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ABSTRACT

The plasma dynamic response can be used to study transport processes in a
tokamak plasma. A method has been developed for the application of dynamic
response analysis to study perturbations away from the plasma equilibrium. In
this report perturbations on the electron temperature following a sawtooth
collapse in the center of the plasma are considered. The method has been used to
find a mathematical description of a series of heat pulses at JET. From the plasma
dynamic response, the time constants which characterise the heat pulse are
obtained. These time constants are compared to the transport coefficients found
in previous analysis of the JET heat pulse data. Discussed are various methods
used to apply dynamic response analysis to JET heat pulse data.

INTRODUCTION

The understanding of transport phenomena in tokamak plasmas is of major
importance for optimal design and operation of a future nuclear fusion reactor.
The energy confinement has been studied by analysing the steady state of the
plasma or alternatively by analysing the response to perturbations in the plasma.
Until now, no suitable description has been found for the underlying physical
processes of energy confinement in a tokamak.

Several methods have been used to study the evolution of perturbations in a
plasma. In most studies, the experimental results are interpreted starting with the
energy and particle balance equations. Assumptions have to be made on the
transport coefficients used, on the initial conditions and on the boundary
conditions. Widely used methods are the time-to-peak [1], Fourier analysis [2] and
numerical simulations [3]. The energy and particle source terms as well as the
plasma boundary conditions need to be known. The disadvantage of these
methods is that assumptions on the underlying physical processes are necessary
in order to obtain a suitable description. Applying these models to the
experimental data may lead to systematic errors in the results.

In this report dynamic response of the plasma is used to investigate the transport
mechanisms [4,5,6]. This is done by measuring the temporal evolution of the
electron temperature (using ECE diagnostics) following a sawtooth collapse (heat
pulse). A mathematical description of the experiment is obtained without the



need to invoke a particular transport mechanism, boundary conditions or initial
conditions.

First, a method is developed for the application of dynamic response analysis.
This method is verified by using dynamic response analysis to describe a
simulated series of sawteeth and heat pulses. Then, dynamic response analysis is
applied to JET data. Two forms of JET data are considered. First, dynamic response
analysis is applied to averaged data for one or more channels, i.e. different
positions in the plasma. In this signal, typically twenty sawteeth are averaged
which are synchronized at the time of the collapse [1]. Second, dynamic response
analysis is applied to a series of sawteeth for one or more channels, using raw
data. The time constants obtained from dynamic response analysis are compared
to values of the heat transport coefficients obtained from previous analysis of the
JET data.

METHOD

Description of dynamic systems

A dynamic response of the plasma can be used to investigate transport
mechanisms. The method consists of measuring the temporal evolution of the
plasma parameters following a perturbation, which may be either externally or
internally imposed. In this approach, the plasma is represented by a dynamic
system and is characterized by the time constants of the dynamic response.

If linear, the time dependent behaviour of a single-input single-output dynamic
system is described by an ordinary linear differential equation:
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where x(t) is the input signal and y(t) is the output signal. In addition, the
coefficients o and By, are time independent. In a finite response system of order
N, the additional condition M <N is required. The behaviour of a dynamic
system is characterized by its transfer function, which relates the input signal to
the output signal. For that purpose it is necessary to apply Laplace Transform to
equation 1:

N M
D ops"Y(s) = Y Brs™X(s) )

n=0 m=0



The transfer function of the dynamic system can be expressed as a rational
function in the Laplace variable s:
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Thus, if the input signal x(t) and the output signal y(t) are known the dynamic
system can be completely described. On the other hand, if the input signal and the
transfer function are known the dynamic response of the system can be modeled
by applying inverse Laplace transform.

Discrete signals, recorded with a sampling time Tg,m, can be represented by a sum
of delta functions:
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Due to the discretisation the linear differential equation 1 obtains the following
form:
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In addition, the Laplace Transform is replaced by a z-transform, which is a
particular formulation of Laplace transform for discrete signals, and is defined as:
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This results in a z-transfer function of the form
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The time evolution of the output signal is determined by the poles of the transfer
function. The relation between the poles sy of the continuous transfer function
(3) and the poles zj of the z-transfer function (7) follows from the mapping
between the s-plane and the z-plane and is given by:
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Application of dynamic response analysis
Using the plasma dynamic response to describe the heat pulse, the sawtooth
collapse is represented by a delta function. As a result, in the right term of (5) only
one term differs from zero at the sawtooth collapse. Since the plasma parameters
have a finite response to the sawtooth collapse, the additional condition M < N is
required. In general M = N - 1 for a finite response system. By applying fraction
splitting the z-transfer function (7) can be written as
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which is a sum of N z-transfer functions of a first order dynamic system.
Comparing (9) to (5) reveals that a Nth order dynamic system can be described by
a parallel connection of N first order dynamic systems, which all have the same
input signal. This implies that the corresponding Nth order linear differential
equation is replaced by a sum of N first order linear differential equations:
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where u;(k) is the output signal and sample time Tg,,, = 1. Equation (10) shows
that the output signal y(k) at time k can be derived from the preceding output
signals and the input signal. The time evolution of the output signal due to the
sawtooth collapse is obtained by the inverse z-transform. As a result, the output
signal is represented by a sum of exponential functions:
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From the coefficients by,;, ag,; and ag,j, the amplitudes bg,;/aq,; and the time
constants i = a1,j/a(,j can be determined. For a finite response system which
describes a heat pulse, the condition t; > 0 is required.

Application to JET data

The plasma dynamic response to a delta function is described by a sum of
exponential functions (11) as shown in figure 2. The dynamic system can be
identified using an iterative optimization of a sum of exponential functions with

respect to the heat pulse. However, this optimization method is numerically



unstable and strongly dependent on the initial values. Therefore, identification
of the dynamic system is based on a two step optimization procedure. First an
optimization with respect to the dynamic response of the plasma to a delta
function is carried out.

The optimal model is defined on the basis of the error e(k) between the JET data
y(k) and the modelled output y~(k), which applied to dynamic response analysis
can be written as:

e(k) = y(k) - y(k) = y(k) - HZ)x(k) (12)

where H(z) is the z-transfer function defined in (9). It is more convenient to write
e(k) as (using equation (10))
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where u”j(k) is the modelled output. The optimization criterion is the
minimization of the error e2(k) for all values of k. The optimization is carried
out using the NAG fortran routine G13BEF [8]. With this routine it is possible to
determine the coefficients ag,i, a1,j and bg,j in the set of first order differential
equations (10) and (13). The white noise in the input signal is also taken into
account. In order to increase the performance of the routine a constant offset can
be subtracted from the data.

Next, an optimization with respect to a sum of exponential functions is carried
out, using the results of the dynamic response analysis as initial values. From the
coefficients ag,;, a1,i and by,j the coefficients in the exponential functions (11) can
be determined. These values are used as initial values in an optimization with
respect to a sum of exponential functions. The error (12) can now be written as

(- 20dgr )

N
by ; )
e(k)=y(k)—2%e ay,; (14)
i=1 91,1

The NAG fortran routine E04JAF [8] is used to minimize the error e2(k) and to
determine the exponential functions which describe the heat pulse.



Using this method both averaged heat pulse data and raw data are analysed as
described in the introduction. When analysing the raw data, the assumption is
made that each sawtooth in a series of sawteeth is represented by a delta function.
To cope with the different amplitudes of the sawteeth, multiplication factors are
introduced with respect to a reference sawtooth. In this way, the average time
constants of a series of sawteeth at various radii are obtained, whereas the
amplitudes may differ. When fitting the exponential functions to the data, the
offset is determined by fitting a second order polynomial to a few data points
before each sawtooth, taking the contribution of the exponential functions into
account.

RESULTS

In this chapter the results of dynamic response analysis applied to JET data are
described. An attempt is made to describe the heat pulse with two or three time
constants. The fastest mode (corresponding to smallest time constant 1) vanishes
quickly, so the time window over which the contribution of this mode can be
measured accurately is small in comparison to the time scale of the heat pulse.
Also, the sample time of the signal has to be smaller than this time constant. The
larger time constants can be determined over a long time interval of the heat
pulse.

First, the method used to analyse JET data is tested on simulated data. A heat
pulse is constructed from two or three exponential functions. The number of
exponential functions used to construct the heat pulse determines the order of
the dynamic system. First, a single heat pulse is simulated. Then, a series of
identical heat pulses is simulated from which the exponential functions can be
determined. Finally a series of identical sawteeth with a change to the
background (offset) is simulated (figure 3). In all cases the time constants and
amplitudes determined with the identification method are almost equal to the
ones used to simulate the heat pulse. The identification of simulated data shows
that the exponential functions which may describe a series of sawteeth can be

extracted from the data.

Second, the analysis is applied to averaged heat pulse data. The results of
dynamic response analysis turn out to depend on the initial values and accuracy
of the identification procedure. In particular, the routine used for the
identification of the exponential functions does not always find the minimum



e2(k) as can be defined using equation (14). The averaged sawteeth can be
described by the dynamic response of a third order, or in some cases a second
order dynamic system. When the time constants of different channels (different
radial positions in the plasma) of one shot are identified separately, the time
constants are not identical. However, under the additional constraint that the
time constants are identical for each channel the efficiency of the identification is
hardly affected, as can be seen from the fits in figure 4.

Other methods have been used to analyse the data in the past, yielding values for
the thermal diffusivity coefficient th [1,2,3]. The relation between the time
constants found and the thermal diffusivity coefficients previously obtained is
investigated. The two largest time constants turn out to be inversely proportional
to the thermal diffusivity coefficient as can be seen from figure 5.

Since the thermal diffusivity coefficient is scaled with other plasma parameters
[9], the relation between the time constants and the other plasma parameters is
also investigated. The best correlation is found between the second time constant
17 and the temperature gradient of the unperturbed electron temperature VT,.
An attempt is made to find a scaling of 15 with the 'plasma’ parameters xhP and
VT,. The following relation is obtained:
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In figure 6 the scaled time coefficient 125€ is plotted versus the measured time
constant 7.

A disadvantage of using averaged data is that the fastest time constant, for which
T < 2Tgam., can be filtered out. Also the largest time constant is difficult to
determine since the temporal evolution of the background temperature is partly
taken into account in the averaging procedure and the time window analysed is
sometimes too restricted (figure 4).

Third, dynamic response analysis is applied to raw data. The results of the
identification of one heat pulse for both the dynamic response and the
exponential functions reveal that the representation of a heat pulse by a second
order dynamic system is not satisfactory. As a result, the heat pulse is described
with a third order dynamic system. In order to obtain more reliable information
about the time constants a series of typically five sawteeth is fitted. In this way the



average values of the time constants are obtained. In contrast to the use of
averaged sawteeth the dynamic response is calculated for all data points. In most
cases, the result of the minimization with respect to the dynamic response is
better than the result of the minimization with respect to exponential functions.
The time constants of different channels are identified under the additional
constraint that they are identical for several channels at different radial positions.
Figure 7 shows a fit of a series of sawteeth for three channels.

The values of the largest time constant obtained from raw data are much larger
than the time constants obtained from averaged data. In figure 8 the values of the
time constants obtained from the dynamic response are compared to the values
obtained from the exponential function fit.

From the results three ranges of t values can be distinguished. However, there is
no convincing relation between the time constants and the thermal diffusivity
coefficients determined from the averaged heat pulses, as can be seen from
figure 9. Neither can a significant correlation of the time constants with the other

plasma parameters be found.
DISCUSSION AND CONCLUSIONS

The application of dynamic response analysis to simulated data shows that the
time constants and the amplitudes of the exponential functions which describe
the heat pulse can be determined successfully. However, the analysis is not
applied to simulated data with a noise component. Although corrections for the
white noise in the signal are carried out, the influence of noise on the
identification of the heat pulse is not known.

In the analysis of the JET data two important assumptions are made. First, the
sawtooth collapse is represented by a delta function. This assumption is justified,
for the time scale of the sawtooth collapse is smaller than the sample time.
However, the implications of using another input signal have not been tested.
Second, in the identification of the dynamic system no dependency on the
plasma parameters is taken into account. However, if the plasma characteristics
change due to variations in the plasma parameters, the characteristics of the
dynamic system may change accordingly. The assumption that the dynamic
system characteristics remain unaltered for different radial positions is justified

within the measurement errors.



Dynamic response analysis proves to be a reliable method to describe averaged
data. In the identification procedure, the dynamic system is described by a parallel
connection of three first order dynamic systems. Data reduction as described by
Moret et al. [5] provided no improvement. Also, a treatment of the averaged data
(calibration, filtering, Abel inversion, etc.) appeared not to be necessary.

The absence of a clear correlation of the largest and the smallest time constants
with other plasma parameters can be caused by the averaging procedure. The
smallest time constant is filtered out and the time window over which the largest
time constant can be determined is too restricted.

The following differences between the values of the time constants obtained
from raw data and the values of the time constants obtained from averaged data
are observed:

® The value of the largest time constant for raw data exceeds the value of the
largest time constant for averaged data several times. This is caused by the
difference in the time windows in the identification procedure. In contrast to
averaged data, the complete heat pulse in time is analysed for raw data. In
this way a larger time constant is necessary to describe the heat pulse. On the
other hand the amplitude of the exponential function related to the largest
time constant (slowest mode) is smaller than the other amplitudes. This
results in a smaller contribution of the slowest mode to the heat pulse.

® The radial positions over which the data are analysed are different for
averaged data raw data. Due to noise on the raw data only channels close to
the mixing radius can be taken into account. In the averaged data the noise is
reduced, and as a result data at larger radial positions are taken into account.

® The time constants obtained from raw heat pulse data show no correlation
with the plasma parameters. Some of the plasma parameters are determined
at larger radial positions corresponding to the analysis of averaged heat pulse
data. As there is a difference between the values of the time constant for raw
data and averaged data, it is obvious that the relation with other plasma
parameters is affected.



® The values of the smallest time constant are smaller for raw data than for
averaged data. The lack of a correlation between the fastest time constant for
averaged data and other plasma parameters and the difference with the fastest
time constant of the raw data can be caused by the averaging procedure.

The results of the identification of raw data are better for the dynamic response
than for the exponential functions fit. The dynamic response of the plasma is
determined from each data point, whereas in the exponential functions fit the
same set of functions is used for all the heat pulses. Thus the problem is better
defined for the dynamic response. Hence, the identification of the dynamic
response is necessary to analyse the raw data. Also, the number of heat pulses
taken into account is limited. An attempt has been made to fit twenty heat pulses
of one shot, which turned out not to be possible (no stable solution could be
found).

In conclusion, dynamic response analysis is a powerful method to describe heat
pulses. In this paper the foundation is laid for the analysis of JET heat pulse data
using the plasma dynamic response. This method can be easily applied to other
perturbation methods, since from the analysis of the heat pulse it is found that
no assumptions need to be made on the boundary conditions or initial
conditions, or on the transport phenomena involved.

The time constants obtained from the analysis can be used to characterise the heat
pulse and can be used as heat pulse parameters. A comparison of the time
constants of the dynamic response and the thermal diffusivity, obtained from
previous analysis of the data, proves to be difficult at this stage. A possible
explanation for this apparent lack of correlation lies in the data (averaging
procedure and noise on the raw data), not in the method itself. Development of
the method to analyse the raw data and study of the results is necessary to make
the relation with transport phenomena.

At this stage the dynamic response analysis will be a useful tool to study the
plasma dynamic response to various different type of perturbations in the
plasma, or to study the changes of the plasma response to any type of
perturbation experiment in which the plasma parameters are scanned

systematically.
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Figure 1: The change of the electron temperature profile due to a sawtooth
collapse. Inside the mixing radius (ry,;,) the electron temperature profile flattens
during a sawtooth collapse (dashed line). Due to the flattening the electron
temperature decreases inside the inversion radius (ry,,) and increases between
the mixing radius and the inversion radius. Outside the mixing radius the
electron temperature perturbation spreads towards the edge. The inset shows the
electron temperature evolution at different positions in the plasma (heat pulse).
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Figure 2: A heat pulse composed of three exponential functions (N=3). Note the
difference in the amplitudes and time constants of the exponential functions.
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Figure 3: A simulated series of sawteeth with offset and corresponding fit. The fit
can not be distinguished from the data. The imput data for the simulation are:
11=30 ms, 1p=10 ms and 13=1.5 ms.
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Figure 4: Averaged sawteeth for different channels of one shot and the
corresponding fit. The radius to which the 1 values are attributed is the averaged
radius of the three channels.
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Figure 5: Plot of 1/1; versus xMP for averaged sawteeth. Figure (a) shows 1/1,
versus xhP and figure (b) shows 1/1, versus hp.
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Figure 7: The fit of a series of sawteeth for different channels at a time. The
dashed line shows the result of the dynamic response identification and the full
line the result of the identification of the exponential functions.
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0.50F "
m] # Qu X
0.45} 8 B X oo +
# X >§1
0.40— . "
4 b4
0.35} 0 X #
x w8 #
0.30 2 n B
-k ax?
s 0,25} L L
yi 8 - 2
0.20- 8] ®
B
o2 § g & Ba X
0.15} “u " #x
3?‘ & dsnmﬁn t?
0.10 é g é% . ;
a e § +
Z
0.05} I IR + e
g
0 | 1 I L g
0 2 4 6 8 10
XHP

Figure 9: Plot of 1/1, versus xhP for raw data (the lack of any correlation is
obvious). Similar results are obtained for the fastest and slowest time constants
(13 and 11 respectively).



