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ABSTRACT

Itis suggested that the neoclassical tearing modes in the shear-optimised discharges in tokamaks
can be suppressed by the “magnetic well” effect. The stabilising effect is shown to be signifi-
cantly increased by shaped magnetic surfaces, due to the combined influence of ellipticity and
triangularity.

The shear-optimised discharges [1,2] generate very promising regimes of enhanced plasma con-
finement in a tokamak power plant. It was predicted theoretically [3-9] and shown experimen-
tally (see [10-12] and Refs. therein) that magnetic islands driven by the neoclassical bootstrap
current may become an obstacle for achievement of high enough values of plasma pressure in
tokamaks. Therefore a suppression of the neoclassical magnetic islands is one of the important
issues for a future development of the shear-optimised scenarios. In the present work an idea is
proposed that under specific conditions typical for the shear-optimised scenarios the neoclassi-
cal magnetic islands can be suppressed by the effect of “magnetic well” (see the definition in
[13]), associated with the average curvature of the magnetic field lines. The stabilising effect of
the magnetic well is also sometimes called in the literature “the stabilising effect of the Pfirsh-
Shluter current induced by toroidicity and shaping of the poloidal cross-section” (see, e.g. [11])
or “the stabilising Glasser-Greene-Johnson effect due to the equilibrium pressure gradient and
favourable curvature in the outer part of the island” (see, e.g. [12]).

Qualitatively the “magnetic well” effect for the neoclassical magnetic island can be ex-
plained in terms of the following equation of the island evolution:
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Here w is the width of the magnetic island, o are the speed of light and plasma con-
ductivity, A" is the standard parameter of the tearing mode theory, which is assumed to be
negative in our case\ = —2m/r for high poloidal mode numbers>>1), C;, C, are con-
stants,
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is the destabilising contribution of the bootstrap current, and
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is the “magnetic well”. Here =r/R,, r and Ry are minor and major radii of the tokamak,

S=rq'/q is the magnetic sheay,the safety factorf,e = 8m0Te/B§ the poloidal beta of



electrons,Bg is the poloidal magnetic fieldy(e, 1) is a parameter which depends on the values
of the plasma ellipticitye and triangularityr (to be determined later) ari,s, K, are coeffi-
cients which depend on the plasma densgyand electron and ion temperaturdg, T;, re-
spectively.

It is obvious from (1)-(3) that the effect associated with the magnetidJyei$ stabil-
ising for the magnetic island. However, in discharges Biffil, g(e, 7) <1andK, OKyg 001
this stabilising effect is small in comparison with the bootstrap current drive:
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In the present paper we show that for the shear-optimised scenarios [1,2] typically satisfy-
ing the following conditions near the internal transport barrier:

S<<1,
dinTy/dinn>>1, (5)
Ti>Te,

the stabilising effect of the magnetic well is significantly enhanced and it can compete with the
bootstrap-current effect. Furthermore, it is shown that this magnetic well effect can be increased
by a proper choice of the plasma shape, which determines the vaj(e ©Of.

In order to calculate all the necessary constants and coeffitignt&s and g(e, ) we
generalise the stationary magnetic island equation (17) from Ref.[8] to the case of a finite mag-
netic well. This equation relates the widthof the stationary magnetic island and the parallel
current J;, as follows:
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Here By is the toroidal magnetic fieldQ is the surface function determined in [§],is the
angle variable of the islandy, = sgn()( —XS), X is the poloidal magnetic flux angg is the

magnetic flux associated with the “centre” of the island. We follow an approach developed in [9]
and represent the parallel current in the form:

I = Jps + 3y, (7)
where Jyg is the bootstrap current an~}p| is the part ofJ;; which depends 0§ and satisfies the
condition <j”>f =0, where the averaging over the island magnetic sun(fa;zg is determined

in [9]. The paper [9] will be cited as [I] and the formulas from this paper will be cited as (I. ...).



The currentJ;; due to the curvature of the magnetic field satisfies the equation

(Du),g 3 +(20p)s =0, (8)

where
. C
Io =¥[B><Dp], 9)

B andp are the total magnetic field and plasma pressure (the sums of equilibrium and perturbed
parts). The operatio(l..)z9 denotes the averaging over poloidal anglat fixed &.
Taking into account (7) we represent (6) in the form (cf. (1.5.3)):
A BostBy (10)
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where Apg is the bootstrap current contribution ang, is the part due to the effect of the
magnetic field curvature. The valdg,g was calculated in [I] and according to (1.5.51) is equal
to
bs = 2CbsKps - (11)
Here Kyg and ¢, are given by
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wherek =[2/(Q +1)]1/2, E(k) is a complete elliptical integral of the second kinds= T; / Tg.

According to (6), (7), (10)

Ay = 2V20Ry S }deLOSEdE. (14)
cS £ Q +cosé
x -1
Calculation ofA, is given in the Appendix and the result has the following form:
Ay = —2c,Ug =-1.58U , (15)
where
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Up = —% . (16)

Substituting (11) and (15) into (10), we obtain
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Z +T(Kbs Uo) =0. (17)



It follows from (17) that forA’ < 0 the stationary magnetic island cannot exist if

Ug 2 Kpg - (18)
This inequality represents the criterion of the island suppression by the magnetic well.
According to Eq.(2.79) of [13] the vacuum valuewsf in a noncircular tokamak can be
represented as

e 259% guee—;% (19)

wheree is the ellipticity, T the triangularity of magnetic surfaces. These values are determined
in such a way that the equation for a magnetic surface of averagerredigapresented as

p%(1+ecos2d + 21 cos39) =12, (20)

where p, 9 are the polar co-ordinates related to the centre of the surface. Using (16), (19), we
find

uo=—£2§2'Oer §1+ r.)no + :'+r ;5&1 65 (21)
Criterion (18) can be represented in the form
f(r)=1, (22)
where
f(r)=Ug/Kps - (23)

Substituting (12) and (21) into (22), we obtain the criterion of the neoclassical island
suppression as follows:

g3/2 1+7; +Ne + TN, g 1 erD>1
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(24)

wheren, =2InT, /dInng, a =e,i.

Considering typical plasma parameters in the region of the internal transport barrier in
the JET shear-optimised discharggss 2, S<<1, T, = 2T, 1 =3, e =1, one obtains an
estimate

f(r) = 34Eb 75+eﬂg%>1 (25)

It is seen therefore that in the case of the magnetic shear small enough and the magnetic
surfaces shaped enoudder /¢ >1, the criterion of the neoclassical island suppression (24) is
satisfied ifere’2/S> 0.05.



APPENDIX

It follows from [l] that

17}
(D), = klld_g !
where

K = mSwno (Q +cos€)1/2.
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From (9) we find that in terms of the variablgs 3

cwW' dp
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where
R

w = E<Bo + 87p0>,

(A.1)

(A.2)
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Po is the equilibrium plasma pressu¥e,) is the averaging over the equilibrium mag-

netic surfaces.

It follows from [I] that the total plasma pressure is a function of the island magnetic sur-

face, i.e.p=p(Q). Then in terms of, 4, Q

O .
%Q% = m%smf .

Then we obtain from (A.3)

(0T0), :%é“%smg .

Using (A.1), (A.2) and (A.6) we represent (8) in the form
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Hence
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Then (9) takes the form

(Q+ cosf)ll 2_ <(Q + cosf)llz>] %

(A.5)
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One can obtain from [I] that
1 dpg
= +———h(Q), A.10
p=Po(Xs) * gy MO (A-10)
where h(Q) is the function introduced in [I]. Then
p _ 1 dppch (A1)
0Q RyBy dr dQ
According to (1.2.20), (1.5.50)
dh _m k
—=———0,WRyBy. A.12
dQ " 8 E(k) X RoBy (A12)
It follows from (A.9), (A.11), (A.12) and (13) thd}, can be represented in the form (15),
(16).
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