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ABSTRACT

Natural basis functions (NBF), also known as natural pixels in the literature, have been applied
in tomographic reconstructions of soft x-ray (SXR) measurements in the JET (Joint European
Torus) tokamak. The results are compared with those obtained with local basis functions (LBF),
and those obtained with a conventional constrained-optimization tomography method. Truncated
singular value decomposition is used as the inversion md®eoonstructions withowt priori
information, such as the NBF reconstructions, are, as can be expected, less good than
reconstructions in which priori information is used, as in the conventional method, but the
reconstructions are shown to be reliable by means of phantom simulations. Reconstructions
with the same number of LBFs as NBFs withaudriori information are comparable to NBF
reconstructions, although the latter seem to be somewhat better. No significant changes in results,
apart from smaller reconstruction errors, are obtained if the measuring system has more regular
or complete coverage than the JET SXR system. The various tomography methods are used to
assess whether a newly observed in-out asymmetry in the SXR emission during the injection of
nickel into an RF-heated plasma, with the peak on the inboard side, is real. A possible explanation
for the asymmetry in emissivity is an increased nickel density on the inboard side as a result of
an RF-induced increase of the hydrogen-minority density on the outboard side.

Classification numbers:52.70.La, 42.30.Wb, 52.25.\Wy, 52.40.G;j

1. INTRODUCTION

Most tomography methods applied to reconstruct emission profiles in fusion research are so-
called series-expansion methods, in which the inversion problem is discretized by expanding
the emission profile on a set of basis functions. Three types of basis functions can be applied:
(1) global, (2) local and (3) natural basis functions [1].

(1) Global basis functions are functions that are non-zero over a large part of the emitting
region and describe some linear property of the emission profile. Examples of global basis
functions applied in tomography in fusion research are the Fourier-Zernike [2] and Fourier-
Bessel [3] expansions of the Cormack method (a method applied to soft x-ray tomography).

(2) Local basis functions (LBFs) include the much-used pixels [4—6], for which the basis
function is 1 inside the corresponding pixel and O outside, and related functions that are
nonzero in a small region on a regular grid [1,7,8]. Local basis functions are versatile as
they are not related to the expected shapes of the emission profile, nor are they biased by
the measuring system. In fusion research usually many more local basis functions are
needed to accurately describe the emission profile than there are measurements. To
overcome this underdeterminedness and the ill-posed nature of the tomography problem [9],
a priori information such as the assumption of smoothness and zero emission outside the
plasma are required as regularization.



(3) Natural basis functions (NBFs), often referred to as natural pixels in the literature, were
proposed by McCaughey and Andrews [10] and Buonoebia.[11] as global basis
functions that are related to the strips with finite width that are viewed by the measuring
system, and are therefore in a certain sense ideally suited to describe the measurements by
that system [11]. Because of the relation to the measuring system, the number of NBFs is
approximately equal to the number of measurements, easing the requirenagoridorr
information.

Recently, NBFs have been applied successfully in single positron emission computed
tomography (SPECT) [12,13], in which a tomographic image is formed of the emission from
radionuclides injected into a patient. A similarity between SPECT and tomography in fusion
research is that the beam widths of the imaging system are relatively large in order to achieve a
good signal-to-noise ratio. An important dissimilarity is that, in general, many more measurements
from a regular coverage are available in SPECT. However, in modern soft x-ray tomography
diagnostics on fusion devices there may be sufficient information (number of measurements) to
make reasonable reconstructions by means of NBF methods without (or with mualphess)
information. The purpose of this paper is to investigate whether this is the case and to discuss the
advantages and disadvantages of NBF methods compared with other tomography methods with
LBFs. A number of NBFs are investigated: the original NBFs [11], generalized NBFs [14], and
orthonormal NBFs [15]. Two-dimensional emission tomography without refraction and
reabsorption of radiation is assumed, although in some cases reabsorption can be included in the
formalism [13]

The structure of this paper is as follows. Section 2 introduces the various NBFs and LBFs
and describes the numerical implementation of the tomography methods. Examples of the NBFs
are given for the soft x-ray (SXR) system on the JET tokamak. The JET SXR system consists of
5 nearly complete views of the plasma with 35 or 36 channels each and one half view [figure 1(a)],
all in one poloidal cross-section. The performance of the tomography methods with the various
NBFs and LBFs has been assessed for the same system by means of simulations, as is discussed
in section 3. A more detailed description of the numerical implementation of the NBFs and of
the phantom simulations is given in reference 16. In section 4 an application is discussed in
which the small amount & priori information required in NBF methods was beneficial to
ascertain whether a poloidal asymmetry in SXR emission is likely to be real or a result of the
priori information. The observed asymmetry in an RF-only heated discharge peaks on the inboard
side, which is in contrast with the peaking on the outboard side usually observed in rapidly
rotating plasmas with neutral-beam injection. To the knowledge of the authors this is the first
time that such a peaking on the inboard side has been observed. Section 5 summarizes the results.
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Fig.1: Average lines of sight of real and virtual imaging systems drawn in a poloidal cross-section with respect to
the inner wall of the JET tokamak. (a) The JET SXR imaging system. Eight detector arrays with 18 channels are
grouped in pairs to give nearly complete views of the plasma (AB, CD, GH, and 1J), one array (E, 18 channels)
views half of the plasma, and one array (V, 35 channels) has a complete view. (b) A virtual fan-beam system with
12x40 lines of sight (views 1-XIlI); views 1-VI were used for simulations wi#b Gnes of sight. (c) Virtual lines of

sight that correspond to@®6 generalized NBFs used in combination with the JET SXR system (the arrows indicate
the viewing directions at six angles). In the simulations wit0éand 1240 lines of sight more generalized NBFs

were used: 6 and 12 angles with 40 NBFs each, respectively.

2.MATHEMATICAL BACKGROUND
2.1 Series-expansion methods

In series-expansion methods the emission prgfig), wherex andy are the spatial Cartesian
coordinates, is expanded on a set of basis funci(is y):

gx.y)=) B(x.g, (1)

where gj are the expansion coefficients. As explained in the introduction, these basis functions
can be local, global or natural. Later, #yeoordinates will be identified with the coordinates of

a poloidal tokamak cross-sectiB®randZ, respectively, and will be used interchangeably with
these. The measurement of detectan be written as

fi ={KgOuY)k = [[Ki(xy)g(x y)dxely @

where the integral is over the supporgEfy), which is assumed to be bounded. Here, a discrete-
continuous integral operatér that maps the continuous functigfx,y) in R? to the discrete
measurements; has been introduced. The kerngl(x,y) describes the geometric properties

of the measuring system and will be referred to as the geometric function. The fuf¢tioy)

is non-zero in a strip-shaped region [see fig.2(a) for an example]. Substituting equation (1) into
(2) gives the matrix equation



f=AQ (3)

wheref and g are vectors with element§ and QJ- , respectively, and the matrix elements are
given by

Aj = [[Ki(x ) Bj(x,y) dxdy. (4)

The mathematical description of series-expansion methods in terms of discrete-continuous
operators and continuous basis functions is useful when an analytical expresso(xfgy

can be given (for example a constant value within a strip), as is sometimes the case in the
literature [12,14]. In many actual measuring systems, such as ours, the width of the strips varies
with distance from the detector, and, consequently [17], the vallg(ofy) decreases with
distance [figs.2(a)and 3(a)]. In such a case the analytical evaluation of equation (4) is difficult,
even if an approximate analytical expression Kg(x,y) exists, and it is most convenient to
discretize K (X,y), which we will do now. See reference 15 for an equivalent description in
terms of discrete-continuous operators.
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Fig.2: Contour plots of various typical basis functions drawn in a poloidal cross-section with respect to the inner

wall of the JET tokamak. The NBFs are based on the SXR system at JET. (a) Four standari'j, B B

Ki(x,y). (b) Four support NBFs B (c) Four constant regular NBFS3B(d) Four triangular regular NBFs B

(e,f) Two orthonormal NBFsﬁdotted contours indicate negative values). (g) Four square constant LBFs B

(h) Four pyramid LBFs B Neighbouring basis functions were not drawn (see fig.3), note however that neighbouring

basis functions in (d) and (h) overlap, and also in (a) and (b) in so fd;&s,y) of neighbouring channels

overlap. The representation of the basis functions in (a—d,g,h) is on the fir@000grid, whereas (e,f) are on a

coarser grid. In (a) also all fans of the SXR system are indicated.

We discretizeg(x,y), Ki(x,y) and B;(x,y) on a very fine grid oM pixels (typically
M = 400x 800) and obtain the vectgr with elementsg,,,, and the matriceK andB, with
elementsK;,, and B;,, of which the rows correspond to the valuexofx, y) and B;(x,y) in
the pixels [16]. Equation (1) in matrix form is



On=Y Bimj. org=B"3g (5)
and equation (2) is

f=Kg. (6)

The matrixA of equation (3) in terms of the matridésandB is A=K B . An efficient way to
calculate the elements Kfis given in references 7 and 17.

2.2 Natural basis functions

The most straightforward choice of NBFs, which will be referred siaasdardNBFs, is [11]

Bl =K. (7)
With this choice equation (5) becomes

g=K'g (8)
which is symmetrical with equation (6). If one, as is customary in the tomography field, refers to
the strip-like integral of equation (2) asojection with the choice of NBFs one can refer to
equations (1) and (5) as thackprojectionindeed, equations (1) and (8) are closely related to a
discrete version of the continuous backprojection operator of which the continuous form is well
known in the filtered-backprojection tomography method, also called convolution backprojection,
that is widely used in medical tomography [18]. For obvious reasons, the Matrikk | is
sometimes referred to as the projection-backprojection matrix. A contour plot of a collection of
these basis functions is shown in fig.2(a) and cross-sections in fig.3(a). The contours indicate
strongly varying values oB! inside the strips on their support (i.e. the region where they are
non-zero). This is the reason why in the present application the name basisafunction
seems preferable over the more usual name natixedl Furthermore, the name natural basis
function stresses the relation with local and global basis functions.
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Fig.3: Cross-section of two neighbouring NBFs [similar to the vertical NBFs of figs.2(a—d)] at Z= 1.5 m (solid
lines), 0.25 m (dotted lines) and —1.0 m (dashed lines). Thin and thick lines distinguish between the two neighbours.

(@) BY(RZ)=K(RZ), (b) B (c) B> and (d) E.



With the choice of basis functions of equation (7) the number of expansion coefficients
Qj is equal to the number of measureméns® that equation (3) may have a unique solution.
Ways of solving equation (3) are discussed in section 2.3. If the number of detectors is much
smaller than the number of grid poiMsit is much more efficient to solve equation (3) instead
of (6), which is one of the great advantages of NBF methods. A further advantage is that NBFs
are guaranteed to represent the measurements process well, and can be much better in that respect
than if the geometric function has to be represented on LBFs. Disadvantages are that, in general,
a priori information is not taken into account in NBF methods [19] and that the measurements
alone may not be sufficient to accurately describe the emission profile. The latter disadvantage
can be expressed more exactly as follows [1,20]: only the information g¢xgotthat lies in
the subspace (called measurement space) spanned by the set of all geometric functions, is contained
in the measurements, and no information about the orthogonal space (called null space). This is
true for any basis functiona:priori information is required to fill the null space. Because NBFs
can only represent the information in the measurement spgu@ri information cannot be
added in a straightforward way. For a regular coverage this may not be such a problem, but for
irregular coverage a significant null space may exist.

Table I: Summary of the basis functions used.

Name Type Definition
B' standard NBF B'=K
Mm if Ki,>0,
2 2 _ jm
B® support NBF Bim %) if K = 0.
3 regular constant NBF constant value within regularly spaced
B . :
(generalized) strips
g% regular triangular NBF triangular value within regularly spaced
(generalized) overlapping strips
B°>  orthonormal NBF BS — W
B° sguare constant LBF constant within square

product of two overlapping triangle

7 .
B®  pyramid LBF functions in x and y directions

" Thel x M submatrix ofV}I, which is the same shapelasis assigned toB

Next, we introduce a number of other basis functions. The definitions are given in table |

and a graphical representation is given in figs.2(b—h) and 3(b—d). The strong variaBbn of
over the strip may give rise to unwanted effects in reconstructions, in particular when neighbouring
channels do hardly overlap. In such a case, NBFs that are uniform over the suldpoetyolbe

preferable, which giveB2 [figs.2(b) and 3(b)]. One is free in the choice of basis functions, so



one can choose the backprojection to use the backprojection operator (basis functions) of another
(virtual) measuring geometri(’ than in the projectioi, i.e. B=K' such thatA= KK'T,

Such basis functions have been referred togeagralized\BFs [14]. These NBFs may be
advantageous if the coverage of the measuring system is irregular or truncated, in which case
K' may be chosen to represent a (virtual) full regular measuring system, which has a smaller
null space than the actual measuring system. We tried two types of generalized NBFs: parallel
strips at regular angles with constant vaItIB%[figs.Z(c) and 3(c)] and similar regular strips

with overlapping triangular value? [figs.2(d) and 3(d)], with the virtual number of detectors
approximately equal to the actual number of detectors, see figure 1(c).

It is evident that all NBFs defined so far are highly non-orthogonal. Orthonormal
NBFs [10,15] can be obtained as follows. Given the singular value decomposition (SVD)
K= UKS<V|I (see any book on matrix computations, for instance reference 21), where the
subscripts indicate the matrix of which the SVD matrices are the decomposition, the basis functions
(rows of BS) are set equal to the appropriate number of rovMIo[15]. Contour plots of two
typical orthonormal NBFs for the JET SXR system are shown in figs.2(e,f). The structure of
these NBFs for the SXR system are not very clear, although many contours are spread along one
or more lines of sight. For a system with regular coverage much more structure can be
expected [15]. It will be shown that orthonormal NBFs have limited applicability to our
application.

Two sets of LBFs, the number of which is approximately equal to the number of detectors,
were constructed to make possible a direct comparison of NBFs with LBFs. These LBFs are
non-overlapping square constant pixB@ [fig.2(g)] and half-overlapping “pyramid” basis
functionsB’ [fig.2(h)]. The latter are the product of one triangle function irZtfgey) direction
and one in th& (orx) direction [7], which results in a pyramid shape with rounded corners. The
summation of equation (1) in the case of the pyramid LBFs results in a contixiglysvhereas
in the case of the square constant pigétsy) is step-like.

2.3 Inversion

In NBF methods the tomographic reconstruction is obtained by solving equation (3) and
backprojecting the solution by equation (1) or (5). The result of the tomographic reconstruction

is often referred to as the tomogram. For LBFs the same procedure can be used, but in that case
equations (1) or (5) describe a mere mapping in the region covered by the LBF. If equation (3) is
overdetermined, i.e. there are more (known) measurements than (unknown) basis-function
expansion coefficients, or the number of knowns and unknowns are the same, there may be a
unique solution. However, in the presence of noise and inconsistencies in the data it is likely that
there is no exact solution. It is well known that the tomography problem is a so-called ill-posed
problem [9]: it is easy to see that the integral equation (2) averages over variagong iend



hence the inverse will amplify noise in the measurenfd2@]. The inverse problem needs to
be regularized. In the following we will assume that therémemasurements addbasis functions.

Truncated SVD (TSVD) is a reasonable way to obtain a stable solution to equation (3)
whenJ= | (see for instance reference 12 and references therein, and reference 22). The (truncated)
pseudo-inverse or Moore-Penrose inverse oflthel matrix A, with SVD A= UASAVX, is
given by [21]

A* =V,SiUA
whereS, is al x J diagonal matrixS, = diag(s;,...,S ), with r = min(l,J) and singular values
s r,and its pseudo-inverse is the diagofiad | matrix Sx = diag(l/s,,...,1/s,0,...,0), with
truncation value < rank(A) < r. The singular values are customarily sorted in descending order.
Small singular values will make the inver#€ unstable; this can be prevented by truncating
the inverse, i.e. by choosinguitably ¢ <r). It can be shown that the solutign= A" f is the
least square solution if the system is overdetermihed) and the minimum norm solution if
the system is underdetermindd<(J) [21]. The SVD ofA can be calculated by standard
mathematical packages. It is computationally intensive, but for ¢iserdB it only needs to be
done once and the matricés,, Sy and V, can be stored. Note that the matkix and
consequenthB andA, are very sparse matrices with only a few percent of non-zero values. For
an efficient implementation of the NBF methods it is essential to take the sparseness into account
in the algorithms.

Figure 4 shows the singular values of the projection-backprojection matrix for the various
basis functions for the JET SXR system. For orthogonal NBFs (not shown in fig.4) it can be
shown that the singular values are equal to the square root of those of standar(B?\)B'Flsse(
characteristics of all NBFs and LBFs are similar: the first few singular values drop quickly, then
there are more than a hundred singular values
with constant slope (on a logarithmic scale) and
above about 160 the values drop steeply. Sm%JiL'OOO N
singular values, in particular after the steeé i
drop, indicate redundancy in the informatiorE 01008 _
of the emission profile by the basis function§; AR S
(the redundancy is due to the overlap of th§0-010;_lstandard -
support of geometric functions that correspong ¢35 & soneian ner

[ 4 regular triangular NBF

to crossing the lines of sight). The truncation o o1 square LB
F V7 pyramid LB"F

level of the SVD should be chosen higherthan ¢ 50 100 150

Index
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Fig.4: Singular values of the projection-backprojection

below the noise level; the optimal choice of,;ix A for the JET SXR system, normalized to the
truncation will be discussed in connection wittargest singular value. These singular values were

the simulations in section 3.1. The number GPtained withk on the fine 408800 grid.



singular values of the matri that can be taken in the TSVD corresponds to the degrees of
freedom, or independent pieces of information, gathered by the measuring system [10].

Because of the wag andA are related for standard and orthonormal NBFs, one can show
by substituting the solutiod = A" f into equation (5) and using the SVDfandA and the
unitary properties dff andV that the backprojected solution is equal to

g=K'f. 9)

The solution found with standard and orthonormal NBFs is therefore equal to the solution found
if TSVD were applied t& in equation (6). The application of standard NBFs has some advantages
over the direct application of TSVD as in equation (9), in particular WwKgmx,y) can be
expressed analytically [11,12] and when the coverage of the measuring system is regular [11,15].
Furthermore, if the number of grid basis functions required for an accurate discretization of
andK is larger than the number of measurements, as is the case in the present application, SVD
of Alis much more efficient (possibly by many orders of magnitude) than S¥XDrafnce the

NBF approach is more efficient than the solution by equation (9). In our application we do not
benefit from the solution by orthonormal basis functions as the inefficient SKsaofeeded to

obtain the basis functions. The orthonormal NBFs are therefore not considered any further in
this paper and are only referred to in relation with the TSVR a$ in equation (9). However,

the orthonormal NBFs give insight into what the actual basis functions are when one solves
equation (6) by means of the TSVD of equation (9).

2.4 Constrained-optimization method

The performance of NBF and LBF methods described have been compared with the standard
tomography method used for SXR and bolometer tomography at JET [7], which is here referred
to as thereferencemethod. This is a series-expansion method with a grid of pyramid LBFs
(there are about six times more basis functions than measurements) in which the solution is
found by a constrained optimization (this is equivalent to Phillips-Tikhonov regularization).
Thea priori information is given by an object function that quantifies anisotropic smoothness
on flux surfaces [7,23], in other words: for the given constraints the smoothest solution is found.
From the tomogram one can backcalculate what would be measured if the tomogram were
the actual emission profile and compare these with the measurements. This gives the misfit
o s between measuremeritand backcalculated measuremeAgs

Ag - f
o = [[AG - f]| (10)
I]
where the bars indicate the Euclidean norm. The constraint in the constrained optimization method
is given by the so-called discrepancy principle [24], i.e. the solution is found for which the
misfit equals the estimated err@rsn the measurements. The main parameter in the constrained



optimization method is given by the estimated errors; other parameters specify the exact form of
the object function. Other, similar tomography methods applied to SXR tomography, and
tomography in other wavelength ranges on fusion devices, often use square pixel basis functions,
and isotropic smoothness, flathess, smoothness weighted by the emissivity, or maximum entropy
as object function [4-6,25,26].

3. COMPARISON OF METHODS
3.1 Description of simulations

The performance of tomography methods can be compared by means of phantom simulations.
Phantoms are assumed emission profiles, which are used to calculate pseudo-measurements, i.e.
what the detectors would measure if the phantom were the true emission profile. The tomographic
reconstruction of the pseudo-measurements can be compared with the phantom. The NBF and
LBF methods described are compared in phantom simulations with the reference method.

In the numerical implementation of the tomography methods which use TSA/[a gfid
of 400x800 square pixels was used, which will be referred to as the fine grid. This grid was
chosen sufficiently fine so that the geometric functidGgx,y) could be accurately
represented.The tomograms are shown on this fine grid. The reference method (as stated above)
and TSVD ofK used a coarser grid with about 1200 grid points, referred to as coarse grid,
because the fine grid is not feasible with these methods as they require the SVD of the matrices
KTK andK, respectively. The representations on the coarse grid are not necessarily worse than
the fine grid as the phantoms are given on the coarse grid. However, it is found (section 3.2) that
for the LBF and NBF the fine grid gives reconstructions closer to the phantom than the coarse
grid, which means that for those methods the fine grid is more adequate.

Three phantoms, listed in table Il, were used in the simulations. Phantom | [fig.6(a)] is
based on actual SXR measurements reconstructed by the reference method (JET discharge 40305;
see Sec. 4 for more details). Because the reference method is known to smooth the result, the

Table II: Tomogram reconstruction errotsy (in per cent) for phantom simulations. The best results on each
row are indicated in bold.

System Phantom  Ref® NBF1 NBF2 NBF3 NBF4 (NBF5)°® LBF6 LBF7

JET Lf;fz’gr:tm' 80 459 346 284 268 338 287 213
JET Il Gaussan 35 639 340 220 180 465 416 27.1
JET  lllring 271 615 434 405 367 452 407 290
6x40 | 91 236 227 240 220 246 233 174
12%40 | 55 178 165 211 197 231 215 159

20n a coarser grid

10



peaks of the phantoms were enhanced. Phantoms Il and Ill are mathematical inventions that are
not likely to occur in a plasma, but that give insight into what happens if there are steep gradients
in the emission profile. Phantom Il is a peaked Gaussian emission profile and Il is a ring with a
Gaussian cross-section. More detailed simulation results with more phantoms are described in
reference 16; those results lead to the same conclusions obtained here with three phantoms.

In the simulations a realistic level of noise is added to the pseudo-measurements; in the
present simulations that is Gaussian noise with a standard deviation of 3% relative to the pseudo-
measurement. Tomographic reconstructip(the tomogram) of the pseudo-measurements can
be compared directly with the phantggto give the tomogram error

lo- ol
90|

04 =
The tomogram error is an objective quality measure, with a global minimum, that can be optimized
by varying the reconstruction parameters, i.e. the estimated misfitonstrained optimization

or the number of singular values (expressed in relative tergg§y) in TSVD. The misfito ¢
[equation (10)] is also a quantitative error measure. Contragytdt is usually a monotonic
function of the estimated misfg in constrained optimization or the number of singular values

in TSVD. Figures 5(b—h) show that in the
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not an objective quality measure, it can play an important role in deciding which method gives
the best results. The tomograms of the simulation are discussed in detail next.

3.2 Simulation results

The reconstruction errors in fig.5 and the minimum reconstruction errors in table Il show that
results of the various phantoms are the same qualitatively, i.e. the relative performance of the
various tomography methods does not depend much on the phantom [16]. Therefore, only
tomograms of the phantom simulations with phantom | are discussed in detail (fig.6).

Figure 6(b) shows that the reference method gives a reconstruction that is very similar to
the phantom [fig.6(a)], but that the peak and the hollow have been somewhat smoothed, as can
be expected when using a regularization based on smoothness. ThB]r\[Bgﬁ(c)] do not
give a good reconstruction, with high values at the edge, because the basis functions have a
triangular shape and neighbours do not overlap. Still, the crescent shape is discernible. The
NBFs B2 [fig.6(d)] perform better because the supports of the geometric functions of the detectors
of a camera fill the region well. However, due to the irregular coverage by the system, one gets
unrealistic gaps between viewing directions. The NBEswhich correspond to a virtual system
with regular coverage, alleviate this problem and the reconstruction is better [fig.6(e)]. The
“cubist” features of the reconstruction, i.e. sharp edges, can be rounded by smoothing the image,
which gives a very acceptable result [fig.6(f)]. Asmooth result is also obtained by using triangular
regular NBFs [34, fig.6(g)], which give the best result of the types of NBF tested. Straightforward
TSVD of the matriXK on the coarse grid, which mathematically corresponds to the orthonormal

NBFs B>, also leads to a reasonable reconstruction [fig.6(h)], but of a lesser quality than obtained
with the reconstructions on the fine grid (cf. table Il). The reconstruction with squareErfBFs
[fig.6(i)] also shows the main features, but for all phantoms the reconstruction is worse than that
with NBFs B2 and B#, and sometimes worse than reconstructions with NBEsThis is in
agreement with what has been found in the literature [11,12]. The smoother reconstruction with
pyramid LBFs B’ [fig.6(j)] is better. In fact, its tomogram error is lower than for any of the
NBFs for most phantoms. The relatively large size of the basis functions is clear from the large
number of local minima and maxima. Although the reconstructions with RBEre not free

from artefacts, they seem preferable to the reconstructionﬂaﬁiﬂespite the somewhat larger
tomogram error, in particular because the hollowness and values on the left side of the crescent
are reconstructed better and because it is smoother. The reason for the tomogram error being
larger for the NBFs seem to be the non-zero features at the edge of the plasma, while such
features are suppressed for LB because the basis functions go to zero in many places close

to the edge. The very small tomogram error for the reference method is achieved because the
priori information fits the smooth phantoms very well. Although for less smooth phantoms the
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Fig.6: (a) Phantom I. (b—j) Tomographic reconstructions by the various methods: (b) reference method, (c—g)
NBFs, (h) TSVD of the matrik on the coarse grid and (i,j) LBFs. Image (f) was derived from image (e) by
smoothing. The green curve indicates the magnetic separatrix in the plasma and the box in the lower left corner the
grid size.

tomogram error is larger, it is smaller than in the NBF and LBF reconstructions since in those
significant method-dependent artefacts appear, whereas the reference method gives less-
pronounced artefacts.
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Some of the artefacts in fig.6(c-g) can clearly be attributed to the irregular coverage of the
channels and the shapes of the geometric functions. One can therefore ask, whether better results
can be obtained with NBFs if the coverage is more regular. One can also wonder whether the
good performance of NBFs reported in the literature is due to the much larger number of channels
in those applications. To address the first question, simulations have been carried out with a
virtual system with approximately the same number of channels as the JET SXR system, but
spaced in a regular way: six fans at regular angles ovémiiB040 channels each, where each
fan covers the entire plasma cross-section [see fig.1(b)]. To address the second question, six
additional virtual fans were added on the outboard of the tokamak vessel to give a total of 12x40
channels spread over 36Because the qualitative results for the various phantoms in the
simulations with the JET SXR system were the same, the simulations with the virtual systems

were only carried out for phantom I. The number of NE®sand B* and LBFsB® and B’

was increased according to the number of channels available in the virtual systems. The results
are given in table Il. Surprisingly, the reconstruction with the reference method for the 6x40
system is somewhat worse than that with the JET SXR system. The reconstruction for the 12x40
system, however, is significantly better. It is clear that the NBF methods perform much better
with the regular systems. For the 12x40 system NBEsand B? even outperform NBF&°

and B%, indicating that (1) the problems for the JET SXR system were purely due to limitations

in that system and (2) for regular systems it is better to use normal NBFs based on the geometric
function than generalized NBFs based on a virtual regular system. However, the LBFs also
perform better for the regular systems and the tomogram errors for BBEge still somewhat

better than the tomogram errors with NBFs. One could think that the results with the 12x40
system are better than with the 6x40 system partly because there are more basis functions, which
can achieve a better fit to the phantom. It was verified that there is no direct relation between the
number of basis functions and the reconstruction error by reconstructing the pseudo-measurements
of the 6x40 system wittB* and B’ for the 12x40 system (so there are roughly twice as many
basis functions as measurements). The reconstruction@gréor B% was 20.6%, i.e. better

than with the 6x40 system for both measurements and basis functions (see table Il), but worse
than the 12x40 system for both. The reconstruction ergdfor B’ was 18.5%, thus worse than

with the basis functions of the 6x40 system.

4. APPLICATION

In-out asymmetries of impurity radiation have often been observed in tokamak plasmas [7,27,28].
The asymmetries are most pronounced for heavy impurities such as trace nickel injected by
laser ablation, but can also occur with intrinsic impurities, as is the case in Phantom | [fig.6(a)].
Phantom | is a time slice (at 13.42 s into ELMy H-mode JET discharge 40305) in a plasma with

a high toroidal rotation velocity (of the order 30 km s_l) induced by neutral beam injection
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(NBI). Impurities accumulate in the plasma, but they do not necessarily reach the centre on a
short time scale. The radiation by the impurity ions can be as large as the background
bremsstrahlung and recombination radiation. The in-out asymmetry of the crescent-shaped
emission profile can be explained very well in quantitative terms by the centrifugal force
experienced by the impurity ions that is caused by the rapid toroidal rotation due to NBI [29—
31]. In plasmas with (unbalanced) NBI heating the peak in radiation is therefore always on the
outboard side of the poloidal cross-section, which at JET has been observed in ELMy and ELM-
free H-mode plasmas [32], as well as in optimized-shear plasmas [33]. Here, an asymmetry in
SXR emission with the peak on the inboard side is discussed.

4.1 Assessment of in-out asymmetry with peak on inboard side

The in-out asymmetry with the peak at the inboard side, which is considerably smaller than the
asymmetry discussed above, has been observed in a JET plasma after nickel injection during RF
heating only, see fig.7(a). The observed SXR radiation is mainly line and recombination radiation
of the NF®" charge state. In this discharge the toroidal rotation is 2B1%m st compared to
typically 600 km s tin NBI heated plasmas. The discharge is similar to so-called optimized-
shear discharges [34]: it has a wide region of low shear, with safety factor agpaxs5. The
nickel is injected in the pre-heating phase and there is only a weak internal transport barrier
(ITB) for electron heat transport as the heating power (3 MW) is considerably below the threshold
for a strong ITB for ion heat transport. When the ion ITB is weak, the impurities reach the centre
of the plasma in about 50 ms [33].

It has been assessed whether the observed asymmetry is likely to be real, or to be the result
of artefacts in the tomographic reconstruction. Artefacts in a tomographic reconstruction can

( b ) S5G ( C ) S5H W m-3
500

400
300

200

100

JET discharge 40051 t=6.440s; t=6.405 subtr.

JG98.650/12¢c

0

26 30 34 26 30 34
R (m)

Fig.7: Background subtracted tomographic reconstructions of SXR emission after nickel injection into a discharge
with RF-heating only (JET discharge 40051). Only the central part of a poloidal cross-section is shown, and a
number of flux surfaces are drawn. (a) Reference method. (b) ﬁlE(E)ES.BF B’. The results with least apparent
artefacts (after varying the reconstruction parameters) are shown.
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region in fig.8), which included varying fig.7-. The regions of-uncertainty wer.e .obtained by

) ) . .~ varying the reconstruction parameters within reasonable
the estimated noise and Cal'brat'orﬂmits. The extent of the LBF'Bs indicated by a
factors in the measurements and to f@rizontal bar.
limited extent varying the assumptions in #ghpriori information, revealed that there is
little doubt that the observed in-out asymmetry is real.
Phantom simulations with symmetric phantoms have revealed that with the JET SXR
system, which has a relatively dense coverage on the outboard side and a coarse coverage
on the inboard side, asymmetric artefacts tend to increase the reconstructed radiation on
the outboard side, thus contrary to the asymmetry in fig.7(a).
As said, the variations in assumptions in gheriori information were limited
(a comparison was made between the assumption of isotropic smoothness and varying
degrees of anisotropic smoothness on flux surfaces), and thus it would be very beneficial
to compare fig.7(a) with reconstructions that do not assauprori information (apart

from the truncation level in the TSVD). Figures 7(b) and (c) show the reconstructions

with B* and B/, respectively. The phantom simulations described in section 3 give an
indication for each type of basis function of what is a reasonable range of truncation level
s/s. for reconstructions of actual measurements (in which cgseannot be deter-
mined as no phantom exists to compare with). Within this the truncation level can be
optimized to give the reconstruction with the least apparent artefacts. Although individu-
ally fig.7(b) and (c) can only give an indication about details in the emission profile, taken

together they confirm that the asymmetry is real. Bdrthis is also clear in the cross-

section in fig.8, but foB’ it is not evident from the cross-section because at this particu-
lar cross-section the coarseness of the basis functions (indicated in fig.8 by a bar) impedes
an adequate representation in every single point. Figures 7(a)—(c) also consistently show a
slight up-down asymmetry with the peak downwards in th&kdn|B| direction. We will

not discuss the up-down asymmetry further and concentrate on the in-out asymmetry. See,
for instance, references 35 and 36 for discussions on up-down asymmetries in impurity
density in tokamak plasmas.



4.2 A possible explanation for the in-out asymmetry

As already mentioned, neoclassical theory predicts poloidal density asymmetries as a result of
toroidal rotation [30,31]. In the tokamak edge, where the plasma is sufficiently collisional and
the radial gradients are very steep, recent neoclassical theory also predicts poloidal asymmetries
produced by friction forces arising from poloidal rotation [35]. This mechanism is predicted to
cause heavy impurities to accumulate on the inboard side of each flux surface, as observed in the
present experiments. However, in the plasma core the collisionality is so low — the nickel is in
the plateau transport regime whereas the deuterium is in the collisionless regime — that such
asymmetries should be small. The comparison between theory and experiment is slightly
complicated by the lack of a measurement of poloidal rotation and of the ion temperature and
density profiles (charge-exchange spectroscopy does not give these values without NBl beams).
If the latter are assumed to be of the same order of magnitude as the electron values, the asymmetry
caused by poloidal friction is predicted to be many orders of magnitude smaller than observed.
Therefore this theory cannot explain the present observations. Neoclassical theory also predicts
an up-down asymmetry [35,36], which again is caused by the ion-impurity friction and tends to
be very small in the JET core plasma.

We propose that the ion-cyclotron resonance heating may be responsible for the in-out
asymmetry in the present experiment. The RF-heating scheme applied is hydrogen-minority
heating in a deuterium plasma, with multiple resonances at majdRr@ii0—3.2 m (i.e. slightly
on the outboard side). Code calculations show that most RF power (89%) is absorbed by hydrogen,
and much less than 1% byZIQT (which has a second-harmonic resonance slightly on the inboard
side), thus making a direct effect of heating of nickel an unlikely explanation for the observed
asymmetry. The remaining power is absorbed by electrons, deuterium and impurities. It is well
known that the heating can give rise to a poloidal asymmetry in the density of minority ions
since these particles tend to be trapped on the outside of the torus and the turning points of their
orbits drift towards the resonance layer due to the heating. This RF-produced accumulation of
minority ions on the outboard side can lead to a corresponding impurity accumulation on the
inboard side by the following mechanism.

In the plasma, the density, of each particle speciasvith chargeZ, is normally expected
to follow the electrostatic potentiglaccording to a Boltzmann distribution

0 Z epd % Z epll
N, = Nyg X =n - 11
aaOpE_TaEaO TaE (11)
so that the poloidal variation of the densityiisd nyg = —Z e@/ T,, while the temperatur&, is
approximately constant on the flux surface. The subscript O indicates the densityprh@re

and the tilde the variation on the flux surface. Equation (11) follows, for instance, from the
parallel momentum equation
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NaZal @+ Tl ng =0
where we have neglected inertia, assumed that the rotation is slow, and we have also disregarded

parallel temperature variations and parallel friction, assuming that the collision frequency is
reasonably small. As discussed in reference 35, this condition is satisfied if

Z%gR
Qitiilg

<<1

where 7;; is the bulk ion collision timeg2; the ion gyrofrequency the safety factor, ant

the radial scale length of the density and temperature profiles. This criterion is practically always
satisfied in the JET core plasma, even if the impurities are in the plateau or Pfirsch-Schllter
regime in the usual sense of neoclassical theory. If we take the plasma to consist of edctrons (
bulk ions (D), heavy impuritieZ], and RF-heated minority ions (H), we expect that all species
except the minority ions should be Boltzmann distributed, because the dynamics of the latter is
strongly influenced by the RF heating. Quasineutrality requires

U epl % epU % Zepll ~
+—O—n -—O-4n ——[O=Nyo*+N
neOH- TGE DO TiE 70 T 0= MHo *+ N

where the temperature of the impurities and bulk ions is eqdal We may normalizeso that
Npo + NHo + ZNzg — Ngg = 0, and then solve for the poloidal variation of the impurity density,
which gives

ﬁz :_Zeqoz_ ZﬁH/nDO (12)
n T; T, NzoZ’
70 z 1+T—e+ ﬁgo

where we have assumeg = nyy. Note that the poloidal variation in the impurity density has
opposite sign to that of the minority ions. The accumulation of the latter on the outboard side
gives rise to an electric field that pushes the other ion species to the inboard side. For highly
charged impurities, such as nickel, this effect is amplified by their large cha@gethe other

hand, the density of electrons and bulk ions is nearly constant on each flux surface. Equation (12)
is valid even if there are several charge states present of the same impurity, as long as its
concentration is small enough that it may be regarded as a trace impurity.

Figures 7 and 8 shows the SXR emissivity after nickel injection from which the background
emission profile, i.e. without nickel emission, has been subtracted. The radiation profile of figure 7
can therefore be assumed to be purely due to nickel radiation, predominantly line and
recombination radiation of the &' charge state, which is approximately proportional to the
electron density and i density. As stated, only highions are affected significantly by the
hydrogen asymmetry. Therefore, it can be concluded that the 10% asymmetry in SXR emissivity
Is caused by a similar asymmetry in th@CNidensity. With a hydrogen concentration of about
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2%, equation (12) implies thai, /nyg =10%—-30% is sufficient to explain the observed
asymmetry. Next it is shown that the RF heating can cause such an asymmetry in hydrogen
density.

Using the measured background plasma parameters as input, the heating has been simulated
by the PION code [37], which calculates the power deposition and evolution of the pitch-angle
averaged velocity distribution functions of resonating ions self-consistently, and the FIDO
code [38], which uses a Monte-Carlo method to solve the three-dimensional orbit-averaged
Fokker-Planck equation with the wave parameters and power deposition profile given by PION.
Figure 9 shows the results of the simulations
of the FIDO code, extended to handle multiple 4
frequencies, in the form of a scatter plot of

Pulse No: 40051

.~ . N\ Vi C
hydrogen ions in phase spad&A), T\ <
dimensionless variables and orbit classification |
introduced in reference 39. In the simulations ¢ 'V ATTRL

the distribution function has evolved for.< ;-
approximately one slowing-down time. The
region of trapped particles is region VII. There 9
are more trapped particles with< 0, i.e. with Vil
turning points on the outboard side, than o
trapped particles With > 0, i.e. with turning
points on the inboard side. Note also the
significant population of ions in region VIII, Fig.9: Orbit classification of a representative number

i.e. co-passing particles on outboard sidef particles in the FIDO Monte-Carlo simulation in
According to these simulations 53% of the totelrflef’:g}gz]::z;e' The regions are numbered according to
hydrogen population consists of either trapped

hydrogen ions with turning points on the outboard side or of co-passing ions on the outboard
side. This is significantly higher than the population of trapped hydrogen ions with turning
points on the inboard side (18%). Therefore, a considerable in-out asymmetry in the hydrogen
ion density is to be expected, which is sufficient to account for the in-out asymmetry in the
nickel density. The remaining 29% of the hydrogen ion population are mainly passing particles
in region | and do not contribute significantly to the in-out asymmetry.

In neoclassical transport theory [30,31] the radial impurity transport is influenced by poloidal
asymmetries, whether the poloidal asymmetry is caused by the centrifugal force from toroidal
rotation, poloidal friction, or by other mechanisms such as the one considered here. Therefore, it
is of some interest to accurately diagnose such asymmetries before the accuracy of theories for
radial impurity transport can be verified quantitatively.

-2 |
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5. CONCLUSIONS

Natural basis functions have been applied successfully to tomography with the JET SXR system
in numerical simulations. Although reconstructions with a conventional tomography method are
significantly better, reconstructions with NBFs, which requiredgssori information than the
conventional tomography methods, are useful to investigate whether features of a reconstruction
are real or may be due to the regularizengriori information in conventional tomography
methods. The NBF methods may also be a useful design tool to assess the potential of future
tomography diagnostics. The simulations show that the information supplied by the number of
measurement of the JET SXR system is sufficient to derive the main features of the emission
profiles. Simulations with virtual systems with improved coverage or a doubled number of
detectors do not lead to a different assessment of NBF tomography methods: although
reconstruction errors are smaller for most methods, the conventional tomography method remains
preferable. Future work includes the comparison with the maximum-entropy tomography method,
which uses differend priori information, unbiased by model assumptions (see, for instance
reference 25 for a description of the maximum entropy method).

If the coverage by the viewing system is irregular, the regular (generalized) NBFs perform
better than the NBFs that describe the actual viewing system. For systems with regular coverage
and optimum overlap between neighbouring channels the opposite is true. The appropriate NBFs
give more accurate reconstructions than the traditional pixels (LBFs watpooti information).

Pyramid LBFs, which describe a bilinear interpolation between grid points, give smaller
reconstruction errors than NBFs for most phantoms. However, the reconstructions with pyramid
LBFs have coarse artefacts, and the smoother reconstructions obtained by NBFs, which show
some relevant features better, seem to be preferable, in particular in the application in section 4.
The larger reconstruction errors in the NBF method may be due to relatively larger artefacts at
the edge of the reconstruction region than for pyramid LBFs. It is possible to improve the
generalized-NBF reconstructions by includangriori information, such as smoothness between

the expansion coefficients of neighbouring basis functions [19], but this is outside the scope of
this paper in which we attempt to minimize the influenca pfiori information.

By using the NBF and LBF methods with@upriori information to supply independent
information supplementary to a reconstruction with the standard tomography method, it has
been established beyond doubt that an in-out asymmetry in the SXR emission during nickel
injection in a JET discharge with RF heating only, with the peak in emission on the inboard side,
Is real. An RF-induced poloidal asymmetry of the hydrogen-minority ions seems to be the most
likely cause of the poloidal asymmetry in the nickel density. This application shows that, despite
reconstructions of a lesser quality, NBF methods can be a useful addition to standard tomography
methods that rely oa priori information.
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