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ABSTRACT

Effects on reflectometer pha{ceand powen5 fluctuation signals due to (a) asymmetries in the
transmit - plasma - receive antenna geometry (misalignments), and (b) asymmetries in the plasma
cutoff layer perturbations (distortions from sinusoidal or Gaussian) are studied using a two di-
mensional (2D) physical optics model. Results show the onset of phase runaway with antenna
misalignment and/or sawtooth type perturbations when the perturbation amplitude exceeds some
critical value. For broadband (Gaussian) turbulence antenna misalignment leads to Doppler shifts
in the Eo spectrum - provided the reflectometer beam width w, and spectral wjdol the
turbulence are sufficiently large. Misalignment also generates coherence bei?lvaleeln5 at

Bragg backscatter frequencies with quadrattirté?) phase difference. Sawtooth (asymmetric
gradient) perturbations also generate phase-power coherence in quadrature, but at frequencies
determined by w and,k i.e. not Bragg. Cusped or spiky (asymmetric amplitude) perturbations
generate asymmetric phase distributions (non-linear phase offsets) and low frequency phase-
power coherence with O arphase difference. The simulations indicate that a combination of
antenna misalignment (or plasma tilt) and cusped reflection layer perturbations can account for
a wide range of experimentally reported features in reflectometer signals.

1. INTRODUCTION

The use and sophistication of microwave reflectometry for measuring plasma fluctuations and
turbulence in magnetically confined fusion experiments has grown steadily in recent years (for
example see papers in [1-3]). Advances in hardware design have been accompanied by substan-
tial progress in the understanding and interpretation of the reflectometer signals. Much of this
progress has been achieved with the development of two dimensional (2D) modelling and simu-
lation studies - which include full wave equations [4-6], WKB solutions [7,8], physical optics
simulations [9-11] and others [12,13]. The various 2D models, despite their different approaches,
appear to be converging on a consistent picture for the behaviour of reflectometer fluctuation
signals; that is a realistic model is emerging for the instrument response function. Initial 2D
simulation studies naturally concentrated on idealized reflectometer configurations, i.e. sym-
metric antenna patterns and symmetric angles for the launch and receive microwave beams,
However, as confidence grows in the 2D models attention has begun to turn to the question of
the effects of asymmetries in the geometry of the reflectometer configuration.

It has been widely suggested that asymmetry or misalignment between the launch and
receive antennas and the plasma reflection layer may be responsible for the ubiquitous phase
runaway effect observed in many experiments [14-20]. Indeed, recent simulations using 2D
WKB codes [7,8] and distributed RLC networks [13] with asymmetric antenna angles are now
revealing phase runaway effects.



Another form of asymmetry is distorted or non-symmetric plasma perturbations. For ex-
ample, rotating magnetic islands have been proposed as a possible mechanism for generating
sawtooth-like perturbations in the reflection layer [17], which again may lead to the reflectometer
phase runaway effect. This paper presents, for the first time, a systematic study of the effects of
asymmetries in the reflectometer geometry (misalignment), and asymmetries (distortions) in the
reflection layer perturbations using a 2D physical optics model. The study includes the
reflectometer’s response to both single frequency plasma modes and broadband turbulence for
non-normal incidence and backscatter, and with two forms of distorted layer perturbations -
asymmetric amplitude (cusped) and asymmetric gradient (sawtooth) perturbations.

The simulations reveal many new features over previous studies, such as correlations be-
tween the phase and power signal fluctuations, as well as recovering the phase runaway and
Doppler frequency shifts - which are shown only to appear in the presence of asymmetries.
Many of the results reported here have been observed in experimental signals - indeed there is
now a substantial body of evidence in the literature (for example [14,21,22,19,15-18,23]). How-
ever, it is beyond the scope of this paper to include an experimental example for each simulation
result (space limitations notwithstanding) but where possible reference will be made to exam-
ples in the literature. Note that some early simulation results have already been compared with
data from the JET reflectometers [24,25].

2. SIMULATION MODEL

The principle of plasma reflectometry is that a microwave beam of frequ@npyopagates

into a plasma until it reaches a cutoff condition and is reflected. For an O-mode polarized beam
the cutoff condition iscozo = wzp (plasma frequency) while for an X-mode beam mj?s) = oozp

* o (plasma and cyclotron frequencies). Perturbations in the cutoff layer modulate the phase
and amplitude of the reflected beam which are then measured using homodyne or heterodyne
detection techniques.

To simulate the experiment the physical optics model uses the high spatial localization in
the reflection of microwaves [21,26] to model the reflection layer as a thin distorted conducting
surface. The phase and amplitude of the reflected microwave beam can then be calculated using
the Helmholtz integral. The 2D physical optics model has previously been described in detail
[27,10,11] but to incorporate non-normal incidence and reflection the 3D version is introduced.
Using the same procedure (a far field Green’s function) and notation as before [27,28] an ex-
pression for the scattered electric field is obtained:
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( ) b g Figure 1 : Schematic of model geome@lyand 6, are

angle relative to the normal afiglis the angle incident and scattered beam angles relative to the sur-
between the incident and scattering planes. Figce normal n in the plane parallel to the perturbation

. ropagation vector. wand w, are Gaussian beam radii
ure 1 shows a schematic of the geometry. Tlﬁ?the layer. h and\ are perturbation amplitude and

incident beam is a paraxial Gaussian beam (parvelength.

allel wavefronts at the reflection layer) with an

elliptic cross section. yand w, are the beam radii (elliptic half axis) in the x and y directiogs. k

= 217\ is the wavenumber of the incident microwave beam, R is the smooth surface reflection
coefficient (in this case unity), arldis the perturbation displacement in the reflection layer
(with respect to the mean).

The far field solution of the Helmholtz integral (i.e. placing the transmit and receive an-
tennas beyond the far field limit of both the fluctuations and the beam spot size) produces a
general, non-configuration dependent solution by removing the antenna specific parameters such
as size, location, and gain patterns etc. To remove the range d dependence the scattered field E
Is normalized to the specularly reflected field from a smooth surfag® Eive the scattering
coefficientp = Ex/Epq:
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Equation 2 can be solved numerically for any three dimensional surface perturbation
{(x,y,z,t). However for the purpose of this work the expression for the scattering coefficient can
be reduced to
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by making the following simplifications.

(1) Depolarization is ignored, only scattering in the plane of incidence is considerégsi.e.

0 (the scalar wave case). Although depolarization or cross-polarization scattering almost
certainly occurs in the experimental situation, it’s effect should be small.

(2) The incident microwave beam has a circular cross sectionyizewy= w. However for
non-normal incidence the incident beam still produces an elliptic spot size or footprint on
the surface. The (1 + c?oél) factor in the profile exponent accounts for this effect.

(3) The y direction is aligned along the magnetic field lines (toroidal) and x in the transverse
(poloidal) direction. The toroidal correlation length of plasma density fluctuations is usu-
ally much larger than the spot size, i.e>k w while the poloidal length A< w. This
assumption removes the y dependence in the perturbation displaceameinallows the
3D expression fop to be collapsed to an enhanced 2D expression. However this assump-
tion may not be applicable in certain conditions. For example in the tokamak scrape-off
layer (SOL) and divertor regions, rather than appearing as striations the density fluctua-
tions may have a more granular structure, thag¥sA. However, the full 3D solution will
not be pursued in the current study.

The plasma perturbations are assumed to move under the reflectometer beam transverse to
the magnetic field lines (in the poloidal direction) with a uniform constant velocity (linear dis-
persion relation). Simulated reflectometer power (amplitude squared) and phase time signals are
then generated from

P(t) =p(t) p*(t), (4)
_ o nm1bmp(t) O
@(t) = tan meo(t) (5)

The phase and power signals will have a mean and a fluctuating componerat,+H5: P

andp=q, + q~0 Generallyp, = const. while Pranges between 0 and 1.

It is implicit in this model that the incident and reflected microwave beams are not af-
fected by plasma fluctuations in front of the cutoff layer. Plasma refraction can bend and spread
the beam profile, however refraction is not explicitly considered here since it is a machine de-
pendent effect. However it’s effects could be quantified with ray-tracing codes and then incor-
porated through adjustments to the beam radius and the angles of incidence and scattering.

3. ASYMMETRY

There are two forms of asymmetry that can affect reflectometer behaviour, (a) asymmetry in the
reflectometer geometry (misalignment), i.e. different launch and receive angles, and (b) asym-
metry (distortions) in the shape of the surface perturbations. Here the term distortion is used to



mean a deformation to a symmetric sinewave type perturbation, or to a Gaussian distributed
random perturbation.

3.1 Misalignment
The launch and receive angkgsandB, can have any value between in any combination.

However the four basic combinations of angles shown schematically in figure 2 cover all ex-
perimentally encountered situations:

Aligned Misaligned
A
oA L % |
0, } 0, 911\ A } . -
| | |
1) 2) I 3) 4) 2
Normal Specular Backscatter General
8,=6,=0 6,=6,#0 6, =-9, 6,#86,
Ideal Ideal Monostatic Bistatic and
Monostatic Bistatic and tilt 8, tilt /,(8, +6,)

Figure 2 : Schematic showing four possible categories for the asymmetries in the
reflectometer geometry; (a) Normal incidence and reflectipr, 6, = 0 (b) Specular
reflection, 6; = 6, # 0 (c) Non-normal backscatte = -6, # 0 (d) Asymmetric
scattering,6; # 6, Z 0.

(1) Normal incidence and reflectioB; = 82 = 0. This is a monostatic configuration, i.e. a
single antenna for both launch and receive beams. It is also the simplest, and perhaps the
most widely studied idealized configuration. The received signal will contain both a specular
(coherent) and a diffuse (incoherent) component.

(2) Specular reflectionf1 = 82 # 0. This is the idealized configuration for a bistatic
reflectometer, that is separate antennas for the launch and receive beams. Again the re-
ceived signal will contain a specular and diffuse component.

(3) Non-normal backscattel; =— 62 # 0. This is also a monostatic configuration, but now
only the diffuse incoherent backscattered power along the incident sight-line will be re-
ceived. The specular component is generally lost - depending on the valuanaf the
width of the scattered power lobe. This configuration is equivalent to the ideal monostatic
configuration with an antenna misalignment or a tilted plasma layer.

(4) Asymmetric scatterindd; # 62 # 0. This configuration includes all other possible combi-
nations. As in the previous case generally only the diffuse incoherent component is re-
ceived. This configuration is also equivalent to the idealized bistatic configuration with an
antenna misalignment, or a tilted plasma layer, (the angle of tilt b&irgap)/2).



3.2 Distortions

The second category of asymmetry applies to the shape of the reflection layer perturbations.
Previously symmetric single frequency sinewave perturbations were used to model coherent
MHD type plasma modes [27] and random perturbations with symmetric Gaussian amplitude
distributions to model broadband plasma turbulence [10]. However as indicated earlier, rotating
magnetic islands might generate reflection layers with sawtooth shaped perturbations [16,29,30].
This effect can be modelled as a skewed or distorted sinewave where the surface displacement
is generated by:

J(x,t)= hcosg%—gScosEQTm+¢g+ax+¢§ (6)

S is a skew factor betweefi.0 which distorts the sinewave into a smooth sawtooth per-
turbation.A is the perturbation wavelength (ws\/2m) and¢ is the perturbation phase.
Alternatively the sinewave amplitude could be distorted towards a more cusp like shape:

Z(x,t):h%’ﬁ OSEQTHX+01+¢B+1§C—1§ (7)

where C is a cusping factor greater than 0. These two types of asymmetric perturbations are
quite distinct and produce different responses in the reflectometer. The first type of distortion is
to the distribution of the slopes (or gradients) of the perturbation, i.e. a non-symmetric probabil-
ity density function (pdf) fol’ = d{/dx. The second type of distortion is to the amplitude distri-
bution, i.e. a non-symmetric amplitudepdf.

For broadband turbulence the surface displace@ain be generated from a Fourier
summation of sinewaves:

N
Z(xt) = h(k)cos(kx + it + ;) ()
=

with a linear dispersion relation v ki. ¢ is a random phase with a uniform distribution
betweenttt, while h(k) is the weighting or (poloidal) k-spectral profile, which in this work is
defined as a Gaussian with half-width &nd mean k:

(k) = exp?.%@z ©)
The summation is normalized by the standard deviation displacégagatgive a unity
standard deviation, then scaled by the amplitude factor
Again, the two types of distortions to the layer perturbations (asymmetric amplitude pdf
and asymmetric gradient pdf) can be applied to the broadband fluctuations. Figure 3 illustrates



some example surfaces and probability density functions for six categories of possible
perturbations. A surface with a preponderance of either negative or positive going spikes would
result in an asymmetric amplitude distribution, while random sawteeth would result in an asym-
metric gradient distribution. Both types of sequences are commonly observed in the ion-satura-
tion currents from Langmuir probe diagnostics. For example, the surface can be made either
spiky or sawtoothed by multiplyingwith exponential functions such as

(={x(exp(CQ) + 1) (10)
(={x(exp(SC’) + 1) (11)

prior to normalization. C and S are the cusping and skewing factors with values he?@@en
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Figure 3 : Schematic showing six possible categories of surface perturbations.
Left: (1) Single frequency mode, Right: (2) Broadband turbulence. Top row: symmetric
perturbation, middle row: asymmetric amplitude distributiod)cusped), bottom

row: asymmetric gradient distribution ¢} (skewed).

4. RESULTS

Initially it appears that there are a multitude of different possible scenarios to be considered -
four different antenna configurations combined with various types of surface perturbations,
multiplied by two for single frequency modes and for broadband turbulence. Fortunately the
simulations show that only two antenna geometries need be considered - aligned and misaligned.
Normal incidence and specular reflection are both aligned geomeirie8; =0. They give the

same results irrespective of the surface perturbation when the amplitude is replaced @ith hcos
Backscatter is just a special case of the more general asymmetric scattering, both are misaligned
with 81 — 62 # 0. The degree of misalignmeri; — 620, irrespective of whether it results from
antenna misalignment or plasma layer tilt, is the salient parameter. Further, all possible forms of
surface perturbations, single frequency and broadband, can be categorized by two parameters
guantifying the degree of asymmetry in the distribution of their amplitudes and their gradients.



These three basic categories - misalignment, asymmetric amplitudes, asymmetric gradi-
ents - can be combined in a variety of ways to generate just about all possible experimentally
conceivable scenarios. However as will be shown in the following case studies, where misalign-
ment is combined with one or other form of distortion to single frequency and broadband fluc-
tuations, these scenarios are generally just linear combinations of more basic features relating to
each form of asymmetry.

The simulation model has six independent parameters: (i) The normalized perturbation
amplitude, X oro/A (2h is the peak to peak mode amplitumés the turbulent rms amplitude);

(i) The normalized perturbation wavelengtf\ or ky/ko in the case of turbulence; (iii) The
normalized incident Gaussian beam radius, \(iv) The transmit and receive angl&sandoo;

(v) C and (vi) S, the two factors which define the asymmetry in the perturbation amplitude and
gradient distributions. Further, when the reflectometer has aligned geofretr§d, =0, the
wavelength and beam width parameters can be combined to form a single pafdmeber

kww in the case of turbulence with a Gaussian wavenumber spectrum.

4.1 Single frequency - Non-distorted sinewave - Aligned geometry

The case of normal incidence and reflecierr 62 = 0 has already been studied in some depth
[27,31]. These results can be extended to the general aligned case by simply replacing the mode
amplitude with (hX) co$1, and adjusting the incident beam spot size to account for the elliptic
footprint. (It should also be noted that lafijeand hA can lead to shadowing of the surface and
hence the breakdown of the appropriate formulatiod.jor

To briefly summarize, the reflectometer’s phase and power response shows three distinct
regions as a function @f/w.
(1) A/w>>10: For long wavelength fluctuations the surface appears flat. There is no attenu-

ation and very little modulation in the reflected powey {P1, P_ 0) and the extent of
the phase modulatiodp increases linearly with the mode amplitude as expected from
geometric optic®® = + 411cos01 h/A.

(2) Aw < 1: At very short fluctuation wavelengths the power is scattered into side-lobes

resulting in strong attenuation of the reflected power and zero phase moduatiord(

¢ - 0).

(3) 1<A/w<10:Inthe transition region, both P agifall with decreasing\/w. The phase
modulation no longer scales as predicted by geometric optics. The reflected power is modu-
lated with a strong cusp-like shape at twice the frequency of the phase modlati2f, f
= 2fmode 1-€. NO correlation between the phase and power fluctuations. See [24] for an
experimental example.



4.2 Single frequency - Non-distorted sinewave - Misaligned geometry

The first major consequence of introducing
asymmetry in the geometry is the loss of the O
specular zeroth order reflection with increas- -5
ing 1. The rate of loss depends on the angul%—lof
width of the zeroth order lobe, which scale% -15
inversely with the spot size w[27]. The net § —20F
effectis the progressive loss of reflected power _,s|-
at large/N/A (i.e. the reflectometer becomes _g,
insensitive to long fluctuation wavelengths) as 6

shown in figure 4. Here the maximum P and 4r
are plotted as a function #fA with increas-

2

ing backscatter angles (i) = -6, but fixed § N
h/A = 0.1 and WK = 5. Note the swelling in the g Ll -z

phase response in the transition wavelength i
region.
R Ll
As well as losing the lond/A, the short 0 10*
Normalized wavelength A/A
wavelengths are also attfanuated more severglgure 4 - Maximum reflected power P and phases
than for specular reflection. However certaiRormalized mode wavelengtit for various backscatter
fluctuation wavelengths are not attenuate@nglesés = —62=0, 2.5, 5 & 16 with fixed mode am-
plitude hA = 0.1 and spot size W/=5.

These are the Bragg backscatter wavelengths

given by

JG99.15/4c

Ll
102

N _ m

A (sSnBy -sinBy)
where m is the diffraction order. For the aligned case, increasing the beam vkdtimyly
translates the response curves to lafgei{31], but with misalignment increasingmprogres-
sively causes the loss of both long and short fluctuation wavelArgghsitivity. Except at the
Bragg wavelengths which become better defined with increasingitty the Bragg backscattered
power tending to a constan6dB independent of the incident angle, and the phase response
tending to a constaldtp = £ m(172).

With misalignment both the phase and power time signals become distorted. Figure 5

shows P angas a function of the perturbation phastrough one complete period witha#
2,\I\ = 5,01 = -8, = -2.5° and increasing mode amplitudé hAs hA increases, the phage
becomes more and more distorted around the zero crossing of the pertupbatdif (where
the power is also seen to dip) until at some critical valliethe phase signal flips direction and
begins to ramp continuously. This is the phase runaway effect so often observed in experiments
[14-18,32,20] .

(12)
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Figure 5 : Reflectometer power P and phases per-
turbation phase for increasing amplitude A/ with tilt

6, = -6, =2.5°, wiA = 2 andA/A = 5. Note phase runa-

The cause of the phase runaway, and the
reason for the amplitude thresholgbe-
comes clear when the reflectometer signal is
plotted in the complex plane. The time evolu-
tion of the complex reflection coefficiept=
A exp(ip) (A =VP) will map out a trajectory in
the complex/polar plane (Ipwvs Rep or Asing
vs Acosp). This “complex amplitude” plot has
already been shown by some investigators to
be an powerful analysis technique [13,32,19].
For a single frequency periodic perturbation the
complex amplitude trajectory will follow a
closed path through one complete perturbation
period, starting and finishing at the same point.
Figure 6 shows a series of complex amplitude
plots for various conditions with/A = 8, wiA
=2 and perturbation amplitudes between 0.05
and 0.25 (5% to 25%). Symmetric sinewave
perturbations, figure 6(a), result in simple con-

way when hi > 0.14 Bottom trace shows normalizedcentric arcs mirrored in the real axis @ =
displacement/h and arrows indicate incident and re- 0). The crosses mark the beginning and the end

flected beams.

of the perturbation periog = 0°. As hA
©
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Figure 6 : Complex amplitude trajectory plots (bws Rep) for single frequency perturbation withiA = 8, wiA =
2 and increasing amplitudeh/Top row: no misalignment (a) Sinewave (b) Cusped C = 0.2, (c) Sawtootd.&,=
Bottom row: with tilt6; = -6, = 2.5° (d) Sinewave, (e) Cusped, (f) Skewed.
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increases, the arc extends round to close on it->8

self. This leads to phase wrappingget £11 071 wiA =1.0
but not to phase runaway since the trajectoryoef 2
must retrace its path (unwind @ back to the ' 5.0

start point. Increasing the perturbation waves, 03"
lengthA/A increases the radipp* = 1 but also § 0.4F

10.0

moves the centre of curvature towards the OI’E o

gin.

When misalignment is introduced, fig- %7

ure 6(d), the trajectory does not retrace itself o.1-

JG99.15/7¢

but opens out to form a closed loop. The size e .
of the loop grows with increasingN/If the 10 Wal\?e|engthm 0

loop encloses the origin then the phasean Figure 7 : Critical phase runaway fluctuation ampli-

rotate through in one perturbation cycle angtude /A vs normalized wavelengthfA for increasing
beam width Wi with fixed tilt6; = -6, = 2.5°

phase runaway occurs.

The critical mode amplitude-f at which phase runaway starts varies with the perturba-
tion wavelength, beam width, incident and scattering angles. Figure 7 siidvas la function
of A/A for increasing beam width Wivith 081 — 620= 5°. (Sinced = sind for moderate angles
the misalignment is expressed in terms of net angular diffeféhce 6,00). At long perturba-
tion wavelengths or small beam widihs 10w, the critical amplitude rises to infinity, i.e. there
is no phase runaway in the 1D Geometric optics limit. At very short perturbation waveleéngths
= w the critical amplitude also rises, but hegd\tbecomes difficult to discern because of the
very small reflected power signal. The minimum gihoccurs at around = 2w and drops
progressively in value with increasinghincreasing the misalignmein®, — 620 also reduces
he/A (almost to zero) and moves the minimum to laryar.

In contrast to the aligned case where the power was always modulated at twice the fre-
guency of the phase, figure 5 shows that below the critical amplitude the power P is modulated
at the same frequency as the ph@gse. correlated, but in quadrature (out of synchronization by
+112). When the surface displaceméris maximum at = 0°, P will be maximum ap =+90°
while @ is maximum atp = 180. Above the critical amplitude the 2nd harmonic modulation
reappears in both the power and phase signals.

For one complete perturbation period the reflectometer mhagkalways ramp by mul-
tiples of+21t (depending on the dominant lobe order). The direction of ramping depends on the
sign of angular differencg; — 65 relative to the direction of the mode propagation.

4.3 Single frequency - Sawtooth distortion - Aligned geometry

The second class of asymmetries, that of distorting the sinusoidal perturbation, introduces sev-
eral new effects. Figure 8 shows the reflected power P and pHasedulo 27) through one
period of a smooth sawtooth perturbation (skew factor S = 0.4) for normal incidence and
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backscatter with increasinghbut fixed A/w ok
=5 : Again for the specular case the perturba- -5
tion wavelength and beam radius can be corﬁ-lO
bined. & -15
For small amplitudes Rthe phaserep- § 20
licates the shape of the perturbatiprs —41t
coP; ¢/A. But as MK increases the phase be- 3
comes more and more distorted at the point cjf 2
maximum surface gradienp € 90" in figure g 1r
8) and is accompanied by a sharp dip in thig °[
reflected power. When k/exceeds a critical g L
value,@reverses direction and begins to ramfﬁts _2
in a similar manner to that due to misalignment. 1_2
Figure 8 also shows that the power P is mod%’— 050 HO
lated at the same frequency as the plpdaad
hence correlated) but in quadratute/@).

. . . 1 L |
In the complex plane the signal trajec- 0 60 120 180 240 300 3
Perturbation phase (deg)

tory again forms closed loops, figure 6(c), anif_ilgure 8 - Reflectometer power P, phasgmodulo 2
again the point at which the trajectory enclosesd displacemen{/h vs perturbation phase for
the origin marks the onset of phase runawagpwtooth surface, S = 0.4 with normal incidere=

. . = 0, Alw = 5 and increasing amplitude h/Phase
The direction of the phase ramp depends Qfhaway occurs for W>0.17
the relative direction of mode propagation and
the slope (or skew) of the sawtooth. The critical amplitydedepends on the skew factor S as
well asA/w. Figure 9 showsd rising to infinity at large\/w for two values of skew S = 0.2
and 0.4. BA also tends to rise a§'w — 1. As in figure 7 for misalignment, phase runaway
becomes more difficult to induce with small beam diameters.

The similarity between the sawtooth and the sinewave with misalignment is not unex-
pected. To a misaligned reflectometer the tilted surface of the sinewave will appear as a sawtooth
profile when projected into the effective plane of the reflectometer beam. It is the net asymmetry
in the apparent (or projected) surface gradient through one cycle of the moving perturbation that
causes the complex amplitude trajectory to open into a loop, and hence lead to the possibility of
phase runaway. However there is one major difference between the sawtooth and misalignment
cases, there is no loss of reflected power (i.e. sensitivity) at long perturbation wavelengths with
the sawtooth. This is illustrated in figure 10 which shows the maximum and minimum power
and phase as a function®iwv with S = 0.4 and increasingh/Also note the absence of Bragg
backscatter enhancement with the sawtooth perturbation.

o
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Figure 9 : Critical phase runaway fluctuation ampli- Figure 10 : Reflectometer power P and phases nor-

tude h/A vs Alw at normal incidencé, = 6, =0, for malized wavelength/w (w/A = 1) at normal incidence

sawtooth perturbation with S = 0.2 and 0.4 for sawtooth S=0.4 at perturbation phasgs 0, 90,
180, 278 and increasing amplitude h/

4.4 Single frequency - Sawtooth distortion - Misaligned geometry

Individually, misalignment and sawtooth perturbations can both cause phase runaway if the
perturbation amplitude is greater than some threshold. When combined, the result depends on
the relative signs and magnitudes of S &yd—<{0). If S and 0; — 62) have the same sign
(majority reflection off the shallow face of the sawtooth) thgh Is substantially reduced for

all wavelengthg\/A, and the power dip becomes deeper. For some valu€s oft)), ho/A

drops almost to zero. At sm@l\ the phase ramp can be almost linear for all Wwhile at large

NI\ the phase can also ramp by multiples mfalhd display complex 2nd and 3rd harmonic
modulations. Conversely if S anfly(— 62) are opposite in sign, ther/k is raised and the
reflected power is enhanced.

In all cases adding a misalignment to a sawtooth distortion again leads to a general loss of
sensitivity at long perturbation wavelengths. The complex amplitude trajectory, figure 6(f), can
form complicated loops and twists, but in all cases they remain symmetric about their mean
phase, i.e. the real axisg@j = 0.

4.5 Single frequency - Cusped distortion - Aligned geometry

The second form of surface distortion, the cusped or ‘spiky’ surface has a very different effect on
the reflectometer signals. There is no phase ramping, but the phase response does depend on the
shape of the cusps, particularly whether they are pointing outward (towards the antennas) or
inward (away from the antennas) and/ow.
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Figure 11 shows the minimum and maximum P@ad a function of\/w with h/A =0.17
and various cusping values from C=0.5 (inward cusps) to C=4 (outward cusps). C = 1 is the
symmetric sinusoidal surface. At long perturbation wavelengtvs> 10, the phase again fol-
lows the shape of the surfage= —41t co9; {/A, just as with the sinusoidal and skewed
perturbations. However #8w decreases two things happen. The phase modutagionO as
before, but the phase also acquires an offget 0. The phase offseffl, changes sign as C
increases from inward to outward cusps. The offset also varies non-linearlymashgtiown in
figure 12 at\/w =1. Secondly, Pincreases, i.e. there is less attenuation when there is cusping
(C#1).
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Figure 11 : Reflectometer power P and phases nor- Figure 12 : Phase offset, as a function of perturbation
malized wavelengti/w at normal incidence for C = amplitude bt with A/'w = 1 at normal incidencé; = 6,
0.5 (inward cusped) through C = 1 (symmetric) to C =4 0 for selected values of cusping.

(outward cusped) with fixedhE 0.17 at perturbation

phasesp = 0, 90, 186.

BetweenN\/w = 2 and 3 there is a pronounced increase in the modulation of the power
signal. The degree of modulation and the perturbation waveléngthwhich it occurs, in-
creases with the value of C, i.e. the sharper the outward cusps or spikes. This is possibly due to
some form of resonance between the beam diameter and certain perturbation wavelengths caus-
ing additional defocusing/focusing of the reflected beam, or perhaps because sharp outward
spikes tend to make the surface appear more like a ruled grating.

The perturbation cusps, whether outward or inward, cause dips in the reflected power.

Since these coincide with the cusps in the ph@sand P are thus correlated - with a relative
cross-phase difference of 0 for outward cusps,rafod inward cusps.
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In the complex amplitude trajectory of figure 6(b) for C=0.2 the phase offset and cross
correlation are revealed as a non-linear rotation (and stretching) about the origin, clockwise for
negative (inward) cusps, anti-clockwise for positive (outward) cusps. The offset arises from the
inability of the microwave beam to penetrate all the way down into the depth of the inward cusp
(same effect as waveguide cutoff), while for outward cusps the very narrow tops become invis-
ible to the microwave beam. The effective surface displacement at the cusp approaches the
mean value as the cusp becomes narrower.

4.6 Single frequency - Cusped distortion -
Misaligned geometry

Adding an antenna misalignment to the cusp
distortion results in some very strange behay T
iour in the phase and power signals. Figure 13 -
is an example of P amgthrough one period of &
a negative cusp perturbation (C = 0.2) with a _os
misalignment of B; - 8,0 = 1", long wave- 30
lengthA/A = 20, narrow beam W/= 2 and in-

creasing perturbation amplitude. The phasg
offset is still evident, but also note how theg
phase and power maxima and minima mov%
away fromp = 180° and become progressively!l
more skewed and asymmetric with increasing = 0.20
h/A. | | | el &.

Again ag B1 —0o00increases there is the £ ok
usual loss of reflectometer sensitivity at longs 4

owe
|

N

o

ement {/h

D JGoo 1530

and short perturbation wavelengths, and ¢t ~1.0} T
course, above\ phase runaway occurs. Perturbation phase (deg)

. ) Figure 13 : Effect on reflectometer power and phase of
4.7 Broadband - Gaussian - Aligned adding surface til; = -6, = 5° to cusped surface C =
geometry 0.2 withA/A = 20 and wA =2. Bottom trace is displace-

ment{/h as function of perturbation phage arrows
The converse to the single frequency MHUIhdicate beam directions.

mode is broadband random Gaussian turbu-
lence. The case of normal incidence has also been previous studied in depth [10]. For complete-
ness, and to provide a comparison for the asymmetry cases the results are briefly restated.

() The phase quctuationE}) are symmetrically distributed (roughly Gaussian) about a zero

meang, = 0, while the power fluctuatior are non-symmetrically distributed. The level
of reflected power §(i.e. carrier strength) varies inversely with the level (standard
deviation) of phase fluctuatioggg and power fluctuationssg See [24] for experimental
example.
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(i)  For moderate fluctuation amplitude#\ < 0.1 and large beam diameteys.lw > 211, the
phase standard deviation (same as rrpg ¥ 0) scales [24] with the rms amplitude of the
turbulencea/A, the turbulence wavenumber spectral width(kn = 0), and the beam

radius w as:

_ 4o coso; [kWWD_O'G
A 2 U2nO
For kw .w << 2rtthe phase standard deviation scales as the 1D geometric optiggstmit
= 41 cosB1 o/A; with Psg - Oand B - 1.
For very large amplitude turbulence, i@\ > 0.2, the phase fluctuations are uniformly
distributed betweerTt (which results ingsq saturating at 01§; P, goes to 0 and

(13)
(iii)
(iv)

PsdPo — 1. The fluctuation spectra q~& (and P to a lesser extent) tend to a1trm.

The auto-correlation times (€§(= 1/e) of both(,~0 and P scale directly with the beam
width w and inversely (weakly) withykand (very weakly) witto/A. There is no correlation
between the phase and power fluctuations for specular reflection.

4.8 Broadband - Gaussian - Misaligned geometry

As before, introducing any form of antenna misalignment moves the receiver off the specular
axis of the scattered power lobe resulting in a decrease in the coherent reflection and an increase
in the incoherent scattering. This is illustrated in figure 14 where (a) the phase standard devia-
tion @sq (b) mean power fand (c) relative power standard deviatiqy® are plotted as a
function of the net misalignment andlB; - 6,0 for increasing amplitude/A with fixed K,/kq

= 0.5 and v\ = 5. Just a few degrees of misalignment are all that is necessary for the phase and
power fluctuations to rise to saturationpgg — 0.6, and RyP, — 1. Figure 14(b) illustrates

how the specular return is lost with increasmy.

Phase @ (rad) () Power P, (b) Power Pyy/P, (c)
2.0 ——
0.20
L
> 08k 10.15
151020 Tl oA =0.05
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3 3
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L ' 10.15 b _ 5
G/\ = 0.05 — o/A =0.05 g
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Figure 14 : (a) Phaseyy (b) Mean power pand (c) Power EyP, as function of net misalignment anglg; -
6,[Ifor increasing amplitude’/A with fixed k/k, = 0.5 and wA = 5.

16



The rate at whichpsg and R¢P, saturate depends on the width of the scattered lobe.
Figure 14 shows that the lobe broadens with increaskdut increasing wor ky/ko reduces
the angular spread of the lobe.

In the single frequency perturbation, adding a surface tilt leads to phase runaway if the
perturbation amplitude exceeds a certain value. The equivalent effect of phase runaway for a
moving random perturbation is a Doppler shif§ & dg/dt) in the frequency spectrum of the
phase fluctuations.
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Figure 15 : Top row: Complex amplitude trajectory; Bottom row: Double-sided Fourier spectra for phagg,exp(i
power P, and complex amplitude Aexp@ignals, for amplitude (ag/A = 0.025, (b) 0.05 and (c) 0.10, with fixed
ka/ko = 0.5, WA = 5 and B — 68,00= 5°. Phase and complex amplitude spectra show Doppler shif/las. k

Figure 15 shows the double-sided Fourier spectra (i.e. power spectra) of thepphase
power P and complex amplitude Aexg((A = VP) signals for three values of fluctuation ampli-
tude o/\ with ky/ko = 0.5, WA = 5 and(0; — 8,00 = 5°. The spectra are plotted in terms of
normalized wavenumber kfk= f/fo x c/v to remove the scaling of the transverse perturbation
velocity v. Also plotted are segments of the complex amplitude trajectories. At large amplitudes
o/ = 0.1, figure 15(c), the Fourier spectra of both the phase and complex amplitude signals

show a clear Doppler shifted peak at
k—D!:f—D:%(sinel—sinGZ) (14)

The P spectrum shows no Doppler shift and is symmetric about the peak at zero fre-
guency (since P is a purely real signal). The complex amplitude trajectory circles around the
origin which, as in the single frequency case, results in phase runaway.
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As o/\ decreases, figure 15(b), the complex amplitude trajectory moves away from the
origin along the positive real axis. This is similar to figure 6(d) for the single frequency mode
which shows that there is@/A amplitude threshold for phase runawey/A behaves in a
similar fashion asdt\, it rises with decreasing w ang knd falls with increasing misalignment
061 — 6,00

Decreasing/A belowa/A leads to the appearance of a second peakk, in the q~0
spectrum and the formation of symmetric peakskatk, in the P spectrum. Ao/A = 0.025,
figure 15(a), thego spectrum is almost symmetric resulting in a net zero frequency difference
relative to the carrier frequency, i.e. the negative peak balances the positive Doppler peak, and
hence no phase runaway.

The circular path of the complex amplitude trajectory results in the power (radius squared)
being modulated at the same frequency as the phase - hence the strong peﬁksﬂmdﬂmm.

Note however that the complex amplitude frequency spectrum still only displays one correct
Doppler peak, whatever the turbulence amplitude.
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Figure 16 : Double-side Fourier spectra for phase egp(ower P, and complex amplitude Aegp@ignals for
ka/ko = (a) 0.05, (b) 0.1 and (c) 0.5 with9; — 6-(7= 10°, /A = 0.1 and WA = 5.

Unfortunately this is not the whole story. The peak in the Aexsectrum may not
necessarily be at the true Doppler frequency - even if phase runaway is evident énd the
spectrum has no negative (balancing) peak. Figure 16 shows three double-sided Fourier spectra
for (a) ku/ko = 0.05, (b) 0.10 and (c) 0.50 witiA = 0.1, wA = 5 and®; - 8,0 = 1. The
Doppler peak should be abk, = 0.174, but when the product of the spectral and beam widths
kw .W < 2, the high frequency part of the spectrum becomes truncated. The result is that the
shift in the spectral peak does not reach the expegiea leither the phase or complex
amplitude spectra. At the same time fhespectrum splits to form symmetric peakglgs, the
same position, as thé spectral peak. This peak (relative t©) ks plotted in figure 17 as a
function of ky .w for various values ofJ{kp where k, is the mean wavenumber in the Gaussian
distribution of equation 9. At large,kw the spectral peak appears at the expected Doppler
position, but as\k .w falls the peak moves towards the mean fluctuation wavenumber. This is to
be expected since, ag k- 0 the surface perturbation approaches the single frequency case
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(where k, = 2I7A) which, with misalignment,  2°
showed both the power and phase to be
modulated at the mode frequency. Likewise as,
w - 0 the simulation approaches the 1D Geo-
metric optics limit in which Doppler shifts do
not appear.

Whenever there is a peak in tﬁ’%pec-
trum, such as at low fluctuation amplitudes
< 0, or small wavenumber-beam widthg k  °°
.w < 2 then there will also be a strong peak in
the cohereno¢2 spectrum (betwee and P). S S
Foro < a¢, the coherence can approach unity. 10 klfvov 10
An example is shown in figure 18(a) where theigure 17 : Normalized spectral peak positigyids vs
Fourier, coherence, and cross-phase spectra ifaulence wavenumber width times beam wiglttmk
plotted fora/A = 0.025, k/ko = 0.5, WA = 5 for various values of spectral meayko.
and 091 - 8,0 = 5°. The dashed curve is the wavenumber spectrum h(k) of the surface
perturbations.

Figure 17 gives the position of the princigFepeak. In addition there are often smaller
coherence peaks where there are no correspoxiddmgf—’ spectral peaks. These peaks appear at
Bragg backscatter wavenumbers:

Spectral peak ky/kp
=
(=}
T

K/kp = 0.0

™ 3699 15/17¢

:——=%(sin61—sin92) (15)

where n is the harmonic number, and m is the Bragg order. Note that the n/m = 2/2 Bragg peak
coincides with the Doppler peak @spectrum. Figure 18(b) is an example which displays both
Bragg peaks and a Doppler peak - in this casg/apk 0.2 /A = 0.1, ky/ko=0.1, wA = 2 and
81 - 8,0 = 1P). Note how the relative cross-phase alternates betwenand-1v2 with
increasing harmonic number. Ther/2 phase difference appears as an anti-symmetric (about
zero delayr = 0) time delayed cross correlatioge().

As a/\ increases the level of coherence aroupdskeduced. Significant coherence is
only observed when the phase fluctuations are not satugaged).6rt, which generally means
06, - 8,0< 12°. Foro > a¢ and ky .w above 2 there are no peaks in ﬁ’lspectrum, but as in
the example of figure 18(c) substantial coherence at Bragg wavenumbers can still occur. [24]
shows an experimental example.
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Figure 18 : Fourier spectray’ coherence and cross-phase spectra of broadband Gaussian perturbation with mis-
alignment: ()9, — 6,00=5°, alA = 0.025, k/k, = 0.5, wA = 5; (b) (B, — 6,00= 10°, d/A = 0.10, k/k, = 0.1, k/

k, = 0.2, WA = 2; and (c)(B, - 6,(7=10°, /A = 0.10, k/k, = 0.5, wA = 5. The dashed line in the Fourier spectra

is the surface perturbation k spectrum.

4.9 Broadband - Cusped distortion - Aligned geometry

As for the single frequency mode, introducing cusping into the broadband perturbation, i.e.
making the reflection layer spiky, leads to a phase offset 0 (non-zero mean) and a non-
symmetric phase distribution (pdf). The direction (sign) and magnitude of the offset and skewness
of the phase pdf depends on the degree of cusping and the amplitudacreasingo/A
increases), but decreases the skewness - note that the sign of the phase pdf skewness is oppo-
site to that of the surfadgpdf. In the complex amplitude trajectory the phase offset and skewness
is seen as a rotation and a non-linear stretching of the trajectory in the polar direction, similar to
that in figure 6(b) for the single frequency perturbation.

There are no peaks or shifts in any of the signal spectra, they remain symmetric about zero
frequency; and, there is no phase runaway. However, as with the single frequency case where P
and@ were both modulated in synchronous with the perturbation displacérrtlemls/2 coher-

ence spectrum (betweep and P fluctuations) shows substantial coherence for broadband
cusped perturbations.

Figure 19(a) shows typical Fouriey?, coherence, and cross-phase spectra for a cusped
surface C = +20 witlw/A = 0.025, k/ko = 0.2 and WK = 5. The coherence spectra displays a
series ofy2 peaks at:

kp
ko 2"7k,W

20



for positive cusping C>1. If the cusping is negative, C<1, then equation 16 gives the positions of
dips iny2 instead of peaks. This appears to be the same wavelength-beam width resonance
phenomena observed in the single frequency cusped case. The peak positions are generally
independent of the turbulence amplitude, but increasihgloes decrease the level of coher-

ence (maximum at arourmdA = 0.05). The coherence also increases slightly wjtmkand the

degree of cusping C.
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Figure 19 : Fourier spectray?' coherence and cross-phase spectra of (a) broadband cusped perturbation C = +20
with normal incidencé; = 8, = 0°, /A = 0.025, k/k, = 0.2 and wA = 5; (b) Cusped C = +20[B; - 6,[7= 10°,

/A = 0.05, ky/k, = 0.1 and wA = 5; (c) Skewed S = +200,0, — 6,(7= 0, d/A = 0.05, k,/k, = 0.1 and wA = 2.
Dashed line is the surface perturbation k spectrum.

The relative cross-phase difference is either fl @nd often alternates between succes-
sivey2 peaks). If the cusping is positive, i.e. upward spikes, then the cross correlation coefficient
Cypr(0) is positive and symmetric abaut O time delay; and the high n peaks have zero cross-
phase difference. If the cusping is negative, i.e. downward spikes, ) S negative and

the high n peaks haugt cross-phase difference.
4.10 Broadband - Cusped distortion - Misaligned geometry

Adding a small misalignment to the cusping leads to a combination of Doppler frequency shift
and skewness in the phase distribution. The degree of the frequency shift is the same as for the
misaligned non-distorted turbulence (with the sagy&kcutoff and the same phaggbroad-

ening) while the phase skewness is the same as observed with the cusped-aligned case. Al-
though the coherence is generally dominated by the misalignment, the cross correlation peaks
become shifted im, i.e. the relative cross-phase difference is no longer exau®y The corre-

lation is also non symmetric in magnitude as well as delay. Figure 19(b) shows a particularly

21



striking example for a misalignment @, — 6,0= 1& and C = +20. The first coherence peak
is the (reduced) Doppler/Bragg peak due to the misalignment while the syéq:rmadk is due to
the cusping. A possible experimental example is shown in [10].

4.11 Broadband - Sawtooth distortion - Aligned & misaligned geometry

Introducing asymmetry into the perturbation gradient distribution, for example making the re-
flection layer resemble random sawteeth, has basically the same effect as with the single fre-
guency sawtooth perturbation. At low perturbation amplitudes there is again a strong correlation

betweenfo and P with a relativetTv2 phase difference. The coherence however does not ap-
pear at all wavenumbers but only in selected peaks, figure 19(c), which vary in positiog/with k

ko and WA. There are no peaks in either tper P spectra at these positions. Téespectrum
is centred on zero frequency but there is an asymmetry or imbalance between the positive and
negative high frequency tails - similar to the spectral truncation in figure 15(a) at low amplitudes
with misalignment.

Increasing the amplitud®@A reduces the coherence, until at some critical vade(which
as before decreases with increasing asymmetry factor S, beam widdnavk,/ko) they2
peaks are destroyed and phase runaway begins.

Adding misalignment to the gradient asymmetry can again raise or lower the critical am-
plitude for phase runaway, and generate looped and indented bean shaped complex amplitude
trajectories as in figure 6(f) for the single frequency mode.

5. DISCUSSION AND CONCLUSIONS

The simulations show that asymmetry can result in unexpected behaviour in the reflectometer
response. This asymmetry can be in the geometry of the reflectometer launch and receive anten-
nas, which is either:

(1) Aligned :81 — 62 =0 (Specular reflection) or

(2) Misaligned 81 — 62 # 0 (Backscatter).

Or the asymmetry can be in the plasma reflection layer perturbations, which have either:

(3) Symmetric amplitude and gradient probability density distributions,

(4) Non-symmetric amplitude distributions (spiky or cusped),

(5) Non-symmetric gradient distributions (sawtooth or skewed),

(6) Non-symmetric amplitude and gradient distributions.

Each form of asymmetry has a distinct set of characteristic effects on the reflectometer
response. For low to moderate fluctuation amplitudes, combining different asymmetries gener-
ally results in a simple addition of these basic features. However, at higher amplitudes, particu-
larly above the critical value, complex interactions and modulations can appear in the signals.
The basic features for the three types of asymmetry are summarized in Table 1. Some of these
effects are straightforward, others require further comment.
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Table 1 : Summary of effects introduced by the three categories of asymmetry on single frequency perturbation and
broadband Gaussian perturbations.

Asymmetry Single frequency Broadband

Misalignment Loss of coherent/specular return Increagggand Rq
Decrease in long) sensitivity  Doppler peaks ipand Aexp(ip) &
Enhanced P at Bragy Eo & P coherent\(z) at Bragg k
fp=fy with 772 phase with quadrature phase
Phase runaway if h he b Phase runaway d > o b
2" harmonic if h< hg High V2 if 0 < o

Asymmetric amplitude Non-inear phase offggt® Non-symmetricfo pdf
Increase in P at/w < 1 @ skewness opposifepdf
Enhance®P atA\/w=2 -3 No spectral peaks bﬁtcoherence
fp = fowith O orm phase with co- & counter phade®

Asymmetric gradient ~ Phase runaway ## . Phase runaway @ > ch
q~0 & Pcorrelate if h< he y2 peaks with quadrature phase
fp= fo ith +702 phase ib <o ¢

footnotes.

a Doppler spectral shift depends on turbulengekd wA.

Critical amplitude depends @x/A, (8, — 620 and WA (kw/Kog).
@ depends on sign and magnitude of amplitude asymmetry.
y2 peaks vary with ¢ and w, coherence decreases with increasihg

b
C.
d.
€ Phase-power correlation is positive for upward cusps, negative for downward cusps.

f Critical amplitude depends on degree of gradient asymmetnj/and

A Doppler shift with misalignment is expected, but the presence of a critical amplitude for
phase runaway is less obvious. But when the signal trajectory is plotted in the complex plane the
reason becomes apparent. Phase runaway can only occur if the fluctuation (sideband) amplitude
exceeds the carrier wave amplitude. A similar phenomena appears in the FM capture effect in
radio reception. Here, the stronger of two radio stations close in frequency will be demodulated
while the weaker one will be suppressed [33]. There have been some recent attempts to use the

Doppler shift in thefo spectrum to experimentally deduce the propagation velocity of the
perturbations. However as figure 17 shows this can give misleading results if either the beam

width or the spectral content of the perturbations is small. The shift iﬁv gpectral peak can
only be considered a reliable measure of the Doppler frequency if there is no corresponding

peak in theP spectrum.
Doppler shifts and phase runaway are essentially 2D effects, and indeed the simulation
results show that as the 1D limit is approached by reducing the beam radiug thien the
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spectral peak in the phase goes\iefv x kyy/2mand the critical amplitude for phase runaway
goes to infinity. In practical terms this means that phase runaway becomes less of a problem for
small diameter (tightly focussed) reflectometer beams.

The enhanced modulation and phase-power coherence which appear at certain combina-
tions of beam width and cusped/skewed perturbation wavenumbers is also an unexpected fea-
ture. Itis clearly a 2D spatial resonance or interference effect, perhaps akin to Bragg backscatter.

The complex amplitude analysis shows that ignoring the amplitude fluctuations in the
reflectometer signals - as has been an accepted practice for many years - is in fact worse than
throwing away half the available information. Without knowledge of the p(ﬁ\’/velne phaseﬁ)
signal can, potentially, be totally misinterpreted.

The simulations reveal a sufficient number of unique features in the signals to permit the
experimentalist to identify the presence and types of asymmetries. These indicators include:

(1) Phase runaway - which can only occur with large amplitude sawtooth perturbations or
misaligned antennas.

(2) Skewness in the distribution of phase fluctuations - which can only arise from cusped or
spiky perturbations.

(3) Correlation between the phase and power fluctuations.

Generally reflectometer signals display a degree of broadband background fluctuations
with perhaps some well defined coherent MHD type oscillations. However peaks in the signal
spectra do not, as the broadband simulations show, always correspond to coherent modes. But,
when combined with the information in the coherence and cross-phase spectra, and other indica-
tors such as the shape of the complex amplitude trajectory, it is possible to discriminate between
the various asymmetry effects. Table 2 lists the possible combinations of peaks in th@)Aexp(i
o, P,y2 and cross-phase spectra together with their interpretation.

When a misalignment or plasma tilt is combined with an asymmetric surface perturbation
the simulation results suggest that it is possible to replicate almost any reflectometer fluctuation
signal observed in experiments to date. In other words all experimentally observed features -
phase rampingg and P correlations, skewegb distributions etc. could be explained and quan-
tified in terms of reflectometer misalignment and asymmetric plasma cutoff layer perturbations.

Finally, it was previously shown that for symmetric perturbations and aligned geometry it
is possible from measurements of the phase and power distributions together with knowledge of
the beam width, to deduce the turbulence amplitwdeand spectral content Ko, i.e. the
transverse fluctuation correlation length [10]. Nevertheless even with the additional complica-
tions of antenna misalignment and perturbation asymmetry the latest results indicate that it may
still possible to obtaiw/A and k,/k, from the additional information in the higher order mo-
ments of the phase distribution, and the coherence and cross-phase sp}atatmi .
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Table 2 : Possible combinations of spectral peaks in the complex amplitudeghetsep, power P, coherence
f and cross-phase C-P spectra together with their interpretation.

Ae? g P )4 C-P  Interpretation

P P - - - True coherent mode ,A > 10w, no misalignment
P P 2nd - - True coherent mode, 2w < A < 10w, no misalignment
P P (2nd) P+ 0 ormt Coherent mode, cusped, no misalignment

P P (2nd) P+ #12  Coherent mode, skewed, no misalignment

SP H/P P P #72  Coherent mode, misaligned

- - - P O ormt  Broadband, cusped

- A - P 1172  Broadband, skewed

S S - - - Broadband, misaligned, true Doppler

S S - + #172 Broadband, misaligned, true Doppler, Bragg

S SA P P #72 Broadband, misaligned, reduced Doppler

P = Peak (coincident)

+ = Plus other non-coincident peaks

S = Shifted peak in double-sided spectrum, but will appear as (coincident) peak in single-sided spectrum
A = Asymmetric or truncated (double-sided spectrum)

2nd =

2nd harmonic

H = Many harmonics
() = May or may not be present depending on mode amplitude
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