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1. INTRODUCTION

The behaviour of fast minority ions in tokamak (alpha-particles, NB ions, ICRH
minority etc.) in the vast majority of applications can be described by linear drift
kinetic equation with Fokker-Plank (FP) collisional operator. It is a second order
linear partial differential equation. The difficulties in solving it arise from the
large number of phase variables. This is typical for the modelling of real
experimental conditions. In some important applications the number of
variables can be reduced by averaging the FP equation over the particle bounce
period [1]. The reduced "banana averaged" FP equation for fast particles in
axisymmetrical tokamak has four essential variables (particle energy, magnetic
moment, "minor radius” and time). In the presence of small perturbations of the
magnetic field (TF ripple, MHD) it is still possible to reduce full equation to a 3D
one but with additional diffusive terms [2].

The JET experiment with reduced number of TF coils [3] highlighted the need for
the development of effective numerical codes for the treatment of fast particle
ripple loss. A significant number of discharges must be analysed, time
dependent, and for different classes of fast particles. The present paper is devoted
to the development of Monte-Carlo technique for the solution of FP equation.

2. LANGEVIN EQUATIONS FOR SINGLE PARTICLE RANDOM MOTION

It is well known [4] that differential equations can be solved by statistical or
Monte-Carlo methods, which are particularly useful for multi dimensional
problems. In these methods the solution of the equation is obtained by
calculations of large number of test particle random orbits.

We shall follow the procedure used in [3] and derive the equations for single
particle random motion corresponding to a generalised FP equation

af

\/1_8\/’]- (1)

where particle fluxes have the form:
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where U is convective velocity, D* - matrix of diffusion coefficients. In the last
equations and below the usual convention on summation over the repeating
indexes is assumed. Using Eq. (1) we can express the mean value of a variable x;,

=[xif\/gd"x,

in terms of U' and DK as follows:

{xi)= ,fx, \/—dn _”\/_dn

For J! given by Eq. (2) last expression takes form
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The test particle thus has an average velocity, V;, which is the sum of convective

velocity, U', and the corrections due to an inhomogeneity of the diffusion rates.

The same procedure can be used for evaluation of the second central moments,

oy = <(xi— <X >) (xj‘ <X >)>

After some algebra one obtains:

o= J{Dll +DF }f\/gd“x. (4)

If the test particles have the same initial conditions at t = 0, or f =8(x—x,), then

after small time step At they will have Gaussian distribution function
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f(At) = —7;'57'2— exp{—ZCij(xi - AXi )(X] - AX]' )}, (5)

where Cgl =20;. The matrix oj; and the shift of the Gaussian function, Ax;, can

be found from Eq. (3) and Eq. (4) as follows:
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The new distribution function can be generated by Monte-Carlo methods,
calculating sufficiently large number of random orbits of test particles starting

with the same initial conditions. The simplest way to generate (5) in 1D case is to
use the finite difference equation [4]:

XM+ = M 4 VAL+ {2DALY, 8)
with random sign + at the last term. Here x™ =x(t) and x™*! = x(t + At).

Another approach to generate (5) is to use a random numbers &, with Gaussian
distribution

(M) = 5 (m) 4 vat + {2DAt}2EM), 9)

where <§(1)§(m)> =0 for m#1 and
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The advantage of the last method is that it generates a Gaussian distribution in

one time step which allows the use of much larger time step At< 12 /2D, where

-1
L= (15882) is spatial scale length, in compare with the first method, Eq. (8).
X

The one dimensional Eq. (9) can be easily generalised for multi dimensional case
(nD):

xMHL =M vAt+ AR ER; (i,k=1,..n), (11)



where § - random vector with noncorrelated components, (§.&)=38,; and (&)
defined by Eq. (10). Matrix A;, can be found from algebraic equation

AikAjk = O'i]- (12)

which follows from comparison second central moments Eq. (9) and Eq. (11).

For solving Eq. (12) we have to remind the following features of the matrix oy;.
One can always find local basis in which oj; is a diagonal matrix with diagonal
elements equal to diffusion rates along the new main axis multiplied by time.
Therefore, the determinant of the matrix Gij could not be negative. If det Gjj = 0it
means that diffusion rates along some directions are zero and the particle cloud
can spread in time only along a phase volume which has smaller dimension
than the dimension of the phase volume n (1D in 2D problem, or 1D or 2D in 3D
case). The number of non zero diagonal elements is equal to the matrix rank

m<n.

To find an appropriate solution for Ay we introduce the following notations:

611012 511012013
d] =011, d2 = 0_120_22,’ d3 =1021022G23(; --...
031032033

We shall assume that the first m terms of this row not equal to zero (d; 20). If it
is not true it is possible to rename variables. Because the matrix oj; is symmetric
one we have freedom in choosing elements A;; and therefore we can assume Ay
to be a triangular matrix, i.e. Ay =0 for j > i. This makes it possible to write the
following recurrent formulas for matrix elements Aj:

A11=(d1)%r
Apn=03i/An; i=2,n,
Aik=0. ; i=1, k-1
Axk =(dy / dy1)2, 1<k<m (13)

Aik:oki/Akk ; i=k+1,n

Aik=0. k >m.



Therefore Eq. (6), (7), (11), (13) are equivalent to the FP equation given by Eq. (1).
3. THE RESULTS OF NUMERICAL TESTS

The statistical approach described above has been tested by simple numerical
tests. The tests were aimed to compare numerical schemes given by Eq. (8) and
Eqg. (9) and find limitations on the time step At.

3.1. TESTS WITH 1D EQUATION

The first test was made on the basis of 1D FP equation:
of 1 o of
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with boundary conditions df/9x = 0 at x = 0 and x = 1 (conservation of number of
particles). Eq. (14) was solved numerically by calculating random orbits of 1000
particles. Two methods of generating random orbits Eq. (8), Eq. (9) has been
compared using a constant time step dt for the all particles. The distribution
function f(t,x) has been calculated at a given time t by counting number of
particles in 20 spatial sells distributed uniformly over x c [0,1].

The first test was a comparison of numerical solution of Eq. (14) (D =0.25, \/g = 1)

with analytical solution:
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£(t,x) = R E{exp( (x=xq +2k)" / 4Dt + exp(~(x+ xo + 2k)? / 4Dt)}. (15)

Fig. 1 and Fig. 2 show the evolution of the distribution function calculated by
Gaussian (Eq. (9)) and constant step (Eq. 8) schemes with a small time step
dt = 0.001 (spatial step <dx> = 0.02). Both methods show good agreement with the
analytical solution. As was expected the Gaussian approach is not sensitive to the
time step, which is illustrated by Fig. 3. On the contrary the constant step method
fails when the random spatial step becomes larger than box size, as in Fig. 4.

The sensitivity of MC solution to the time step has been checked for a
nonuniform diffusion rate D =x(1-x) (\/g = 1). It was found that the numerical



solution is not sensitive to the time step up to 0.064 (illustrated in Fig. 5) which
corresponds to the spatial step of 0.18. At larger time step a visible systematic
error appears in the MC solution which is connected with nonuniformity of the
diffusion rate. For chosen size of the boxes the constant-step scheme failed at dt =
0.005. Both methods provide MC solutions close to each other at small time step
dt = 0.001.

The next two tests were devoted to the MC solution of Eq. (1) with a non constant
Jacobian. The steady state solution of Eq. (1) is f = 1 for any arbitrary function
\/g(x). On the other hand number of particles in each box which is actually
calculated in MC solution, dN = f\/gdx, is not constant at t—ee but is expected to
form the particular distribution dN ~ \/g(x)

The establishment of a steady state solution was checked for two Jacobians. Fig.6
shows evolution of distribution function calculated for \/g =0.1+1.8x. At large

time t 2 1 the distribution function reaches the correct steady state solution f = 1.

The second example was calculation of the evolution for the Jacobian and
diffusion rate shown at Fig. 7c. Fig. 7a shows the evolution of initially peaked
distribution function with time. At t = 1 f(t,x) reaches the steady state solution
f=1, Fig. 7b. At the same time number of particle in the boxes has a spatial
distribution with a peak which corresponds to the peak in \/é , Fig. 7c.

Therefore the 1D tests show that the Gaussian randomisation scheme seems to be
preferable because it allows larger time/spatial step (natural limit of

-1
Ax < (]—13882) ) in compare with constant step randomisation.
X

3.2  TEST WITH 2D EQUATION

The aim of 2D tests was to check the scheme given by Eq. (11)-(13) and find
limitations on the time step in Eq. (11). We used 2D FP equation with a constant
diffusion rate in vertical direction as a simplest model of ripple diffusion and
pitch angle scattering;:
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Here, a and © are co-ordinates in the polar co-ordinate system:
R=acos?, z=asin®. The diffusion rate D, describes particle scattering over the
surface a = const, i.e. represent pitch angle scattering, and other terms in the right
hand side of Eq. (15) represent a ripple diffusion operator, 9 / dz(Dof / 9z), written
in the polar co-ordinates. Therefore, at D = 0 one may expect spreading of an
initial cloud of test particles over ¥ at a fixed initial a, and at D, = 0 spreading
over 1D curve, R=acos®=const. Because in the new variables the diffusion
tensor is not a constant the test particle has a mean velocity defined by Eq. (3),

_2Dcos¥9sin®

Dcos? ®
_ Dcos Vg = : ; (16)
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Fig. 8 shows that in the two limiting cases D = 0 and D, = 0 the particle cloud stays
on the 1D lines a = const and R = const. The transversal spreading of the cloud in
the latter case is connected with combined effect of the finite time step and
"wrong" boundary condition - mirror reflection from the boundaries.

Fig. 9 show the effect of the finite time step in the case Do = 0. It can be seen that
in order to reach a reasonably accuracy one needs to use a small time step
Ddt < 0.001 (= 103 time steps for relaxation of distribution function). It should be
mentioned that the contribution which arises from average velocity produces the
necessary compensation of a "centrifugal" particle drift from the curve. Because
Do = const relaxation over ¥ is not sensitive to the time step.

Finally Fig. 10 shows 2D spreading of the initial test particle cloud in the case
D =Dy =0.25.

Therefore in the multi dimensional case with anisotropic diffusion tensor the
maximum time step can be increased significantly if one choose the co-ordinate
system with one of the axes directed along the principal axis of the diffusion
tensor with the maximum rate. In the example presented above it means that if



D >> D, then it is better to use Cartesian co-ordinates R,z, but in the opposite case,

D << Dy, polar co-ordinates are preferable.

SUMMARY

The numerical tests show that the Monte-Carlo scheme described by Eq. (11) and

Eq. (13) reproduces solutions of the FP equation. The Gaussian scheme, Eq. (9),

seems to be preferable because it allows larger time step then the constant step

scheme, given by Eq. (8). In the multi dimensional case the "right" choice of the

co-ordinate system can help to increase the time step.
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Fig.1 Comparison of numerical solution of Eq. (14) with exact analytic

one. Gaussian scheme. 1000 particles, dt = 0.001.
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Fig. 3 Sensitivity of the Guassian scheme to the time step. Dashed line

exact analytical solution.

a-t=0.064,dt =0.001,

b-t=0.064, dt = 0.002,

c-t=0.05 dt=0.05(distribution obtained by one time step)
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Fig 4 The time step dt = 0.005 is too big for constant-step scheme.
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Solid line - dt = 0.001, dashed line - dt = 0.008, dotted line - dt = 0.064.



O JG93.231/6

Fig. 6 Evolution of distribution function calculated for Jg = 0.1 + 1.8x.
t = 0.008, 0.064, 0.216, 1.0.



PI[OS) uOnOUNy UOHNQLUSIP (0' = 3) AUY - q ‘UOHIUNJ UOHNLISIP
JO uUonIN[OAS - B "D/ Je umoys uelqode[ pue  Y3m (1) by jo uonniog

X
0t 80 90 v0 & 0
mm T 1 LA _\ 0
S <%0
....... . JUS.T Y0
/ \ INF
——vf \~ |@-P
(9) -
0¢

d

)

(x)ql ‘(x

‘(dur] paysep) sapnled jo 1aquunu pue (aury

X

0

0L 80 90 ¥0 20

0

J?: Ay
U U

X

L9

[
[}

0Ot 80 90 v0 20
- 1 1 T T T T




1.0

0.4+

n JG93.231/8

o
—

0

Fig. 8 Two clouds correspond to different limits,
1-D=0.25Dy =0,
2-D=0.Dy=0.25.
t = 0.064, dt = 0.0002, dashed line - R = const.
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Fig 9. Effect of finite time step. a - dt =0.0002, b - dt = 0.005.
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Fig. 10 Cloud spreading from initial position marked by cross.

D =D, = 0.25, dt = 0.001.
a-t=0.008,
b- t=0.064.



