IE ,_II=
JOINT EUROPEAN TORUS m

JET-R(85)01

D. Pfirsch
and D.F. Duchs

Scaling Law
Systematics



©-Copyright ECSC/EEC/EURATOM, Luxembourg — (1985)

“Enquiries about Copyright and reproduction should be addressed to the Publications Officer, JET
Joint Undertaking, Abingdon, Oxon, OX14 3EA, UK.”




Scaling Law
Systematics

D. Pfirsch’
and D.F. Duchs

JET Joint Undertaking, Culham Science Centre, 0X14 3DB, Abingdon, UK

'Max-Planck-Institut fur Plasmaphysic, Garching bei Miinchen






ABSTRACT.

A number of statistical implications of empirical scaling lawsin form of power products obtained
by linear regression are analysed. The sensitivity of the error against a change of exponentsis
described by a sensitivity factor and the uncertainty of predictions by a “range of predictions
factor”. The sometimes small value of the former and corresponding large value of the latter are
related to the existence of inner relationsin the statistical material used. A procedurefor identifying
inner relationsis outlined. The relations can be of physical nature or can be dueto adeliberate or
incidental selection of data. In the latter case finding inner relations can help the experimentalist
in choosing the experimental variables with necessary and sufficient density in parameter space.
Also discussed are the consequences of discarding variables, in particular theeffect of eliminating
the inner relations by a corresponding reduction of parameter space. Finally arecipeisgiven for
the computationsto be done. Thewholeisexemplified by considering scalinglawsfor the electron
energy confinement time of ohmically heated tokamak plasmas.
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Introduction

It is often of interest to try a representation of a quantity f like the

electron energy confinement,time T, by a product of powers of certain other

Ee
quantities fo, 0=1, ..., m. In the case of the electron energy confinement
time these could be plasma dehsity n, femperature T and so on. The power

product or '"scaling law" for f is then
mn
£ =1 £ , £, . =e =2.718 ... - (1)

Taking f1 as the natural number e allows one to express also a constant factor
by an exponent, namely ul. The set of exponents UO can be obtained for

instance by linear regression or just by trial.

One should bear in mind that a power product representation lacks in many
cases any theoretical foundation. It is then doubtful whether one is allowed
to use relations like (1) for extrapolation. But granted that doing this
is reasonable, there remains still the question of the accuracy of such an

empirically found formula.

If we write fexp for the experimental values of f, and fsc for the

"'scaled" value of f obtained from (1) we can define an error S by

S = (In £ - 1ln £ )2 (2)
exp sc

which is minimised in linear regression analysis in order to obtain the best
set of exponents uO. The brackets mean averaging over all experimental data
sets E used in the linear regression analysis. For any quantity o = 0 (E)

they are defined by
o0 = —m 3

The sums run over all data sets E, the quantities are weight factors which

allow, for example, to give different experimental devices a comparable weight



in spite of possibly vastly different numbers of available data sets.

From (2) one could infer an uncertainty of prediction when using (1)

given by
e £ c < f < e+ T (4)

This, however, is often a too optimistic estimate, because the exponents

UO havg some range of uncertainty. In this context it is of special
importance, that the statistical material may have certain inner relations
which can delude an error S being smaller than appropriate for an extrapolaticn
to an experiment which does not necessarily fulfil some of these relations.

An example for such an inner relation is one which exists for tokamak plasmas
with ohmic heating only: the definition 6f the experimental confinement

. time Tex; is nearly (except for different averages) identical with To

L hm
defined by

= nj? ' (5)

The r.h.s. is the ohmic power density. Using for n the Spitzer expression one

%

has essentially n Vv T 4 . Furthermore, j v Bp/a, where a is the minor

eff
plasma radius and Bp the poloidal field at the nlasma boundary. Bp is related
to the toroidal field Bt by Bp = Bt/qa (R/a) where R is the major torus

radius and qa the safety factor at the plasma boundary. With all this, (5)

yields
5
72 -1 -2
= T 2 g2 B 6
T ohm const n zeff R? q2 B, , (6)
which is of the form (1). Since T T by definition an empirically
exp ohm
found T could be dominated by T and so could be the error S. T y
sc ohm ohm

however, cannot be used for extrapolation; it does not describe any (sought) loss

mechanism but only reflects the ohmic heating relation (5).

Since T T also T T
exp ohm sc ohm

but with different dependences on temperature, density and so on. Therefore,

by number for ohmically heated plasmas

we have



T
sSC

=1 7N
Tohm
which simply reflects an inmer relation between n, T, etc.
From (7) it follows that
o
Tsc
T = (8)
sc sc T
ohm

is equivalent to Tsc for any O and, therefore, the dependence on n, T,

can differ appreciably from that appearing in Tsc

There could be more inner relations than this one, and in fact one can

find three such relations as shown in a following report.

Finding inner relations is not only important for showing that "good"
scaling laws might not possess an absolute meaning, but also in two other
respects: by finding an inner relation one could have obtained a new physical
relationship or one could have established that part of the parameter space
was not yet sufficiently investigated. In the latter case finding inner
relations could serve as a guide to the experimentalist for choosing interesting

parameter sets.



1. Introduction of Related Quantities

Sometimes it is of interest to use, instead of the basic quantities fO’

0=1, ..., m and f, quantities gi and g related to the former ones by
m+1 aiO
gi ~ ?1 s 0 Ffpa =% By T8 (92)
i=1, ..., n+ 1; n<m

It is convenient to choose the aio such that

g1 = f1 = e = 2.718 . (9b)
and that only gn+1 = g contains fm+1 = f.
This requires
oLlO - 610' 0LJ‘.,m+1 = 6n+1,m+1 | (9¢)

1
61k 0

]
[Eyh
N

Relations of the form (9) can be used, for instance, to introduce dimension-
less quantities like B = nT 2uo/Bz. For this latter quantity we would have

with B = gj, n=+* T =+f B=f: a = 1n Zuo, a

= = = 2.
o9 3 4 j1 1, o, 1, o,

j2 j3 j4

One could also discard certain basic quantities fo by means of (9) in

choosing the corresponding o =0, i=1, ..., n+ 1.

10

Instead of directly discussing power products of the form (1) for the

quantity f we will first consider the quantity g
n
g= 1T g (10)

In terms of the exponents vi of the related quantities gi relation (1) becomes



1aio - 0t11+1,0
m
£=1 £ _ (11a)

n
.= I vdo, -oa (11b)

In the following the logarithm of relation (10) plays the dominant role. It

can be written as

n .
Ing= 2 Vv, 1In g, = Y- lng ‘ (12)

v

tH
<
=
I
fury
=}

(13)

-
L:
1]
o
=]
12]
o)
1l
[
=]



2. Best Fit by Linear Regression

The error S defined in equation (2) can, because of (9¢), also be

written as

S = «(1 - 2>
(1n gexp in gsc)
(14)
=V A*v-2b-V+e
A= [Aik] is a real symmetric semidefinite n x n matrix, b = (bi) an

n-dimensional real vector and c a real positive scalar. They are defined by:

Aik = <1ln gi In gk> , i, k=1, ..., n
b = i = .o

i <ln gi 1n gexp> , i i, , 1 (15)
C =

<(1n gexp)2>

The quantities (15) together form the variance matrix

Gik = <1ln g 1n gk> , i, k=1, ..., n.+ 1 (16)
: t
Minimizing S with respect to V yields the optimum set of exponants Y?p and
the corresponding optimum power product g:zt
-1
Pt _ 47ty 1n gPt =Pt L n g (17
A 2 b sc ~
and the minimum error S .
min
-1
8. =c¢c-b A *b (18)

min



3. Range of Predictions for S > Sm

in

_ As outlined in the introduction one should,. in general, assume S > Smin'
In this case there exist many scaling laws with errors smaller or equal to S.
If such scaling laws are appiied to a special experiment characterized by
1n g they will generally yield different answers for the expected value of the
quantity g. There will be one such scaling law leading to the largest of all
these values, and there will be another one leading to the smallest of all

these values. The total range of predictions will therefore be given by these

extrema of g multiplied by the statistical error exp (% /g).

The extrema of g are obtained from extremizing 1ln (gsc/gOPt) under the

constraint that AS = S - Smin is prescribed:

v =Py (19)
we have
n (g, /&) = v+ Ing (20)
and
AS =S ~8S ., =Av ¢« A « Ay (21)
min - = -

The latter is the constraint. Taking it into account by a Lagrange multiplier

we arrive eventually at

Av = % As_l Al e in g (22)
Ing* A *lng :
tr

The extrema gex follow from this and (20) to be

1n(g%*t% /g%Pt) = 1 /ns V/ln g é'l *lng (23)

The scaling laws gsc leading to these extrema of g depend on the
experiment being considered. This can be the case, because it is not
possible to discriminate between these scaling laws for a real error

S > 8 |
min



If we combine (23) with the uncertainty * /g connected with each 1n gsc

we obtain for the total range of predictions instead of (4)

g0pt exp{'— s - //AS . //ln g ° é_l *ln g }_i g <

,gopt exp{ //g + //AS //ln g ° é—l *In g }

(24)




Sensitivity of Error S Against Change of Exponents

Inner relations like T /T =
sc’ o

hm 1 allow modification of the scaling laws
without changing S appreciably.

In order to find out whether the exponent Vv,
of a certain quantity gi is well defined we determine the minimum error Sm

in
. t _
and the optimum set of exponents 2?p when a constraint

e * (V- voPYy = sy

v =8y, e? =1 (25)
is prescribed. The result is
_1 .
“opt opt 4 ‘e
VOPE o JOPY — Sv (26)
- — -1
e A e
~ 2
s . =S . =+ (6v) (27)
min min -1
e*AT e

It is of special interest to calculate

the effect of changing the exponents of

a particular basic quantity fo and optimizing again all the other exponents,
From (11lb) it follows:

opt n opt
Cmo =Myt Hy = Loy -V oy,
i=1
(28)
_ . _ opt, _ .
=a e, (W-VT) = oo Sv
In this expression we have introduced
(29)
%o
= i = 2 =
EO o0 , i 1, ..., n}); ec 1
Choosing -
ou
g=go, 6v=ao (30)
(0]



we find from (26)

A_1 s e
opt - vopt + = —O HO (31)
- - e_° A11 * e ao
-0 = -0
and from (27)
S =85 . + L (81 )2 (32)
min min 02 e A—l . e (o
-0 = el

The factor in front of (6110)2 characterizes obviously the sensitivity of the
error S against a change of the exponent UO of a basic quantity f0 with all

other exponents re-optimised. Therefore, we call

R_= (33)

the "sensitivity factor".

-10-



5. Inner Relations in the Statistical Material

As can be seen from (27) the maximum change of exponents is possible for
. -1 . :
an e maximizing e * A * e. If one represents A which is real, symmetric and

positive semidefinite by the dyadic products of its orthonormal eigenfunctions

A
X( )

and the corresponding eigenvalues aA as
n
b= I e IS (34)
T =1
) ) > (A 9]
. = = . = 35
) é l a}\ X ’ a}\ 0 ’ l _}_’_ 6)\\) ( )
then we have
n
-1
a7t 3 ;1_ Z(A) . lm (36)
‘ A=l A
The maximum of e * é—l * e is, therefore, obtained for
(A
e=y , ax smallest eigenvalue (37)
o
With this choice of e (27) and (26) become
= 2
S in smin+a)\ v (38)
o
~ (A
Vopt = OPt | svy ©° (39)

If ak << 1, appreciable values of §v and therefore appreciable changes in the

o A

exponents are admissible (remember [X. ° | = 11). ay = 0 would mean no change
o

of S at all for arbitrary 8v. This implies that for all 1ln g belonging to the

statistical material used, the following would hold:

-11-



Yy *1lng=20
n ()
or I g,  ¥i ° =1 (40)
) i
i=1
n
A
m 121 yi Ol':'LO
or H fo_ - = 1
o=1

Relation (40) stands for an exact inner relation between the quantities gi or
)

equivalently the quantities fO' (Note: the component y1 ° ensures only that

the r.h.s. value 1 is met; for non-dimensional quantities it depends on the

units used).

If only

a << 1 (41)

is fulfilled, then (40) is accordingly only approximately true and represents
a nearly inner relation being fulfilled the better the smaller ax is.

[e]

There might be more than one eigenvalue ay being small compared with
o (A)

. . . o . .
one. In this case all the corresponding eigenvectors y describe inner

relations of the form (40).

It is clear from (36) that go'é—l'gg in (33) is dominated by the small
eigenvalues of A unless &5 is almost normal to the corresponding eigenvectors

-1
characterising inner relations. Similarly in (24) the expression 1ln g*A °*ln g

is dominated by the small eigenvalues of A except for ln g fulfilling

sufficiently well the inner relations (40).

-12-



6. Discarding Variables

It is sometimes of interest, especially with respect to the real error S,
fo ask for the information in the statistical material "normal" to inner
relations. This information is contained in a reduced space obtained by the

projection operator:

(>\0) (>\0)
v y (42)

(o]

nwo
Il
]

z
A
where the sum runs over all or some of the eigenvectors characterising innmner

relations. The quantities gi occur then only in the reduced form:

In g =P * 1In g (43)
. . R R .
The corresponding reduced matrix A and vector b are given by

R
, bt =P b . (44)

[k
il
g
ke
.
g

R
The inverse of A 1is defined as the so-called Moore-Penrose or generalised
. R-1 o eii1i
inverse A fulfilling
MP

A A = A *A =P (45)

With the eigenvector representation (34) we have simply

- AZA
o
and
éR—1 -5 1 Z_0\) y()\) “n
“Mp A=A 23 :

In the reduced space defined by (42) all the relations obtained in the
previous chapters hold if one replaces the quantities by the reduced quantities.

If in (42) the sum over Xo includes all inner relations, all the big

-13-



uncertainties vanish since the small eigenvalues do not occur any more. But, of

course, (43) is an incomplete description now.

If one calculates the error S using the reduced space description one

finds an increase over S . by
m

in

O IS bx;
AS_ =b I —— y y b= I —2 (48)

R A3 R

[o] Q o] (o]

with
A
b, =y ‘b (49)
)\ e. il
o _,

When the sum is extended over all inner relations, none are left, and Smin+ ASR
does no more delude too small an error. Therefore, (48) represents an upper

bound for AS.

In the literature [2] it is shown that discarding variables can be done
in different ways, the results being not very sensitive to the chosen procedure.

In the context of ohmically heated plasmas very often a space is chosen which

does not contain the temperature. In that case
= - 50
P=1-e.e, (50)
with ET = EO following from (29) with O corresponding to fc = T. The
Moore-Penrose inverse for a P of this form can be written as
-1 -1
A e _e_* A
éR 1 - é—l _= —TiﬂT = (51)
e L

The incompleteness of this kind of a description can be completed again
by prescribing the temperature dependence. From (26) together with (29) one

finds

opt opt + Sy aT (52)

-14-



and therefore

A-l s e A_1 .
opt opt = =T opt = Er Hr
=\ - e e\ + —
- - e. A_1 e T~ e A_1 * e 0LT
=T = =T -1 = -T
53
y o1 . (33)
“opt = .
=P, = 0) + = T
- T OLT e _ A_1 * e
=T = . =T
The vector VOpt (uT = 0) is the optimum set of exponents for a T-independent
scaling law. We can therefore write
H 1ng°A1'e
opt opt = =T
= =0 —_—
Tsc (UT) Tsc (UT ) exp o 1 (54)

The range of predictions with this formula is for each value of UT given

. . -1 - . .
by relation (24) with A replaced by éR 1 of equation (51). This means
= =
generally a strong reduction compared with the full space evaluation at the

expense that now the exponent uT of the temperature is chosen arbitrarily.

-15-



7. Summary in Form of a Recipe for Programming

Definitions

Basic input quantities:

fo, o=1, ..., m+ 1

especially

f1 = e = 2,718 ... = natural number

fm+1 = empirical value of the quantity f which is to be represented by a

scaling law:

G’ 0o=1, ..., m = set of exponents

- Basic covariance matrix:

]
1]
N
[y
=}
H

Q
=
=
H
v

]

E: single set of experimental basic input quantities ("one experiment')

YE: weight factor for single set E, to be prescribed

- Related quantities:

m+1 ic .
g, = 021 fo ,i=1, ..., n+1;n<m
especially
o4 = 814 %y, mel T di, n+1’ Sik = ; i :k
- Scaling law for quantity g (corresponding to gn+1)
] Vi
€sc ~ igl gy

-16—



~ Relation to £
: sc

n

m .Z viaiO - OLn+1,C5

i=1 .

f e = I fo
s o=1
therefore

n

= AY) - = .

Mo i_z_l i %o OLn+1,o’ 1, B

- Related covariance matrix

m+l m+1

Gik = L z aic oL FGT = <1ln g, 1n 8>
o=1 T1=1
ik =1, ..., n+l

- ©Splitting of related covariance matrix

Gik = Aik for i,k = 1, ,
in+l = bi for i =1, ..., n
Gn+1,n+1 =
Notes:
1) The transformation from fO variables to some gi variables cén be continued

by using the already obtained gi variables formally as fO variables.

2) The aic can in particular be used to discard certain basic input quantities.
Computations
;O‘m
- o e = — i=1 n
g ’ g ] 3 e ey $
~ orthogonal eigenvectors XFA) = % yi(x); i=1, ..., n } s
and eigenvalues a,; A = 1, , n

)\;

-17-



A A
y( ) y( ) A\ y(\)) S

A, v=1, , n
inner relations:
n yiO\O)
I g, =1
i=1
Q)
for all y with ay £ e <1
o
o (Xo)
exponents UG of fo, G=1, ..., m for an inner relation y :
m o n (Ao)
I f£f_u =1, U = L vy o,
o=1 g v i=1 i 10
Inverse of A e.g. by
n n
-1 1 A
a7 e r WMoy Ly Py Dy,
A=1 A A=1 %A

Vector of exponents Vi for scaling law gsc:

v=aT b

Exponents for scaling law fsc

Minimum error:

-1
S . =c-b*A , b
min - = —
Sensitivity factor:
1
R =
c 2 -1
02 e * A * e
-0 = Y

-18-



- Admissable change of exponents:

- : tob scribed e.g. b
S Smin o be prescribed e.g y

A
o

S"S H b)\ =X_

|o

=1
min
o

b2
A
o
a
A
o
sum runs over all inner relations Ao

o
- Application to a special experiment with basic input quantities fc:

o o
- f = ]I f0 U

o=1 o

~ range of prediction factor:

— -1
exp %V/S + /s8-8, 1In g - A" ¢ 1n g %

1n go 3 1n gz H i=1, ..., n §

Discarding variables

()
- Discarding inner relations y ° :
replace
-1 1 A
sty 3 —a—z()xm
- X¢A° A

repeat all previous calculations beginning with the vector for exponents.

-19-



Discarding quantity f0
o

replace

Cl:((b
o= 10

repeat all previous calculations beginning'with the vector of exponents.

Reintroduction of quantity fO with prescribed exponents UO and
o o
application to experiment characterized by a set {fg}:

-1
Dinfyeg T a7t g
= f = :
fsc (UOO) sc (Uoo 0) exp Uoo e . A'l P
=0 = =0
o o
A~ original one
s (new) = 8 + R+ o(u - uoPYe
i min ag o] g
o o o

Range of prediction as for fO discarded (but uc not determined).
o o

-20-
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