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ABSTRACT

It is suggested that the neoclassical tearing modes in the shear-optimised discharges in tokamaks

can be suppressed by the “magnetic well” effect. The stabilising effect is shown to be signifi-

cantly increased by shaped magnetic surfaces, due to the combined influence of ellipticity and

triangularity.

The shear-optimised discharges [1,2] generate very promising regimes of enhanced plasma con-

finement in a tokamak power plant. It was predicted theoretically [3-9] and shown experimen-

tally (see [10-12] and Refs. therein) that magnetic islands driven by the neoclassical bootstrap

current may become an obstacle for achievement of high enough values of plasma pressure in

tokamaks. Therefore a suppression of the neoclassical magnetic islands is one of the important

issues for a future development of the shear-optimised scenarios. In the present work an idea is

proposed that under specific conditions typical for the shear-optimised scenarios the neoclassi-

cal magnetic islands can be suppressed by the effect of “magnetic well” (see the definition in

[13]), associated with the average curvature of the magnetic field lines. The stabilising effect of

the magnetic well is also sometimes called in the literature “the stabilising effect of the Pfirsh-

Shluter current induced by toroidicity and shaping of the poloidal cross-section” (see, e.g. [11])

or “the stabilising Glasser-Greene-Johnson effect due to the equilibrium pressure gradient and

favourable curvature in the outer part of the island” (see, e.g. [12]).

Qualitatively the “magnetic well” effect for the neoclassical magnetic island can be ex-

plained in terms of the following equation of the island evolution:
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Here w  is the width of the magnetic island, c,  σ  are the speed of light and plasma con-

ductivity, ′∆  is the standard parameter of the tearing mode theory, which is assumed to be

negative in our case (′ = −∆ 2m r/  for high poloidal mode numbers, m >> 1), C C1 2,   are con-

stants,
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is the destabilising contribution of the bootstrap current, and
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is the “magnetic well”. Here ε = r R/ 0 , r  and R0  are minor and major radii of the tokamak,

S rq q= ′ /  is the magnetic shear, q the safety factor, β π ϑpe en T B= 8 0
2/  the poloidal beta of
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electrons, Bϑ  is the poloidal magnetic field, g e( , )τ  is a parameter which depends on the values

of the plasma ellipticity e  and triangularity τ (to be determined later) and K Kbs U,   are coeffi-

cients which depend on the plasma density n0  and electron and ion temperatures, T Te i,  , re-

spectively.

It is obvious from (1)-(3) that the effect associated with the magnetic well U0  is stabil-

ising for the magnetic island. However, in discharges with S ≅ 1, g e( , ) τ ≤ 1 and K KU bs≅ ≅ 1

this stabilising effect is small in comparison with the bootstrap current drive:
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In the present paper we show that for the shear-optimised scenarios [1,2] typically satisfy-

ing the following conditions near the internal transport barrier:

S << 1 ,

dlnTi/dlnn>>1, (5)

T Ti e> ,

the stabilising effect of the magnetic well is significantly enhanced and it can compete with the

bootstrap-current effect. Furthermore, it is shown that this magnetic well effect can be increased

by a proper choice of the plasma shape, which determines the value of g e( , )τ .

In order to calculate all the necessary constants and coefficients K KU bs,   and g e( , )τ  we

generalise the stationary magnetic island equation (17) from Ref.[8] to the case of a finite mag-

netic well. This equation relates the width w  of the stationary magnetic island and the parallel

current JII as follows:
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Here B0  is the toroidal magnetic field, Ω  is the surface function determined in [8], ξ  is the

angle variable of the island, σ χ χχ = −( )sgn s , χ  is the poloidal magnetic flux and χs  is the

magnetic flux associated with the “centre” of the island. We follow an approach developed in [9]

and represent the parallel current in the form:

J J JbsII II= + ˜ , (7)

where Jbs  is the bootstrap current and J̃II is the part of JII which depends on ξ  and satisfies the

condition J̃II ξ
= 0, where the averaging over the island magnetic surface ... ξ  is determined

in [9]. The paper [9] will be cited as [I] and the formulas from this paper will be cited as (I. ...).
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The current ̃JII due to the curvature of the magnetic field satisfies the equation

∇( ) + ∇ ⋅( ) =⊥II IIϑ ϑ
˜ ,J j 0 (8)

where

j⊥ = × ∇[ ]c
p

B
B2 , (9)

B and p are the total magnetic field and plasma pressure (the sums of equilibrium and perturbed

parts). The operation ...( )ϑ  denotes the averaging over poloidal angle ϑ  at fixed ξ .

Taking into account (7) we represent (6) in the form (cf. (I.5.3)):
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where ∆bs  is the bootstrap current contribution and ∆U  is the part due to the effect of the

magnetic field curvature. The value ∆bs  was calculated in [I] and according to (I.5.51) is equal

to

∆bs bs bsc K= 2  . (11)

Here Kbs  and cbs  are given by

K
r

S

n

n

T

T

T

Tbs pe i
e

e
i

i

i
= − +( ) ′ + ′ − ′







1 23 1 0 40 0 171 2 0

0
. . ./ε β τ τ ,  (12)

c d
k

E k

d
bs = − +( )

+( )
=

∞
∫ ∫1

4
0 79

1

1 2
1 2Ω Ω

Ω( )
cos

cos

cos
./

/ξ ξ ξ
ξ

, (13)

where k = +( )[ ]2 1 1 2/ /Ω , E k( )  is a complete elliptical integral of the second kind, τ i i eT T= / .

According to (6), (7), (10)
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Calculation of ∆U  is given in the Appendix and the result has the following form:

∆U bsc U U= − ≡ −2 1 580 0.  ,  (15)

where
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Substituting (11) and (15) into (10), we obtain
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It follows from (17) that for ′ <∆ 0 the stationary magnetic island cannot exist if

U Kbs0 ≥  .  (18)

This inequality represents the criterion of the island suppression by the magnetic well.

According to Eq.(2.79) of [13] the vacuum value of ′w  in a noncircular tokamak can be

represented as
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where e  is the ellipticity, τ  the triangularity of magnetic surfaces. These values are determined

in such a way that the equation for a magnetic surface of average radius r is represented as

ρ ϑ τ ϑ2 21 2 2 3+ +( ) =e rcos cos ,  (20)

where ρ ϑ,   are the polar co-ordinates related to the centre of the surface. Using (16), (19), we

find
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Criterion (18) can be represented in the form

f r( ) ≥ 1,  (22)

where

f r U Kbs( ) /≡ 0  .  (23)

Substituting (12) and (21) into (22), we obtain the criterion of the neoclassical island

suppression as follows:
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where η ∂ ∂α α= ln / lnT n0, α = e i, .

Considering typical plasma parameters in the region of the internal transport barrier in

the JET shear-optimised discharges, q ≈ 2 , S << 1, T Ti e≈ 2 , ηi ≈ 3, ηe ≈ 1, one obtains an

estimate
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It is seen therefore that in the case of the magnetic shear small enough and the magnetic

surfaces shaped enough, 6 1eτ ε/ > , the criterion of the neoclassical island suppression (24) is

satisfied if e Sτε
1

2 0 05≥ . .
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APPENDIX

It follows from [I] that
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From (9) we find that in terms of the variables ξ ϑ,
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p0  is the equilibrium plasma pressure, ...  is the averaging over the equilibrium mag-

netic surfaces.

It follows from [I] that the total plasma pressure is a function of the island magnetic sur-

face, i.e. p p= ( )Ω . Then in terms of ξ ϑ, ,  Ω
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Then we obtain from (A.3)
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Using (A.1), (A.2) and (A.6) we represent (8) in the form

∂
∂ξ

σ ξ
ξ

∂
∂

χ˜ sin

cos /
J cw

wSB

pII =
′

+( )
2

0
3 1 2Ω Ω

 . (A.7)

Hence

˜ cos cos/ /J
cw

wSB

p
II = −

′
+( ) − +( )[ ]2 2

0
3

1 2 1 2σ
ξ ξ ∂

∂
χ Ω Ω

Ω
.  (A.8)

Then (9) takes the form
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One can obtain from [I] that
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where h Ω( ) is the function introduced in [I]. Then
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According to (I.2.20), (I.5.50)
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It follows from (A.9), (A.11), (A.12) and (13) that ∆U  can be represented in the form (15),

(16).
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