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ABSTRACT

Stability of the internah = 1 kink mode in tokamak depends strongly on the ellipticity and
triangularity of the plasma cross-sectioq atl surface. Penetration of the plasma shaping from
the edge to the centrally localisqd= 1 surface has been investigated numerically using the
equilibrium code HELENA [1] folq - profiles close to the Bussac equilibrium and for a more
realistic scenario with a flattgr profile. The internah = 1 kink mode growth rates are computed
by the Ideal MHD MISHKA-1 code [2] for the equilibria considered. Plasma shaping optimal
for the kink stability is discussed.

INTRODUCTION

One of the plasma instabilities which is posing concern on the performance of Tokamaks as
fusion reactors is the interna¥ 1 kink mode which appears when the resonant magnetic surface
g= 1is presentin the plasma core [3, 4]. This instability causes sudden (few milliseconds) loss
of plasma temperature and particle confinement and the consequent flattening of the relevant
profiles. Although the details of the process triggered by the internal kink instability is still
debated and not properly understood [5-7], it was shown by Bussac et al. [3] that the linear
theory of the instability can be described quite satisfactory in the ideal MHD approximation.
Main result of [3] was the finding that in toroidal geometry the intemall kink mode can
become unstable only if the plasma pressure gradient overcomes a threshold value (for large
aspect ratio circular tokamak with a parabolic current profile and a gmadllradius the mode
is stable whenB,, </13/144 =0.3 [3)]).

Later theoretical studies [4, 8-11] have shown that the shape of plasma cross-section is
playing an important role in the stability of intermat 1 mode. It was particularly shown that
the internal kink mode is destabilized by ellipticity [4, 8, 11], while the instability threshold can
be stretched if the plasma is made more triangular [8-10]. In a recent paper Mikhailovskii [12]
has analytically shown that in a higltekamak with a finite plasma current gradient an additional
part of the central triangularity is induced by the wall ellipticity and the plasma pressure as
follows:

To = kaoT+ ka8 B/ R+ ks;;BSa%/ R, (1)
e = en+adBy/ 2R, 2)

where kg, k3e and kyp are numerical coefficients determined by the current profile,

characterizes the ratio of plasma pressure to poloidal magnetic field pressarel R are
minor and major radii of the torus, the elliptickyand triangularityr were characterized in
[12] through the equation of magnetic surfaces in the form

P§(1+ ecos2awy + 21pg cos3wg ) = a° (3)



and 1y, T and ey, ejare the triangularities and ellipticities at the plasma centre and at the

plasma edge correspondingly. It is seen from (1) that the triangularity at the plasma centre depends
on the ellipticity at the edge. A problem can be considered then to maximise the triangularity
penetration into the plasma centre and minimise therefore the kink instability region.

In the present paper we consider two typigalprofiles, one of which is close to the
Bussac equilibrium and second is a bit flatjer profile. For these two current profiles we
extend numerically Mikhailovskii’'s study scanning over a large range of ellipticity and
triangularity values and compute kink growth rates for the equilibria obtained. To carry out this
work we made use of the equilibrium code HELENA [1] and ideal MHD stability code MISHKA-

1 [2]. The input to MISHKA-1 is a plasma equilibrium in terms of the flux function. The ideal
MHD equations are then linearised to study small perturbations and the solution is Fourier analysed
in terms of the natural cyclic variabl@g¢poloidal angle with associated wave numingandg
(toroidal angle with associated wave numierThe equations are also Fourier transformed in
time (associated frequenayand growth ratg), with the usual convention that the real part of

the frequency gives the actual frequency of the mode while the positive imaginary part gives the
growth-rate of the instability (the negative imaginary part gives the damping rate). The result is
a set of differential equations for the radial dependent part of the perturbed fields, the solution of
which depends on the parameteray. For a fixedn,nthe equations reduce to a single eigenvalue
problem which is solved to give the growth rate ofrthemode. Details of the implementation

can be found in [2]. By extrapolating the growth rates we then obtain the marginal stability limit
for the mode of interest.

1. THE EQUILIBRIUM

We began the study by solving numerically the Grad-Shafranov equation for a circular toroidal
plasma witha/ R=0.1 imposing a current and pressure profile close to the analytical approximate
equilibrium chosen by Bussac et al. in the original work [3], i.e. we assumed the profiles shown
in Figure 1:

p=pO)1-7), (4)
(Mg .o=iO-9), 5)

where(j) is the current density averaged over the flux surfaceifaigthe normalised poloidal

flux; note thatiyy = (r/a)? close to the magnetic axis.

In order to proceed toward a more realistic case we also consider thegfaitefile
shown in figure 2 and pressure profile (4), keejpyr0.85 and3, =0.95. The numerical analysis
has been carried out assuming an inverse aspect ratio of 0.1.
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Fig.1: Relevant profiles for the Bussac-like equilibrium.

By keeping constant the value @fn the plasma centrggd= 0.85) we variqup at the

edge from 10 0.35 in order to estimate in the further stability analysis the critical \[ﬁﬂgﬂc
above which the internal kink mode is unstalfig, s, is defined as

o
Beussac =| 240 B (10)| [ (r /o) (~dlp/ dr)ar (6)
0

andrgis the radial position of thg= 1 surface. We therefore generated a number of equilibria
with different pressure values but with the same ceqtralalues and same radii of tige= 1
magnetic surface. After that we proceeded to finite ellipticity and triangularity cases keeping the
valuesqy and 3, constant.

With reference to Figure 2, the definition of ellipticity and triangularity used throughout
this work is
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Fig.2: Relevant profiles for the flat-q equilibrium
- Xp — X
e:yb ya; t= b a (7)
Xd ~ Xa Xd ~ Xa
wherea is the position of the magnetic axs,
is the lowest point of the last closed magnetic @
. . d
surface and is the outer most point of the last
closed magnetic surface.
We then studied the penetration of edge
triangularity and ellipticity for both - profiles. -
The results are plotted in Figures 4-6. Fig.3: Plasma poloidal cross section showing the

position of the magnetic axis (a), of the outermost point
on the last closed magnetic surface (d) and of the lowest
point on the same surface (b).
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2. THE KINK STABILITY

We first reproduce the Bussac circular cross-section stability limit for the Ideal MHD kink mode.
We found that for high values of the edfg the square of the linear growth rate depends
linearly on Bgum (in agreement with the Bussac findings), a linear extrapolativﬁetqual

zero gives a result close to that reported by Bussac et al in their B§pgr(= \/TE 112). After

that we proceeded to finite ellipticity and triangularity cases keeping the vajuasd S,
constant.



The code MISHKA-1 has been run accounting for the interaction of 13 poloidal harmonics
aroundm= 1. In Fig.7 we report the valuesyods a function oBtz,u,mc, obtained by varying,
at the edge (the values taken g5e1.0,0.95,0.9,0.83, the data represent four ellipticity cases
(e=1.0,1.1,2.2,18

The dependence cﬁon ellipticity and triangularity is shown in Fig. 8, the scan has been
carried out for the equilibrium of Fig.1 keeping fixgg= 0.85,8, =0.95
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Fig.7: Growth rates versus beta Bussac squared fdtig.8: Growth rates versus ellipticity for various edge
various values of edge ellipticity. triangularities. Bussac like equilibrium with edge beta
poloidal 0.95 and g on the magnetic axis 0.85.

Together with the stabilising effect of triangularity what we learned from Fig.8 is that for
a triangular plasma there is an optimum value of ellipticity, for which the growth rate is minimised
and which turns out to be=1.2.

The effect of triangularity o8, has been studied then by fixing the ellipticity to the
optimum value. The results are reported in Fig.9. It is seen that the triangularity plays a strongly
stabilizing role.

The linear scaling showed in Fig.7 is lost wisrat the edge approaches small values as
it can be seen in figure 6 whelgis brought down to 0.35, Fig.9 shows the dependengermf

3t2)u_mc for t=0.0 andt=0.1
The same study has been repeated for the flat-q equilibrium showed in Fig.2, by keeping
constanty=0.85, B, =0.95andvarying the edge ellipticity and triangularity.
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Fig.9: Growth rates versus beta Bussac squared fdfig.10: Growth rates versus ellipticity for various edge
various values of edge triangularity. Bussac likdriangularities. Flat-q equilibrium with edge beta
equilibrium. poloidal 0.95 and g on the magnetic axis 0.97.

The non monotonic behaviour observed
. . 9
in the Bussac case is not resolved because of

Ellipicity 1.2 t=0.0
the very small growth rates obtained=d.1 8- o«
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andeless than 1.3 (values xz?fthe order of 10 s o
[ ]
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in Figure 11. - 0°°
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triangularity, which is consistent with therig.11: Growth rates versus beta Bussac squared for
detected |arger‘ growth rates. The Stron\gariousvalues of edge triangularity. Flat-q equilibrium.

stabilising effect observed when triangularity
is increased cannot be due to a less penetrative ellipticity as it is shown in Fig.5 where the
penetration of edge ellipticity is plotted in the two cases of triangularity 0.0 and 0.05.

The point that there is no influence of triangularity on ellipticity penetration to justify the
difference observed in the mode growth rate when going from 0 triangularity to 0.05 is seen
from Fig.5. The effect must be entirely due to the penetration of edge triangularitygtelthe
surface, the latter is plotted in Fig.6 for ellipticity values that range between 1.0 and 1.5. By



increasing the ellipticity there is a decrease of 1% in the trianguladty 4t this variation is
responsible for the larger growth rates.

That a variation of 1% in triangularity can indeed cause a very strong effect on the growth
rate can be seen in Figs 12 and 13.
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CONCLUSION

We have studied the effect of plasma shaping on the internal kink mode by calculating numerically
the mode linear growth rate for two Tokamak relevant plasma equilibria: a Bussac like equilibrium
and a flat-g equilibrium (reported in Fig.1 and Fig.2 respectively). The edge ellipticity has been
varied between 1.0 and 1.5 (the increment step adopted is 0.05), the edge triangularity between
0.0 and 0.15 (the step being 0.05) and the pol@iddlthe edge has been scanned between 1.0
and 0.35 (scan step 0.05) the latter scan has been undertaken for the purpose of finding the
critical 3 below which the mode is stable. The valug@n the magnetic axis has been kept
constant when varying the edge ellipticity and triangularity, this made also the radial position of
theg=1 surface constant and located=#2.55 (where r is the plasma normalised minor radius),

the values ofy, taken are 0.85 and 0.97 for the Bussac like and for the flat-q equilibrium
respectively.

In the Bussac like equilibrium we find that increasing the edge ellipticity the mode is
destabilised at low edge triangularity. By increasing the triangularity at the edge the mode is
stabilised and an interesting feature is that the dependence of the mode linear growth rate on
ellipticity becomes non-monotonic as shown in Fig.8. The crifidgalincreased by increasing
the edge triangularity of 5%-10% as shown in Fig.9.



The flat-q equilibrium is more favourable for plasma confinement since allows a deeper
penetration of the edge shape atdhel resonant surface, as it can be seen from Figs 4-6. The
effect is that this equilibrium is very sensible to small variation of edge ellipticity and triangularity.
As in the previous case ellipticity has a destabilising effect increasing the mode linear growth
rate (as shown in Figure 10) but at the same time the addition of 5% edge triangularity brings
about a very large stabilising effect and when triangularity reaches 10% the mode appears to be
linearly stable. The strong stabilising effect that small variation of triangularity have on the
growth rate can be clearly seen from Figs 12 and 13.
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