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ABSTRACT

Quantities that characterize the three-dimensional geometrical properties of detection systems

for two-dimensional tomography are reviewed and compared. It is discussed how the quantities

can be calculated and how they can be measured, including a measuring technique that uses a

parallel laser beam. In many detection systems the finite detector size and the finite sizes of

bounding apertures are not negligible, and these result in instrument functions with finite widths.

Line-integral measurements are referred to as ideal measurements, whereas measurements by

systems with instrument functions with finite width are non-ideal. The quantities discussed make

it possible to take into account these finite sizes in several tomography algorithms. If the spacing

between adjacent lines of sight is much smaller than the widths of the instrument functions, the

ideal measurements can be approximately reconstructed from the non-ideal measurements. Such

a reconstruction has been applied to bolometer measurements in a high plasma-density discharge

in the JET (Joint European Torus) tokamak by sweeping the plasma in front of the bolometer

detectors. The sweeping creates many extra virtual lines of sight and thus increases the resolution

of the measurements close to the X point, where in high-density plasmas a peak in the radiation

is found.

PACS numbers: 42.30.Wb, 42.79.Ag, 52.70.Kz, 52.25.Qt

1. INTRODUCTION

The measurements by detection systems used for emission computerized tomography are often

assumed to be along infinitely thin straight lines (straight lines if refraction is negligible). This

approximation with straight lines can be satisfactory if the sizes of detectors and apertures are

negligible. We will refer to such line-integral measurements as ideal. Experimentally, to achieve

a good signal to noise ratio and coverage without gaps, however, it is often necessary to use

detectors and apertures with sizes that are not negligible, which leads to non-ideal measurements

along beams with finite widths. Note that non-ideal does not mean undesirable, since, apart

from improving the signal-to-noise ratio, the finite widths also reduce aliasing of high-frequency

spatial components.1–3 Several methods exist to characterize the detection system with such

finite sizes, so that the full three-dimensional detection-system properties can be taken into

account in algorithms for two-dimensional tomography. These methods are briefly reviewed

and efficient methods to calculate and measure the appropriate detection-system properties are

presented (Sec. 3). Examples of these methods are given for the pinhole and collimator detectors

of the bolometer-tomography system (described in Sec. 2) on the JET (Joint European Torus)

tokamak, a device for nuclear fusion research.

A convenient way to describe the geometrical properties of the detection system is with

the geometric function. The geometric function describes the solid angle spanned by the entrance

pupil of the detection system for each position in the reconstruction region (i.e. the region in

which we wish to reconstruct the local emissivity); to make the distinction between this function
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and another geometric function discussed later, this function will be referred to as the geometric

function in reconstruction space. If the viewing geometry, i.e. the positions and sizes of the

detectors and apertures (and lenses if applicable), is known accurately, the geometric function in

reconstruction space can be calculated. An efficient method to calculate the geometric function

in reconstruction space will be discussed briefly. If the geometry is not known accurately, for

example due to the complex nature of the detection system or due to its small size in combination

with large manufacturing tolerances, it may be possible to measure the geometric function in

reconstruction space. A technique in which a narrow light source is moved around in the

reconstruction region has been applied regularly in the past.4–6 This technique is not always

applicable, for example when no narrow source is available in the right wavelength range (in the

case of soft x-rays) or of a sufficient light strength (in the case of bolometers). If a parallel laser

beam is available of the right strength and in the right wavelength region, a quantity here called

angular étendue can be determined from measurements. This measurement technique is discussed

and applied (Sec. 4) and it is shown that the geometric function in reconstruction space can be

approximately calculated from the angular étendue.

The geometric function in reconstruction space is the most convenient way to characterize

the detection system for tomography methods of the series-expansion type, i.e. methods in which

the problem is discretized by expanding the local emissivity on a set of basis functions (for

example pixels). The angular étendue, or the closely related geometric function in projection

space (introduced later), is the most convenient quantity in some transform tomography methods.7

Several examples of how the beam widths can be taken into account in tomographic reconstruction

algorithms and the results of doing so have been published elsewhere.8–10 Here, an example is

given of deconvolution with the angular étendue to determine the peakedness of divertor radiation

with much higher spatial resolution than achieved before (Sec. 5).

2. THE JET DIVERTOR BOLOMETER SYSTEMS

The bolometers used for the results in this paper have thin metal-film resistors and blackened

gold absorber foils,11 and are sensitive to radiation in the range visible to soft x rays (the main

plasma radiation is in the vacuum uv region). Four bolometer channels are placed on one substrate

and form one bolometer head. In contrast to Ref. 11, where a Kapton substrate is used, for JET

a version with a mica substrate was developed.12 The mica bolometers do not need to be cooled

and have for several years been operated at 320ºC, which is the temperature at which the vacuum

vessel is kept. The bolometers can be calibrated in situ,11 i.e. without a calibrated light source,

by heating the bolometer by passing a known current through the signal resistors and measuring

the response. The calibration for the measurements described in Sec. 4 was carried out at room

temperature in air, the calibration for the measurements of Sec. 5 was done in vacuum with the

vessel at its normal temperature. A more detailed description of the complete bolometer systems

in use on JET is given in Ref. 12.
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Fig.1: Illustration of the geometric function in reconstruction space K x R y Zi ( , )= =  in poloidal coordinates R
(major radius) and Z (height above midplane) for the three types of JET divertor bolometers of Fig.2. (a–c) Contour
plots. The geometric functions of two bolometer channels are given, one with solid curves and one with dashed
curves. The shape of the divertor tiles, which define the boundary of the reconstruction region in the divertor, is also
shown. (d–f) Cross sections at major radii R = 2 45. m , R = 2 65. m  and R = 2 85. m . All results were obtained

numerically from Eq. (4), except the dotted curves in (a–c) for one of the detectors, which are obtained from
Eq. (10).

This paper is mainly concerned with the geometrical properties of detection systems. The

JET bolometer systems in the divertor region form a good illustration of various types of geometry.

The JET divertor is situated at the bottom of the vacuum vessel [see Figs.1(a)–1(c)]. In a fusion

reactor the divertor will serve to divert from the bulk plasma and absorb part of the generated

power. In JET and other tokamaks the performance of various divertor configurations is

investigated.13 For this purpose three different divertor configurations have been installed

successively in JET since 1992, known as MkI, MkIIA and MkIIGB [see Figs.1(a)–1(c)], which

range in geometric closure from open to closed. Due to the space restrictions and different

regions of interest in the varying configurations, the bolometers had to be changed in each of the

configurations. The bolometers are positioned in (or close to) one poloidal cross section of the

tokamak (corresponding to the reconstruction plane), and usually the plasma emission can be

assumed to be toroidally symmetric (the toroidal direction is perpendicular to the poloidal

reconstruction plane). In MkI there was relatively much space and conventional pin-hole cameras

could be used (the four bolometer channels of each bolometer head share one aperture), see

Fig.2(a). Note that both the detector and aperture are rectangular. In MkIIA and MkIIGB the

space restrictions were much more stringent, and the only option was to use individual collimators

in front of each bolometer channels [Figs.2(b) and 2(c)]. Circular collimators were made with a
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Fig.2: (a–c) Poloidal cross-section of three generations of divertor bolometer systems in JET (MkI, MkIIA and
MkIIGB); each bolometer head consists of four channels. The collimators in (b) are double: one shifted perpendicular
to the cross-section drawn.

thread that reduces reflections on the collimator walls (tests with visible light on collimators

with blackened straight walls showed a significant effect of reflections; due to the grazing

incidence of the light, reflections can also be expected to be significant in the uv). In MkIIA two

identical collimators were stacked in the toroidal direction [out of the plane in Fig.2(b)], whereas

in MkIIGB some of the bolometer heads were replaced with heads with single collimators in

front of each channel. In one instance (not discussed further in this paper) it was even necessary

to rotate the bolometer head so that the channels lay on one line in the toroidal direction and the

collimators were tilted in both the poloidal and toroidal directions. Due to the small size of the

collimators and the closeness of the collimators to the bolometer foils, the geometrical properties

are very sensitive to misalignments and deviations from the design dimensions. In fact, the

manufacturing tolerances were larger than could be accepted and therefore measurements were

needed of the actual geometrical properties. These measurements are discussed in Sec. 4.

In the divertor chamber tiles are installed that should absorb the heat loads flowing to

them from the plasma. In the toroidal direction there are gaps between tiles to make it possible

for diagnostics to view the plasma and to allow for thermal expansion of the tiles. For some of

the bolometer channels the tiles bound the viewing cone in the toroidal direction and have to be

taken into account as (temperature dependent) additional apertures. Unfortunately, the laboratory

measurements of Sec. 4 only give the geometrical properties of the bolometer head; the tile gaps

have to be accounted for separately. These complications are outside the scope of this paper.

Suffice it to say that in the geometric properties used in Sec. 5 the tile gaps have properly been

taken into account.
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3. CHARACTERIZATION OF GEOMETRIC PROPERTIES

The non-ideal measurement f̂i  by a detector i of a two-dimensional tomography system of a

function g(x,y) is given by

ˆ ( , ) ( , )f K x y g x y x yi i=
−∞

∞

−∞

∞
∫∫ d d , (1)

where K x yi ( , )  is the geometric function in reconstruction space (xy space). In the case of emission

tomography g(x,y) is the local emissivity (units Wm sr-3 -1; f̂i  is in W); it is assumed that g(x,y)

is bounded and does not vary as a function of z, the third coordinate perpendicular to the xy

plane. The geometric function K x yi ( , )  is the solid angle spanned by the entrance pupil of the

detection system as seen from point (x,y), integrated over the third dimension, and can be calculated

accordingly. Ideal measurements are given by the Radon transform of the function g(x,y):

f p p x y g x y x y( , ) ( sin cos ) ( , )ξ δ ξ ξ= + −
−∞

∞

−∞

∞
∫∫ d d , (2)

where p is the signed distance between the line and the origin, and ξ  is the angle of the line with

the positive x axis (note that some authors use a definition for the angle that is different by π/2).

The parameters of a line ( , )p ξ  are coordinates of a space called projection space. The range of

the ξ coordinate is usually chosen as [0…π] (the property f p f p( , ) ( , )ξ π ξ+ = −  applies), but in

some graphs where ξ is close to π, we extend the range beyond π. Under certain conditions the

non-deal measurement f̂i  can be approximated by the ideal line integral value f pi i( , )ξ  (units

Wm sr-2 -1), where ( , )pi iξ  are the projection-space coordinates of the average line of sight. In

that case the approximate kernel in Eq. (1) is given by K x yi ( , ) = E p x yi i i iδ ξ ξ( sin cos )+ − ,

where Ei  is the étendue of the detection system (units srm2). The quantity here called étendue is

often given the name “throughput”, or many other names (for a discussion on terminology see

Ref. 14 and references therein). See Ref. 10 for a discussion on the applicability of the line-

integral approximation; in this paper we consider detection systems for which this approximation

is inappropriate.

In projection space Eq. (1) can be stated as10

ˆ ( , ) ( , )f k p f p pi i=
∞

∞
∫∫ ξ ξ ξ

π
d d

-0
,

where k pi ( , )ξ  is the geometric function in projection space. The geometric function in projection

space can be calculated by10

k p p z zi i( , ) ( , , , ) cos
/

/
ξ η ξ θ θ θ

π
π

=
−−∞

∞
∫∫ d d

2

2
, (3)

where ηi  is a filter function for rays, which is the attenuation of the ray, or zero if this ray does

not go through the entrance pupil of the detection system for detector i from the right direction.

The ray can be described completely by four parameters, for which we choose p, ξ , z and θ .
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Here, z is the height where the line intersects a reference plane (for instance the detector), and θ
is the angle of the line with respect to the xy plane. It is not trivial that k pi ( , )ξ  can describe the

geometric properties of the detection system in the third dimension; that this is possible is related

to the conservation of the étendue through optical detection systems.10 Some ideas of the coverage

of projection space by a function similar to k pi ( , )ξ  have been described in the past by Beattie15

and Lindgren and Rattey,1 and a relationship similar to Eq. (4) below (and an equivalent statement

to the conservation of the étendue) has been given for transmission tomography by Verly,16 but

we are not aware of a similar consistent application to projection space as in Ref. 10. The geometric

function in projection space k pi ( , )ξ  can be expressed analytically if the detector and the (single)

aperture of the detection system are rectangular (see Appendix A).

Although it is easy to express K x yi ( , )  in terms of the filter function ηi  and to calculate it

numerically by integrating over z, ξ and θ, it can be more efficient to first calculate k pi ( , )ξ  and

then K x yi ( , )  from10

K x y k p p x y pi i( , ) ( , ) ( sin cos )= + −
∞

∞
∫∫ -

d dξ δ ξ ξ ξ
π
0

. (4)

The reason for this is that with the effectively one-dimensional integral (4) one makes use of the

property that k pi ( , )ξ  is the same on all points (x,y) on the line p x y= − +sin cosξ ξ  [i.e. k pi ( , )ξ
is a function of ( , )p ξ  only], whereas the straightforward calculation of K x yi ( , )  has three

independent integrals. If an analytical expression of k pi ( , )ξ  is available, the calculation of

K x yi ( , )  is very fast. Although the inverse of Eq. (4) can be described formally,10 no satisfactory

numerical method has been found so far to calculate k pi ( , )ξ  from K x yi ( , ) .

The effective size of the entrance pupil seen by a parallel beam of light at angles ξ and θ is

t p z p zi i( , ) ( , , , )cosξ θ η ξ θ θ=
−∞

∞

−∞

∞
∫∫ d d ,

where the cos θ dz term reflects the size of element dz perpendicular to the beam of light (note

that p is already defined perpendicular to the beam). We will refer to ti ( , )ξ θ  as transmission

function.

If the size of the detector or apertures in the reconstruction plane are small with respect to

the reconstruction region and the structures in the reconstruction region that should be resolved,

a good and useful approximation of the function k pi ( , )ξ  is the angular étendue

e k p pi i( ) ( , )ξ ξ=
−∞

∞
∫ d , (5)

or equivalently

e ti i( ) ( , )
/

/
ξ ξ θ θ

π
π

=
−∫ d

2

2
. (6)
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The name of the angular étendue stems from the fact that it gives the angular dependence of the

integrand that yields the étendue10

E
e

i
i

i
=

−∫ ( )
cos( )

ξ
ξ ξ

ξ
π

d
0

. (7)

The angular étendue can be visualized as being k pi ( , )ξ  compressed onto a curve in projection

space, called aperture curve, that corresponds to the lines of sight through a characteristic point

of the detection system, for example the center of the most bounding aperture or the detector.

The approximation of k pi
L( , )ξ  in terms of the angular étendue is therefore given by

k p k p e p pi i
L

i( , ) ( , ) ( ) ( ( ))ξ ξ ξ δ ξ≈ = − ap , (8)

where p x yap ap ap( ) sin cosξ ξ ξ= − +  is the aperture curve defined by the coordinates ( , )x yap ap

of the characteristic point. Substituting Eq. (8) into (4) gives

K x y K x y e p x yi i
L

i( , ) ( , ) ( ) ( ( ) sin cos )≈ = + −∫ ξ δ ξ ξ ξ ξ
π

ap d
0

, (9)

i.e. the function K x yi
L( , ) describes the fan of line integrals of lines through ( , )x yap ap  weighted

by ei ( )ξ .

Figures 1 and 3 illustrate the quantities introduced above as calculated using the design

geometry for pairs of adjacent bolometer channels in the three different JET divertors MkI,

MkIIA and MkIIGB. The quantities for the MkI bolometers in Fig. 3(a–c) were calculated with

the analytical formulae of Appendix A, whereas the integrand of the integrals for the other

bolometers was evaluated numerically with ray tracing. The contours in Fig. 3(a) are vertical

because the aperture and detector are parallel (see Appendix A), whereas in Figs. 3(b) and 3(c)

the contours are curved due to several circular apertures. Integrating the contour plots of Figs. 3(a)–

3(c) over p, i.e. Eq. (5), and Fig. 3(d)–3(f) over θ, i.e. Eq. (6), gives the same result (within

numerical accuracy) for the angular étendue [Fig.3(g)–3(i)]. The quantity k pi ( , )ξ  is more useful

in practice than ti(ξ,θ)  because k pi ( , )ξ  has all relevant information about the third dimension

compressed into it [the values of k pi ( , )ξ ] and contains all geometrical information about the

reconstruction plane [the region where k pi ( , )ξ  is non-zero]. Therefore, k pi ( , )ξ  can be used

directly in tomography algorithms or indirectly to calculate K x yi ( , ) . In contrast, ti ( , )ξ θ
scrambles information about the third dimension and the reconstruction plane, and has no direct

application in tomography algorithms, but only an indirect application because it is a measurable

quantity.

From the quantities in Fig.3 the geometric function in reconstruction space can be

calculated. Contour plots and cross sections of this function are shown in Fig.1. The geometric

functions in reconstruction space displayed as solid and dashed lines in Fig.1 were calculated

numerically with Eq. (4). Note that, because the shape of the divertor is not convex, some
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Fig.3: Illustration of (a–c) k p pi ( , )− ap ξ , (d–f) ti ( , )ξ θ  (both as contour plots) and (g–i) e(ξ) for the three types of

JET divertor bolometers of Fig.2; tile gaps that limit the view of some detectors in the toroidal direction were not
taken into account. The functions are given for two detectors, one indicated by solid curves and one by dashed

curves. The solid and dashed curves in (h–i) were obtained from k pi ( , )ξ  [Eq. (5)], the dotted curves from ti ( , )ξ θ
[Eq. (6)]. Contour levels in (a) are separated by 0.3% of the maximum value, whereas the contours in the other

graphs are at 10%. Note that k p pi ( , )− ap ξ  are plotted with respect to the aperture curve.

structures obstruct the view of some channels. The representation in projection space, in the

form presented here, is not suitable if the reconstruction region is not convex (see Ref. 17 for a

more complete treatment). This is only a minor problem in the present application: Eq. (4) has to

be extended to chop off the geometric function in reconstruction space if the light path is

obstructed. The approximation K x yi
L( , ) with Eq. (9) gives a very similar result [dotted cross

sections in Fig.1(d)–1(f)]; as one can expect the function is slightly narrower (by the width of

the aperture or the detector), and a bit higher so that the integral over the cross-section is the

same as the exact geometric function; this integral is equal to the étendue.10 Although the

approximation with K x yi
L( , ) seems straightforward, its calculation is not. The problem is that

the line integrals, given by the delta function of Eq. (9), need to be calculated and averaged over

a finite space (for example a pixel) and then be assigned to a single point. If a pixel centered at

( , )x yj j  is given by the function b x x y yj j( , )− − , which is 1 inside the pixel and 0 outside, then
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its Radon transform [Eq. (2)] L(p,ξ,xj,yj) is the length through the pixel. In these terms, the

average of K x yi
L( , ) over the pixel is given by

K x y e L p x yi
L

j j i j j( , ) ( ) ( ( ), , , )= ∫ ξ ξ ξ ξ
π

ap d
0

. (10)

This equation is also valid if more advanced basis functions than pixels are used. To achieve the

same accuracy as can be obtained with Eq. (4), actually more computation time is needed due to

the average over a finite region. However, if the accuracy is of less importance, it may well be

that Eq. (10) is easier to implement in existing tomography algorithms that assume the

measurements to be along infinitely thin lines [the weighted integral of Eq. (10) is over a set of

such lines], instead of implementing the full geometric function averaged over the basis functions.

4. MEASUREMENT OF APPROXIMATE GEOMETRIC FUNCTION IN

PROJECTION SPACE

To measure the geometric function in reconstruction space a long thin light source is needed; its

length must cover the maximum extent of the views in the direction perpendicular to the

reconstruction region (toroidal bending is neglected). Long thin light sources can take different

forms, for instance a tube light,6 or a tall thin beaker filled with a scattering medium (milk

dissolved in water) and a flashlight as light source.4 The light source is moved around in the

entire reconstruction region in a regular pattern (in practice over a thousand points) and the

response of all detectors is measured. The light source in position ( , )x yj j  is considered to be a

delta function g x y I x x y yj j( , ) ( ) ( )= − −0 δ δ , and each measured amplitude therefore [Eq. (1)]

directly gives the geometric function in reconstruction space (after scaling with the calibration

factor I0). Of course the finite size of the light source will result in some blurring of the geometric

function, but if the light source is sufficiently thin, i.e. much smaller than the structures to be

resolved by tomography, this is negligible.

As discussed in the Introduction, such a direct measurement of the geometric function is

not always possible, for example when no sufficiently powerful long thing light source is available

in the spectral region of interest. In such a case it may be possible to measure ti ( , )ξ θ  directly.

We took such measurements by shining a parallel laser beam onto the bolometer assembly at

many different angles ξ and θ. A standard 8-mW HeNe laser with a commercial 20× beam

expander was sufficient for the required degree of accuracy. The laser beam has to be expanded

sufficiently to be approximately uniform across the detector (we achieved a uniformity within

5%) and should be absolutely calibrated (we had to adjust the calibration factor of a poor absolute

calibration to obtain the best average fit to all channels). Figure 4 shows a series of measurements

of ti(ξ,θ) for four neighboring channels of one of the MkIIGB bolometer systems (θ=0°) and for

comparison the calculated values using the design values of the geometry. There are some

differences between the measurements and calculations. The differences in height and width are
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likely to be caused by variations in the toroidal angle, variations in collimator length and collimator

diameter, i.e. the actual values deviate from the design values, and by reflections on the threaded

wall of the aperture. The pedestal at the edges are also likely to be caused by reflections; in

blackened non-threaded collimators these reflections were found to be at least one order of

magnitude worse. From these and more measurements (at different θ) the angular étendue can

be calculated with Eq.(6) and then the geometric function in reconstruction space can be

approximated with Eq. (10).

5. DECONVOLUTION OF BEAM-WIDTH EFFECTS

Instead of showing the relevance of the beam widths and how they are taken into account in

tomography methods, all of which has been published elsewhere,8–10 here an illustration is given

of how the angular étendue can be used to approximately reconstruct the ideal measurements

from non-ideal measurements that were blurred by the beam widths. Such a reconstruction is

only possible if the separation between the average lines-of-sight of adjacent measurements is

much smaller than the beam widths; in other words: the spatial sampling frequency must be

much higher than the width of the Fourier transform of the instrument function,3,18 otherwise

insufficient information is available to retrieve the ideal values. In most detection systems for

tomography this condition is not met: the sampling and beam widths are matched such that the

beams of adjacent channels do not overlap or overlap up to halfway (see Figs.1 and 3 for

examples); note that if there are high spatial frequencies in the function g(x,y), this can lead to

considerable aliasing.18 In some instances many more virtual lines of sight can be created by
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taking into account movement of the object under consideration, in our case the tokamak plasma.

In the past such a method has regularly been applied with plasma rotation.19 Deliberate linear

movements of the plasma have also been used to gain more information about the extent of

blurring,20 and to resolve more details in the tomographic reconstruction.21 We show that useful

information about the localization of plasma emission can be obtained by deconvolution of non-

ideal measurements of adjacent channels during movement of the plasma.

KB307C

2.4 2.6 2.8 3.0

-1.6

-1.4

-1.2

-1.0

R (m)

Z
 (

m
)

JE
T

 d
is

ch
ar

ge
 4

78
20

 t 
=

 2
3.

38
s,

 2
3.

62
s,

 2
3.

87
s

JG
99

.3
12

/5
c

Angle

KB307B

KB302B

Fig.5: Magnetic flux surfaces (solid, dotted and dashed curves) during various stages of the sweep. Thick solid
lines: the three bolometer lines of sight analyzed; thin lines: other divertor bolometer channels. The outline of the
divertor tiles is shown and the angle used to map the sweep to virtual lines of sight is indicated.

In our experiment the entire plasma was swept up and down with respect to the horizontal

bolometer divertor channels (see Fig.5), without a significant change of plasma conditions. We

consider three channels that view the plasma near the so called X-point (i.e. where the magnetic

configuration of the bulk plasma and divertor plasma are separated, see Fig.5), a region where at

high plasma densities the divertor radiation peaks and where therefore knowing the detailed

radiation profile is of particular interest. We consider L-mode plasmas with about 2 MW of non-

Ohmic heating close to the density limit (line-averaged density ne m> × −3 4 1019 3. ). The vertical

movement of the plasma can be mapped to the angle around the intersection of the two lines of

sight (called KB307B and KB307C) that view the plasma from the left (this angle is indicated in

Fig.5), thus the measurements in time can be mapped to this angle [Fig.6(a)]. Because of symmetry,

also the measurements of the channel on the right (channel KB302B) can be approximately
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Fig.6: Reconstruction of line-integral values from non-ideal bolometer measurements during X-point sweeps in
high-density plasmas. (a) Experimental data during a lower density plasma (line-averaged density

ne m≈ × −3 1 1019 3. , 10 cm sweep, signal divided by 2) and a high-density plasma close to the density limit

( ne m≈ × −3 4 1019 3. , 2.5 cm sweep) in the MkIIGB divertor. (b) Data for a low (ne m= × −1 5 1019 3. ) and high-

density (ne m≈ × −3 0 1019 3. ) plasma from a plasma transport simulation of a similar plasma in the MkIIA divertor

(also with vertical targets). (c) Instrument functions (angular étendues) of the three bolometer channels considered.

The non-ideal measurements in (a,b) have been scaled to the étendue: ˆ ( ( )) /f t Ei iξ . The points indicate the

information that would have been available without the sweep. The thin solid curve in (b) shows the pure line-
integral values (to be reproduced as well as possible by the reconstruction). The dotted curves in (a) and (b) give
the non-ideal measurements (mapped to angle). Thick solid curves are the reconstructed values, and the thick
dashed curves are backcalculated values from the reconstruction.

mapped to this angle. The measurements in Fig.6(a) have been scaled by the étendue to a line-

integral value, so that the three channels with somewhat different étendues can be compared.

The reasonable overlap between the various measurements during upward and downward sweep

is an indication that indeed the plasma conditions did not change much during the sweep. The

reasonable overlap between channels KB302B and KB307B indicates that the approximation of

mapping them to the same angle is reasonable. The angular étendue is approximately the

instrument function by which pure line-integral measurements are blurred. If one can assume

that, apart from a scaling by the étendue, the angular étendues of the three channels are

approximately the same [Fig.6(c)], the measurements as a function of angle ξ are given by
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ˆ( ) ( )  ( )  f e fξ ξ ξ ξ ξ= ′ − ′ ′∫ d
0

π
. (11)

If e(ξ) is symmetric, Eq. (11) is a convolution in the strict mathematical sense, and a deconvolution

of the non-ideal measurement ˆ( )f ξ  [dotted curves in Fig.6(a)] can give an approximation of the

ideal values f(ξ). For the solution method (“deconvolution”) used here, Eq. (11) is inverted and

the requirement that e(ξ) be symmetric is not needed. We used a standard regularized inversion

technique to obtain the smoothest solution that is consistent with the measurements (Appendix B).

The resulting reconstruction is also shown in Fig.6(a) (solid line), and furthermore the

reconstructed values inserted into Eq. (11) (“backcalculation”; dashed curves) which should be

a fit to the measurements. It is clear that a reasonable reconstruction has been obtained that

demonstrates detail of the peak in the radiation close to the X point, and that substantially more

information has been obtained from the sweep experiment than would have been available without

the sweep [the points in Fig.6(a)].

The same kind of calculations have been performed on the results of two-dimensional

plasma-transport simulations of a similar JET discharge [Fig.6(b)]. The simulations were done

with the EDGE2D/NIMBUS code and are described in more detail in Ref. 9. From the simulation

results it was calculated what the bolometers would measure if the simulated emission profile

were actual, both with ideal measurements (thin solid line) and non-ideal measurements (dotted

line). In this case the reconstructed values [thick solid curve in Fig.6(b)] show that the blurring

of the convolution can indeed be partly reversed by the reconstruction method, but that due to

the finite measurement errors the peak values are underestimated. It should be noted that with

the smoothness assumption, of all possible solutions of Eq. (11), the present reconstruction method

obtains the smoothest solution. This means that in reality more structure may be present in the

emission profile (which cannot be obtained from the measurements without further knowledge),

but not less. Therefore, the value of the present reconstructions is that they show the minimum

peakedness that is consistent with the measurements.

From the reconstructions in Fig.6 it follows that at very high plasma density the line-

integrated emission profile as a function of angle is rather peaked just below the X point, both in

the measured and simulated data. The local emissivity (i.e. not line integrated) can be expected

to be considerably more peaked still in the vertical direction. This detailed information is

important, because it contrasts with what is found in high-density impurity-seeded H-mode

plasmas, where there are indications (from low-resolution unswept measurements) that the

radiating peak is above the X point (inside or outside the separatrix). Unfortunately, no such

detailed information can be derived in the horizontal direction as the plasma cannot be swept in

that direction in the gas-box divertor and because the instrument functions of channels looking

vertically are considerably wider than those of the divertor channels. It is not completely

understood why the experimental lower plasma density case [Fig.6(a)] radiates as much as the

high-density case; however, the measurements are from two discharges and there are differences
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between the two discharges in the amount of input power, in the way the high plasma density is

reached and in the ratio of impurity radiation to deuterium radiation. It is also not understood

why the radiating peak is higher in the measurements (in MkIIGB) than in the simulations (in

MkIIA; simulations are in good correspondence with the measurements in MkIIA9).

6. SUMMARY

Several methods to describe, calculate and measure the geometrical properties of detection systems

for two-dimensional tomography have been discussed. This paper considers emission tomography

only, but many of the concepts discussed can probably be used in transmission tomography as

well. Although some quantities introduced in Sec. 3 to describe the geometric properties of a

detection system are abstract, all quantities of that section are useful. The geometric function in

reconstruction space can be used directly in series-expansion tomography methods (after

integration over the basis functions, such as square pixels) to take into account the beam-width

effects.10 The geometric function in projection space can be a useful quantity to take into account

the beam-width effects in certain tomography methods that operate in projection space (such as

the Cormack and Iterative Projection-space Reconstruction methods).7 The angular étendue is a

convenient approximation for this purpose. The geometric function in projection space also

gives efficient means to calculate the geometric function in reconstruction space; this is also

possible from the angular étendue, but on that route one encounters numerical limitations. If the

reconstruction region is not convex (i.e. a part of the viewing beam is blocked by an external

structure that cannot be taken into account in the geometric function in projection space), an

additional check in Eq. (4) is needed to determine whether the point (x,y) is actually seen by the

detector. The étendue of the detection system is required if one wishes to approximate the

measurements by line integrals [Eq. (2)]. In Sec. 4 it was shown that the transmission is a directly

measurable quantity, from which the angular étendue and approximations of the geometric

function and the étendue can be derived. Finally, the angular étendue can be used to approximately

reconstruct ideal measurements from non-ideal measurements that were blurred by the beam

widths. In the divertor of the JET tokamak this method gives useful information on the extent of

the radiating peak near the X point in high-density divertor plasmas.
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APPENDIX A: SOME GEOMETRIC PROPERTIES OF PIN-HOLE CAMERAS

The description in projection space of a simple pin-hole system with rectangular detector and

rectangular aperture is straightforward and several quantities can be expressed analytically. These

expressions are valuable because such detection systems are regularly applied in practice.
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Fig.7: (a) Geometry in the xy plane of the pin-hole system discussed in Appendix A. (b) Boundaries in projection
space for two pin-hole systems with varying pinhole size. The detector and aperture were taken parallel. The angles
at which the curves start and end are given in Table I. (c) Angular étendues for the systems of (b).

The geometry of the pin-hole system under consideration is shown in Fig.7(a). It is assumed

that the detector and aperture are rectangular and have two edges parallel to the xy plane, and

that the detector and aperture are perpendicular to the xy plane. The boundaries of the region

covered in projection space are shown in Fig.7(b). Two cases are considered: one where the

aperture is larger than the detector and vice versa (the effective sizes if the detector and aperture

are not parallel). The coordinates of the bounding points I to IV and the angles are given in

Table I. The functions of the boundary curves in Fig.7(b) are
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p x yh h h( ) sin cosξ ξ ξ= − + , (12)

where h is I … IV. The width of the region in the p direction is related to the aperture size.

Table I. Bounding points and angles of the pin-hole system shown in Fig.7.

tnioP h xh yh ξ egnar elgnA ε nat ξε

I xp + P nis φp yp -P soc φp ξ1 ξ→ 2 1 (yI- y VI (/) x1 -x VI )

II xd + D nis φd yd -D soc φd ξ2 ξ→ 4 2 (yI- y II (/) x1 -x II )

III xp + P nis φp yp -P soc φp ξ4 ξ→ 3 3 (y III -y VI (/) x III -x VI )

VI xd + D nis φd yd -D soc φd ξ3 ξ→ 1 4 (y III - y II (/) x III -x II )

If for a given line ( , )p ξ  the distance between the points of intersection on the detector and

aperture is L p( , )ξ , and in the z direction the detector extends between zd
−  and zd

+ , and the

aperture between zp
−  and zp

+ , one can calculate

k p z

L p z z L z z L z z L z z

i z

z
( , ) cos

( , ) ( ) ( ) ( ) ( ) ,

ξ θ θ

ξ

θ
θ

=

= + − − + − − + − + + −

∫∫
+ − − − + + − +

d d-

+

d
-
d
+

p d p d p d p d
2 2 2 2 2 2 2 2

(13)

where the z integral is carried out over the detector surface [Eq. (3) shows that any z integral for

constant ( , )p ξ  will give the same result, which is related to the conservation of the étendue] and

it has been realized that the bounds of θ  are given by sinθ ± = ( ) / ( , ) ( )z z L p z zp p
± ±− + −2 2ξ .

If the detector and aperture are parallel, L p L( , ) ( )ξ ξ=  will be independent of p, and so will

k pi ( , )ξ  from Eq. (13). Therefore, the angular étendue of Eq. (5) can be expressed analytically

as

e k pi i( ) ( ( )ξ ξ ξ= )∆ ,

where ∆p( )ξ  is the difference of the curves of Eq. (12) in the appropriate interval. The angular

étendue of the detectors of Fig.7(b) is shown in Fig.7(c).

For parallel detector and aperture, the transmission function ti ( , )ξ θ  can be expressed as

t t pi i,z( , ) ( , ) ( )ξ θ ξ θ ξ= ∆ , with ti,z(ξ,θ):

t

z z L

z z

z z

z z L

i z, ( , )

( ( ) ( ) tan )cos min( , )

( )cos

( )cos

(( )

ξ θ

θ θ θ θ
ξ θ θ θ θ θ θ

θ θ θ θ θ θ
θ θ θ θ θ θ

=

≤ ≥
− − + ≤ ≤

− ≤ ≤ ≤
− ≤ ≤ ≤
− −

− +

+ −

+ −

+ −

0 1 4

1 2 3

2 3 2 3

3 2 3 2

for and

for

for if

for if

p d

d d

p p

p d (( ) tan )cos max( , )ξ θ θ θ θ θ θfor 2 3 4≤ ≤
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where θ ξ1 = −− +arctan(( ) / ( ))z z Lp d , θ ξ2 = −− −arctan(( ) / ( ))z z Lp d ,

θ ξ3 = −+ +arctan(( ) / ( ))z z Lp d  and θ ξ4 = −+ −arctan(( ) / ( ))z z Lp d . Note that for parallel detector

and aperture the integral of ti z, ( , )ξ θ  over θ equals ki ( )ξ  [from Eq. (13)].

The integrand in Eq. (7) will be a complicated function in ξ , and the étendue can therefore

probably only be calculated numerically. However, if the detector and aperture dimensions, D

and P, are small compared to the perpendicular distance   l  between the detector and aperture

planes, a Taylor expansion in ξ  around ξi  , and expansions making use of the smallness of D

and P with respect to   l , give an expression consistent with the simple formula E A= eff effΩ ,

where Aeff  and Ωeff  are the effective detector area and effective solid angle spanned by the

aperture, respectively. For a simple pin hole with parallel detector and aperture the zeroth order

term gives

  
E

A A
i i i( ) cos ( )ξ ξ φ≈ −d p

d
l2

4 , (14)

where Ad  and Ap are the detector and aperture areas, respectively. Equation (13) is a well

known approximation of the étendue.

With k pi ( , )ξ  from Eq. (13) the geometric function in reconstruction space can be calculated

by Eq. (4). Again the integrand is rather complicated and may only be calculable numerically. If,

however, the same approximations are valid as the ones that led to Eq. (13), k p ki ( , )ξ ≈ 0  will be

approximately constant and the geometric function in reconstruction space can be calculated

analytically as K x y k x yi i( , ) ( , )≈ 0∆ξ , where ∆ξi x y( , )  is the ξ distance between the points of

intersection of the curve p x y= − +sin cosξ ξ  with the boundary curves in Fig.7(b).

APPENDIX B: REGULARIZED INVERSION

Our aim is to invert Eq. (11), i.e. to obtain the ideal f(ξ) from the non-ideal measured ˆ( )f ξ .

Many ways exist to approach this problem. It is important to realize that the problem is ill-

posed, i.e. the inversion is extremely sensitive to noise and no unique solution exists. We have

solved the problem with a so-called constrained optimization method, requiring the solution to

be smooth, and using the discrepancy principle.22 First, we discretize the problem to f̂ f= A ,

where f̂  and f are vectors of which the elements are ˆ( )f ξ  and f(ξ) at discrete angles ξm , and

A emn n m= −( )ξ ξ . We intend to find the smoothest solution that fits the data. The unsmoothness

can be expressed as a scalar in terms of the second derivative of f,

f f
fΩ =






∫ d

d
d

2 ( )ξ
ξ

ξ
π

2

2

0
,

where the brackets in Dirac notation designate the scalar product of functions or vectors. In
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matrix form, 
  
Ω = D Dξξ ξξ

T , where Dξξ  is the second derivative matrix.23 Minimizing the

unsmoothness with the constraint f̂ f− ≤A ε , where ε is the estimated measurement error,

leads to the equation

  
λ λA A AT T+( ) =Ω f f̂ , (14)

where λ is a Lagrange multiplier. Note that this equation is equivalent to Phillips-Tikhonov

regularization (with the discrepancy principle, i.e. f̂ f− ≤A ε , as constraint), and that the

Lagrange multiplier plays the role of regularization parameter. The Lagrange multiplier is found

by solving Eq. (14) iteratively until the constraint is matched.

Note that we only find one of the possible solutions to the problem, but that we know that

the solution we find is the smoothest one, i.e. it is well possible that in reality there is more

structure (more high spatial-frequency components), but not less (as long as our estimate of the

measurement errors is realistic). In effect, thus, this method is similar to bandwidth limitation in

Fourier techniques for deconvolution. The problem as described here is not well defined at the

edges of the measurement region: not enough information is available to invert the problem

there. The range of integral (11) was chosen to be the measurement region, which means that the

region outside the measurement region has to be neglected (note that this is not the same as

assuming that the measurements are zero there). Reasonable values are obtained, but the inverted

values at the very edge should not be trusted. This situation can be improved if more is known

about the values at the edges of the measurement region and this information is included in the

object function f fΩ .
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