<m, nj ~
. (11, 12) can be combined to give
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To calculate the rate of momentum input from the fast ions Eq. (1) is first multiplied by
mv) and then following integration over velocity space the following momentum transfer rates

are obtained.

(i) The Transfer of Fast lon Momentum to the Plasma Electrons
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Substitution of the fast ion distribution function, Eq (3) into Eq (14) followed by

integration over ¢, and { gives
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(ii) The Transfer of Fast Ion Momentum to the Plasma Ions
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(iii) The Transfer of Fast Ion Momentum to the Plasma Impurities
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5. CALCULATION OFTHERMONUCLEAR RATE COEFFICIENTS <ov> IN NBI
HEATED PLASMA

The fast injected beam ions in addition to heating the plasma ions and electrons through the
Coulomb scattering processes can in particular heating systems such as D(T, n)4H. undergo

fusion reactions with the plasma ions and in self collisions during slowing down. These

reactions are a significant component in the total thermonuclear yield of the plasma.
The thermonuclear reaction rate (R;j) in a plasma containing interacting ion species of type

(1) and (j) is given by

R;= 1+&( oVv) (23)



where n; and n; are the number densities of the interacting particles, i jis the Kronecker delta,

and

(ov)= .[ d3xj &y £ (v (v oy - vy - ¥ (24)

where G is the cross-section and |v — v’| is the impact velocity.

For the particle distribution functions in spherical co-ordinates in velocity space
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Substitution of Eq. (25, 26) in Eq. (24) gives after some reduction
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(i) Calculation of Beam Plasma Thermonuclear Rate Coefficient (ov)

For fast beam ions slowing down in a warm plasma in thermal equilibrium we have for the
plasma ions
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and Eq. (27) simplifies considerably, we have
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n¢ is the fast ion density, and o(u) is the cross-section for the particular fusion reaction under
consideration.

When the reaction cross-section G(u) is only available in tabulated or functional forms
which are too complex for an analytical treatment, the integral has to be evaluated numerically.
However, because of the difficulty of dealing with such problems, and when a high degree of
accuracy is not too important, analytical approximations can be derived and used to provide
results which are well within acceptable error. For this purpose we take the Gamov type of

cross section representation deduced from Quantum mechanical consideration
o(E) = Q; )exp( -B/E"?) (32)

where E = % puz, is the energy in the c.m. frame, B is a constant depending upon the reaction

under consideration, and the Astrophysical function
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is the corresponding Bosch and Hale Padé approximation fit to the experimental data [3].
Eq. (31) now takes the form
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To evaluate Eq. (34) we first note that the Q(E) function in Eq. (32) 1s a slowly varying
function of energy and from the form of Eq. (34) the method of integration by steepest descents
is applicable. Integration through the dominant saddle point gives
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Substitution of Eq. (35) in Eq. (30) gives the beam-plasma reaction rate
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and (ov) is to be calculate with the velocity
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(ii) Calculation of Beam - Beam Thermonuclear Rate Coefficient <cv>

Substituting the cross section Eq. (32) into Eq. (27) gives
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where in the inner integral u = (v2+ V2 2vv'z).

Further reduction of Eq. (39) is difficult however some progress can be made. Consider
the inner integral over the variable z as a function of the velocity variable v, v'. The contribution
of the integral to the reaction rate is largest when u takes on its maximum value that 1s when v =
v' is greatest. For two interacting beams this velocity is when the fast beam ion velocities are at
or near the injection velocity v,. Close to the injection velocity the fast ion distribution functions
Eq. (25, 26) are sharply peaked about the initial pitch o; and to a good approximation take the

form
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Substitution of equations of the form of Eq. (40) for the two interacting beams into Eq.
(39) inverting the order of integration and summation, using the result derived from the addition

theorem for the Legendre polynomials, appendix 2
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ny, ny are the two fast ion beam densities, S1(v), Sz(v’) are the fast ion injection rates, and
vol, Vo2 Co1. oo are the initial velocities and pitch of the injected beam ions respectively. The

lower limits of integration are given by
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and similarly for v,(t) with v replaced by vq3.
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By assuming Q(%muj to be a slowly varying function of u the following

approximations for the function (ov) Eq (43) are readily obtained.
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where [,(x), Ky(x) are the modified Bessel functions of order zero.

alternatively
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6. MODELLING THE EFFECT OF ROTATION

The input of momentum from the beam ions to the plasma gives rise to plasma rotation
preferentially in the toroidal direction. Fast ions deposited in passing orbits moving in a co-
rotational direction in the laboratory frame will in the rotating plasma frame suffer an apparent
reduction in energy, and conversely, passing particles moving in counter rotation will have their
energy increased. The fast ion slowing down time and consequently the density is then either
reduced or increased. The bulk plasma rotational velocities impact on the beam heating
efficiency, the thermonuclear reactivity, and consequently on the interpretation of the measured
fusion yields.

For a fast ion initially produced on a magnetic surface with initial velocity and pitch
(vo, Co) the transformation of particle velocity and pitch from the laboratory to the rotating
frame (v; Cz) is

2
Ve =vio 20V, Vel t v% 47)
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and

i) 48)

Co

Vo

where v, is the plasma toroidal rotation velocity, 6= 1 for injection into the passing region and

¢ = =1 for injection into the trapped particle band.

By considering the flux of fast ions across the trapped-passing boundary in velocity space
{ = ++2e, where € = 1/R,, to be small, and if under this transformation, orbit distortions are
small, and the fast ion distribution function f (v*,C* ):f(v,(;) then the model calculations of the

quantities considered in the previous sections are applicable but with the source function centred
on the initial velocity and pitch (v:,, QZ‘,) given by Eq. (47, 48).

When transferring the calculated quantities back to laboratory coordinates, additional
terms arise in the ion torque density and the power density. The additional torque corresponds
to the addition of angular momentum to the bulk after the fast particles have slowed down. The
additional term in the power balance represents the power necessary to maintain the toroidal
rotation and is calculated as the product of the torque density and the frequency of toroidal

rotation.

7.APPLICATION OFTHE MODELS TO JET

The calculations presented in the previous chapters have been implemented for the analysis of
JET data as part of the CHarge Exchange Analysis Package (CHEAP)"®. We have
implemented the integrations in velocity space rather than the integrations in time. The latter
integrands have singularities for v—0 in the power and momentum transferred to ions, and are
very steep for velocities close to the injection velocity for the beam-thermal neutron rate.
Therefore it has proven to be more efficient to perform the integrations in velocity space.

The code uses a hybrid electron density profile, taking the radial shape from LIDAR and
the absolute calibration and time evolution from interferometer data, mapped onto flux surfaces
based on the equilibrium code EFIT. The electron temperature is taken from LIDAR.

The code provides the source of fast particles, S(p,t) where S = r/a is the normalised
minor radius, from which all quantities are calculated as outlined in the previous chapters. The
number of lost beam neutrals along the beam path elements, §(p,t), is mapped onto the
corresponding flux volume decrements by cutting the beam in intervals of finite length. This
avoids singularities at the flux surfaces that are tangented by the beam path.

3 kP A& (p)
(p) kéle N (49)
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where fi, k=1,3 is the fraction of beam power P at full, half and one third of the beam energy,
E. The neutral beam attenuation factor along the beam path ds through the plasma depends
exponentially on the electron density profile, atomic stopping cross-sections for each ion
species j (electron and ion ionisation and charge exchange collisions) and their local
concentrations, Gj.

Eklp) = exp(—J-ds(p)ne(p) X jSj(p)] (50)

i1

The beam attenuation part of the CHEAP code is self consistent in that it provides the
donor density for the quantitative analysis of the charge exchange spectra. The resulting
concentrations are in turn used in the attenuation code.

As an application of the models to JET we show results obtained with the CHEAP code
for shot (#32919). In Figure 1 we show the time evolution of central electron temperature and
density to illustrate the parameter range of the calculation. With these data tg varies between =1
sec at the beginning of the beam injection to =0.5 s towards the end. The critical velocity is of
the order 3-4 106m/s. In Figures 2 - 6 we show the results of the calculations presented in the
previous chapters. The calculations refer to the injection of =140keV deuterium ions. The
effects of rotation have been included in the calculations. Note in particular the reduction of
direct heating (Figure 4) due to the decreased injection energy of the fast ions. The total power
corresponds to the injected power, after shine through corrections, when the power that is
invested into rotation is included.

The torque integrated over the calculated profile is compared to the total torque, including

3 P [2kmyc?
M= $fy — " Ry (51)
k=1 € E

where mpc? is the mass of the beam ions in eV and Rimp is the impact parameter of the beam
path with the torus axis. JET is typically operated with M/P in the range of 1.0-1.6 Nm/MW.
The torque is calculated from the rates of momentum transfer (see chapter 4 (I)) by

shine through, in Figure 5.

multiplication with the radius of beam absorption.

To validate and determine the range of applicability of the approximations for the function
(ov), Eq. (35, 44), used in the calculation of fusion reactivities a comparison with an alternative
method of calculation is necessary. For this purpose consider the interaction D(T,n)*He. For the
range of centre of mass energies O<E;p<250keV the Padé-Coefficients for this reaction are
presented in Table 1.

Consider first the approximation used in the calculation of the beam-thermal neutron rate,

Eq. (35). In Figure (7) the results for fast ions slowing down in a warm plasma are compared
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with those obtained from a Monte-Carlo calculation. It is seen that below a fast ion energy of
50keV and for the particular finite bulk ion temperatures considered (T; = 2.5, 10keV) the effect
of the plasma ion temperature on the reaction rate increases and significant departure from the
cold target reactivity results.

Consider now the approximation used in calculations of beam-beam reaction rates. The
comparison between a numerical evaluation and Eq. (43) is shown in Figure (8). Below a
centre of mass energy E.y<52keV the analytical approximation deviates considerably from the
numerical evaluation and additional corrections in the form of an expansion of the astrophysical
function Q(E) in the analytical evaluation is required. However, because the contribution of this
reaction to the total thermonuclear yield is small this hardly seems worth while.

8. SUMMARY

Using a time dependent solution of the neutral beam injection Fokker-Planck equation
expressions for calculating the effect of fast ions slowing down on the bulk plasma have been
given. The results for power and torque are to be used in calculations of the thermal energy and
toroidal angular momentum confinement time. This is in contrast to calculations of the total
energy confinement time, for which the absorbed power has to be used. There 1s no equivalent
measure of the total toroidal angular momentum to be used with the absorbed momentum. For
the calculation of thermonuclear reactivity in beam-thermal and beam-beam interactions the
analytic approximations are in good agreement with Monte-Carlo and numerical methods of

calculation.
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TABLE 1

Padé - Coefficients for the Q(E) Function

Coefficient D(T,n)*He

B (VKeV) 34.3827
A1 6.927 x 104
A; 7.454 x 108
A3 2.050 x 106
A4 5.2002 x 104
As 0.0
B 6.38 x 10!
B> 995 x 101
B3 6.981 x 1--5
By 1.728 x 104
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APPENDIX 1

Calculation of Steady State Fast lon Energy Content of the Plasma

The fast 10n energy content of the plasma is
t) =%mjv2f(v,§,t)d3y (A1)

Following substitution of the fast ion distribution function. Eq (2) in the limit t — o of the main
text into Eq. (A1) and integration over gyro-phase ¢ and pitch { we obtain

Vo vidv

vV av:

Ef(t)——mt s j (A2)

Evaluation of (A2) is straightforward and we obtain

2 vi+2vyv, + vC 2v. -V,

v2
Ef(t)=%m”csSBv02—%vcz{lln ) ~VoVe Ve > ++3tan” 1—\/-§-‘10—H (A3)

where here S = S(t) is the constant level of particle injection rate onto a magnetic surface.
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APPENDIX 2
i(n + %)Pn(ZI)Pn(ZZ)Pn(Z) = %J‘:d(p 5(2 _ Z)

To prove this result we take as starting point the addition theorem for the Legendre
polymials

1/2 1/2
Pn{zlzz +(1—212) (l —z%) cos (p} =Py(z1)Pp(z3)

+2__‘1( H™ g" m;, n(z1)Pq (z2)cos mo

From which we get

1 2n 1/2 172
Pn(ZI)Pn(Zz)=EL Pn{zlzz +(1—zi7') (l—z%) cos (p}d(p

and the sum can then be written

i:ﬁ (n+ ) z)j {zlzz+ 1_212)1/2(1_22)1/2‘:08 (p}d(p

Inverting the order of integration and summation and noting the delta function
representation

52-0)=, (1 palci)Pald)

gives

i ( ) (z1)Py(22)P (Z)—-I do 3(z-2Z)

where Z =2z, - (l - 217')1/2(1 - z%)m cos ¢
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Fig.1: The observed time dependence of the central plasma electron density ne(t) and electron temperature
Te(t) during deuterium injection heating of the JET plasma used in the calculations.
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Fig.2: The calculated time dependent growth of the fast ion density within the plasma is compared with the
steady state calculation.
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Fig.3: The calculated time dependent development and steady state fast ion energy content of the plasma.
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Fig.4: The partition of the injected beam power between the bulk plasma ion and electron species. @ is the
angular rotation of the plasma and M, M, are the torque from the fast ions to the bulk plasma ions and

electrons respectively.
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Fig.5: The torque of the injected fast ions to the bulk plasma ion and impurities and electrons. V¢ is the plasma
tomidal velocity.
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Fig.6:The time evolution of the beam-thermal neutron yield.
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Fig.7: The effect of finite bulk plasma ion temperature on the function (av) is compared with results obtained

from a Monte-Carlo simulation.
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Fig.8: The comparison of the analvtic approximation and a numerical evaluation of the function (ov) for beam-

beam fusion interactions. For parallel beams moving perpendicular to the magnetic field the calculations
differ by a factor 2.
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