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ABSTRACT

Stability of the internal n = 1 kink mode in tokamak depends strongly on the ellipticity and

triangularity of the plasma cross-section at q = 1 surface. Penetration of the plasma shaping from

the edge to the centrally localised q = 1 surface has been investigated numerically using the

equilibrium code HELENA [1] for q - profiles close to the Bussac equilibrium and for a more

realistic scenario with a flatter q - profile. The internal n = 1 kink mode growth rates are computed

by the Ideal MHD MISHKA-1 code [2] for the equilibria considered. Plasma shaping optimal

for the kink stability is discussed.

INTRODUCTION

One of the plasma instabilities which is posing concern on the performance of Tokamaks as

fusion reactors is the internal n = 1 kink mode which appears when the resonant magnetic surface

q = 1 is present in the plasma core [3, 4]. This instability causes sudden (few milliseconds) loss

of plasma temperature and particle confinement and the consequent flattening of the relevant

profiles. Although the details of the process triggered by the internal kink instability is still

debated and not properly understood [5-7], it was shown by Bussac et al. [3] that the linear

theory of the instability can be described quite satisfactory in the ideal MHD approximation.

Main result of [3] was the finding that in toroidal geometry the internal n = 1 kink mode can

become unstable only if the plasma pressure gradient overcomes a threshold value (for large

aspect ratio circular tokamak with a parabolic current profile and a small q = 1 radius the mode

is stable when βp < ≈13 144/ 0.3 [3]).

Later theoretical studies [4, 8-11] have shown that the shape of plasma cross-section is

playing an important role in the stability of internal n = 1 mode. It was particularly shown that

the internal kink mode is destabilized by ellipticity [4, 8, 11], while the instability threshold can

be stretched if the plasma is made more triangular [8-10]. In a recent paper Mikhailovskii [12]

has analytically shown that in a high-β tokamak with a finite plasma current gradient an additional

part of the central triangularity is induced by the wall ellipticity and the plasma pressure as

follows:

τ τ β ββ0 30 3 3
3 2 3= + +∗ ∗ ∗k k e R k a Re p p/ / , (1)

e e a Rp0
2 2 22= +∗ ∗ β / , (2)

where k k e30 3,  and k3β  are numerical coefficients determined by the current profile, βp

characterizes the ratio of plasma pressure to poloidal magnetic field pressure, a∗ and R are

minor and major radii of the torus, the ellipticity e  and triangularity τ  were characterized in

[12] through the equation of magnetic surfaces in the form

ρ ω τρ ω0
2

0 0 0
21 2 2 3+ +( ) =e acos cos  , (3)
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and τ τ0, ∗  and e e0, ∗ are the triangularities and ellipticities at the plasma centre and at the

plasma edge correspondingly. It is seen from (1) that the triangularity at the plasma centre depends

on the ellipticity at the edge. A problem can be considered then to maximise the triangularity

penetration into the plasma centre and minimise therefore the kink instability region.

In the present paper we consider two typical q - profiles, one of which is close to the

Bussac equilibrium and second is a bit flatter q - profile. For these two current profiles we

extend numerically Mikhailovskii’s study scanning over a large range of ellipticity and

triangularity values and compute kink growth rates for the equilibria obtained. To carry out this

work we made use of the equilibrium code HELENA [1] and ideal MHD stability code MISHKA-

1 [2]. The input to MISHKA-1 is a plasma equilibrium in terms of the flux function. The ideal

MHD equations are then linearised to study small perturbations and the solution is Fourier analysed

in terms of the natural cyclic variables θ (poloidal angle with associated wave number m) and φ
(toroidal angle with associated wave number n). The equations are also Fourier transformed in

time (associated frequency ω and growth rate γ), with the usual convention that the real part of

the frequency gives the actual frequency of the mode while the positive imaginary part gives the

growth-rate of the instability (the negative imaginary part gives the damping rate). The result is

a set of differential equations for the radial dependent part of the perturbed fields, the solution of

which depends on the parameters m,n,γ. For a fixed m,n the equations reduce to a single eigenvalue

problem which is solved to give the growth rate of the m,n mode. Details of the implementation

can be found in [2]. By extrapolating the growth rates we then obtain the marginal stability limit

for the mode of interest.

1. THE EQUILIBRIUM

We began the study by solving numerically the Grad-Shafranov equation for a circular toroidal

plasma with a R∗ =/ 0.1 imposing a current and pressure profile close to the analytical approximate

equilibrium chosen by Bussac et al. in the original work [3], i.e. we assumed the profiles shown

in Figure 1:

p p= −( )( )0 1 ψ , (4)

j jψ ψ→ = −( )0 0 1( ) , (5)

where j  is the current density averaged over the flux surface, and ψ  is the normalised poloidal

flux; note that ψ = ( )r a/ 2 close to the magnetic axis.

In order to proceed toward a more realistic case we also consider the flatter q- profile

shown in figure 2 and pressure profile (4), keeping q0 =0.85 and βp =0.95. The numerical analysis

has been carried out assuming an inverse aspect ratio of 0.1.
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Fig.1: Relevant profiles for the Bussac-like equilibrium.

By keeping constant the value of q in the plasma centre (q0 = 0.85) we varied βp  at the

edge from 1 to 0.35 in order to estimate in the further stability analysis the critical value βBussac
crit

above which the internal kink mode is unstable; βBussac  is defined as

β µBussac m

r

B r r r dp dr dr= [ ] ( ) −( )∫2 0
2

0 0
2

0

0

/ ( ) / / , (6)

and r0 is the radial position of the q = 1 surface. We therefore generated a number of equilibria

with different pressure values but with the same central q - values and same radii of the q = 1

magnetic surface. After that we proceeded to finite ellipticity and triangularity cases keeping the

values q0  and βp  constant.

With reference to Figure 2, the definition of ellipticity and triangularity used throughout

this work is
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where a is the position of the magnetic axis, b

is the lowest point of the last closed magnetic

surface and d is the outer most point of the last

closed magnetic surface.

We then studied the penetration of edge

triangularity and ellipticity for both q - profiles.

The results are plotted in Figures 4-6.
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Fig.3: Plasma poloidal cross section showing the
position of the magnetic axis (a), of the outermost point
on the last closed magnetic surface (d) and of the lowest
point on the same surface (b).
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The flat q - profile helps the penetration

of ellipticity at zero triangularity, which is

consistent with the findings in [8]. There is no

influence of triangularity on ellipticity

penetration, in agreement with (2). By

increasing the ellipticity we found a decrease

of 1% in the triangularity at q = 1.

We proceed now investigating how

ellipticity and triangularity affects the value of

γ2. By keeping q0 = 0.85 and βp  = 0.95 constant

we calculated the growth rate for various values

of ellipticity and triangularity.

2. THE KINK STABILITY

We first reproduce the Bussac circular cross-section stability limit for the Ideal MHD kink mode.

We found that for high values of the edge βp  the square of the linear growth rate depends

linearly on βbussac
2  (in agreement with the Bussac findings), a linear extrapolation to γ2 equal

zero gives a result close to that reported by Bussac et al in their paper (βbussac
c = 13 /12). After

that we proceeded to finite ellipticity and triangularity cases keeping the values q0  and βp

constant.
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The code MISHKA-1 has been run accounting for the interaction of 13 poloidal harmonics

around m = 1. In Fig.7 we report the values of γ as a function of βbussac
2 , obtained by varying βp

at the edge (the values taken are βp =1.0,0.95,0.9,0.85 ), the data represent four ellipticity cases

(e=1.0,1.1,1.2,1.3)

The dependence of γ2 on ellipticity and triangularity is shown in Fig. 8, the scan has been

carried out for the equilibrium of Fig.1 keeping fixed q0 = 0.85, βp =0.95
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Fig.7: Growth rates versus beta Bussac squared for
various values of edge ellipticity.
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Fig.8: Growth rates versus ellipticity for various edge
triangularities. Bussac like equilibrium with edge beta
poloidal 0.95 and q on the magnetic axis 0.85.

Together with the stabilising effect of triangularity what we learned from Fig.8 is that for

a triangular plasma there is an optimum value of ellipticity, for which the growth rate is minimised

and which turns out to be e = 1.2.

The effect of triangularity on βbussac
c  has been studied then by fixing the ellipticity to the

optimum value. The results are reported in Fig.9. It is seen that the triangularity plays a strongly

stabilizing role.

The linear scaling showed in Fig.7 is lost when βp at the edge approaches small values as

it can be seen in figure 6 where βp is brought down to 0.35, Fig.9 shows the dependence of γ on

βbussac
2  for t=0.0 and t=0.1

The same study has been repeated for the flat-q equilibrium showed in Fig.2, by keeping

constant q0=0.85, βp =0.95 and varying the edge ellipticity and triangularity.
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The non monotonic behaviour observed

in the Bussac case is not resolved because of

the very small growth rates obtained at t=0.1

and e less than 1.3 (values of γ2 the order of 10-

11 are below the resolution of MISHKA-1). At

t=0.15 any ellipticity value give extremely

small growth rates below the resolution of the

code.

The critical β is also affected by

triangularity and we find the behaviour reported

in Figure 11.

We conclude therefore that the flat-q

profile helps the penetration of ellipticity at zero

triangularity, which is consistent with the

detected larger growth rates. The strong

stabilising effect observed when triangularity
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Fig.11: Growth rates versus beta Bussac squared for
various values of edge triangularity. Flat-q equilibrium.

is increased cannot be due to a less penetrative ellipticity as it is shown in Fig.5 where the

penetration of edge ellipticity is plotted in the two cases of triangularity 0.0 and 0.05.

The point that there is no influence of triangularity on ellipticity penetration to justify the

difference observed in the mode growth rate when going from 0 triangularity to 0.05 is seen

from Fig.5. The effect must be entirely due to the penetration of edge triangularity to the q=1

surface, the latter is plotted in Fig.6 for ellipticity values that range between 1.0 and 1.5. By
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increasing the ellipticity there is a decrease of 1% in the triangularity at q = 1, this variation is

responsible for the larger growth rates.

That a variation of 1% in triangularity can indeed cause a very strong effect on the growth

rate can be seen in Figs 12 and 13.
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CONCLUSION

We have studied the effect of plasma shaping on the internal kink mode by calculating numerically

the mode linear growth rate for two Tokamak relevant plasma equilibria: a Bussac like equilibrium

and a flat-q equilibrium (reported in Fig.1 and Fig.2 respectively). The edge ellipticity has been

varied between 1.0 and 1.5 (the increment step adopted is 0.05), the edge triangularity between

0.0 and 0.15 (the step being 0.05) and the poloidal β at the edge has been scanned between 1.0

and 0.35 (scan step 0.05) the latter scan has been undertaken for the purpose of finding the

critical β below which the mode is stable. The value of q on the magnetic axis has been kept

constant when varying the edge ellipticity and triangularity, this made also the radial position of

the q=1 surface constant and located at r=0.55 (where r is the plasma normalised minor radius),

the values of q0 taken are 0.85 and 0.97 for the Bussac like and for the flat-q equilibrium

respectively.

In the Bussac like equilibrium we find that increasing the edge ellipticity the mode is

destabilised at low edge triangularity. By increasing the triangularity at the edge the mode is

stabilised and an interesting feature is that the dependence of the mode linear growth rate on

ellipticity becomes non-monotonic as shown in Fig.8. The critical β is increased by increasing

the edge triangularity of 5%-10% as shown in Fig.9.
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The flat-q equilibrium is more favourable for plasma confinement since allows a deeper

penetration of the edge shape at the q =1 resonant surface, as it can be seen from Figs 4-6. The

effect is that this equilibrium is very sensible to small variation of edge ellipticity and triangularity.

As in the previous case ellipticity has a destabilising effect increasing the mode linear growth

rate (as shown in Figure 10) but at the same time the addition of 5% edge triangularity brings

about a very large stabilising effect and when triangularity reaches 10% the mode appears to be

linearly stable. The strong stabilising effect that small variation of triangularity have on the

growth rate can be clearly seen from Figs 12 and 13.
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