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ABSTRACT

Effects on reflectometer phase φ̃  and power ̃Ρ  fluctuation signals due to (a) asymmetries in the

transmit - plasma - receive antenna geometry (misalignments), and (b) asymmetries in the plasma

cutoff layer perturbations (distortions from sinusoidal or Gaussian) are studied using a two di-

mensional (2D) physical optics model. Results show the onset of phase runaway with antenna

misalignment and/or sawtooth type perturbations when the perturbation amplitude exceeds some

critical value. For broadband (Gaussian) turbulence antenna misalignment leads to Doppler shifts

in the φ̃  spectrum - provided the reflectometer beam width w, and spectral width kw of the

turbulence are sufficiently large. Misalignment also generates coherence between φ̃  and Ρ̃  at

Bragg backscatter frequencies with quadrature (±π/2) phase difference. Sawtooth (asymmetric

gradient) perturbations also generate phase-power coherence in quadrature, but at frequencies

determined by w and kw, i.e. not Bragg. Cusped or spiky (asymmetric amplitude) perturbations

generate asymmetric phase distributions (non-linear phase offsets) and low frequency phase-

power coherence with 0 or π phase difference. The simulations indicate that a combination of

antenna misalignment (or plasma tilt) and cusped reflection layer perturbations can account for

a wide range of experimentally reported features in reflectometer signals.

1. INTRODUCTION

The use and sophistication of microwave reflectometry for measuring plasma fluctuations and

turbulence in magnetically confined fusion experiments has grown steadily in recent years (for

example see papers in [1-3]). Advances in hardware design have been accompanied by substan-

tial progress in the understanding and interpretation of the reflectometer signals. Much of this

progress has been achieved with the development of two dimensional (2D) modelling and simu-

lation studies - which include full wave equations [4-6], WKB solutions [7,8], physical optics

simulations [9-11] and others [12,13]. The various 2D models, despite their different approaches,

appear to be converging on a consistent picture for the behaviour of reflectometer fluctuation

signals; that is a realistic model is emerging for the instrument response function. Initial 2D

simulation studies naturally concentrated on idealized reflectometer configurations, i.e. sym-

metric antenna patterns and symmetric angles for the launch and receive microwave beams,

However, as confidence grows in the 2D models attention has begun to turn to the question of

the effects of asymmetries in the geometry of the reflectometer configuration.

It has been widely suggested that asymmetry or misalignment between the launch and

receive antennas and the plasma reflection layer may be responsible for the ubiquitous phase

runaway effect observed in many experiments [14-20]. Indeed, recent simulations using 2D

WKB codes [7,8] and distributed RLC networks [13] with asymmetric antenna angles are now

revealing phase runaway effects.
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Another form of asymmetry is distorted or non-symmetric plasma perturbations. For ex-

ample, rotating magnetic islands have been proposed as a possible mechanism for generating

sawtooth-like perturbations in the reflection layer [17], which again may lead to the reflectometer

phase runaway effect. This paper presents, for the first time, a systematic study of the effects of

asymmetries in the reflectometer geometry (misalignment), and asymmetries (distortions) in the

reflection layer perturbations using a 2D physical optics model. The study includes the

reflectometer’s response to both single frequency plasma modes and broadband turbulence for

non-normal incidence and backscatter, and with two forms of distorted layer perturbations -

asymmetric amplitude (cusped) and asymmetric gradient (sawtooth) perturbations.

The simulations reveal many new features over previous studies, such as correlations be-

tween the phase and power signal fluctuations, as well as recovering the phase runaway and

Doppler frequency shifts - which are shown only to appear in the presence of asymmetries.

Many of the results reported here have been observed in experimental signals - indeed there is

now a substantial body of evidence in the literature (for example [14,21,22,19,15-18,23]). How-

ever, it is beyond the scope of this paper to include an experimental example for each simulation

result (space limitations notwithstanding) but where possible reference will be made to exam-

ples in the literature. Note that some early simulation results have already been compared with

data from the JET reflectometers [24,25].

2. SIMULATION MODEL

The principle of plasma reflectometry is that a microwave beam of frequency ωo propagates

into a plasma until it reaches a cutoff condition and is reflected. For an O-mode polarized beam

the cutoff condition is: ω2
o = ω2

p (plasma frequency) while for an X-mode beam it is: ω2
o = ω2

p

± ωoωc (plasma and cyclotron frequencies). Perturbations in the cutoff layer modulate the phase

and amplitude of the reflected beam which are then measured using homodyne or heterodyne

detection techniques.

To simulate the experiment the physical optics model uses the high spatial localization in

the reflection of microwaves [21,26] to model the reflection layer as a thin distorted conducting

surface. The phase and amplitude of the reflected microwave beam can then be calculated using

the Helmholtz integral. The 2D physical optics model has previously been described in detail

[27,10,11] but to incorporate non-normal incidence and reflection the 3D version is introduced.

Using the same procedure (a far field Green’s function) and notation as before [27,28] an ex-

pression for the scattered electric field is obtained:
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where

a = (1 − R) sinθ1 − (1 + R) sinθ2 cosθ3

b = (1 + R) cosθ2 − (1 − R) cosθ1

c = (1 + R) sinθ2 sinθ3

vx = ko (sinθ1 − sinθ2 cosθ3)

vy = ko sinθ2 sinθ3

vz = − ko (cosθ1 + cosθ2)

θ1 is the angle of incidence relative to

the (mean surface) normal, θ2 is the scattering

angle relative to the normal and θ3 is the angle

between the incident and scattering planes. Fig-

ure 1 shows a schematic of the geometry. The

incident beam is a paraxial Gaussian beam (par-

allel wavefronts at the reflection layer) with an

θ2

Rx

θ1n

v

λ

x

yz
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Figure 1 : Schematic of model geometry. θ1 and θ2 are
incident and scattered beam angles relative to the sur-
face normal n in the plane parallel to the perturbation
propagation vector. wx and wy are Gaussian beam radii
at the layer. h and Λ are perturbation amplitude and
wavelength.

elliptic cross section. wx and wy are the beam radii (elliptic half axis) in the x and y directions. ko

= 2π/λ is the wavenumber of the incident microwave beam, R is the smooth surface reflection

coefficient (in this case unity), and ζ is the perturbation displacement in the reflection layer

(with respect to the mean).

The far field solution of the Helmholtz integral (i.e. placing the transmit and receive an-

tennas beyond the far field limit of both the fluctuations and the beam spot size) produces a

general, non-configuration dependent solution by removing the antenna specific parameters such

as size, location, and gain patterns etc. To remove the range d dependence the scattered field E2

is normalized to the specularly reflected field from a smooth surface E20 to give the scattering

coefficient ρ = E2/E20:
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Equation 2 can be solved numerically for any three dimensional surface perturbation

ζ(x,y,z,t). However for the purpose of this work the expression for the scattering coefficient can

be reduced to
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by making the following simplifications.

(1) Depolarization is ignored, only scattering in the plane of incidence is considered, i.e. θ3 =

0 (the scalar wave case). Although depolarization or cross-polarization scattering almost

certainly occurs in the experimental situation, it’s effect should be small.

(2) The incident microwave beam has a circular cross section, i.e. wx = wy = w. However for

non-normal incidence the incident beam still produces an elliptic spot size or footprint on

the surface. The (1 + cos2 θ1) factor in the profile exponent accounts for this effect.

(3) The y direction is aligned along the magnetic field lines (toroidal) and x in the transverse

(poloidal) direction. The toroidal correlation length of plasma density fluctuations is usu-

ally much larger than the spot size, i.e. Lt >> w while the poloidal length Lp ≤ w. This

assumption removes the y dependence in the perturbation displacement ζ and allows the

3D expression for ρ to be collapsed to an enhanced 2D expression. However this assump-

tion may not be applicable in certain conditions. For example in the tokamak scrape-off

layer (SOL) and divertor regions, rather than appearing as striations the density fluctua-

tions may have a more granular structure, that is Lt ≈ w. However, the full 3D solution will

not be pursued in the current study.

The plasma perturbations are assumed to move under the reflectometer beam transverse to

the magnetic field lines (in the poloidal direction) with a uniform constant velocity (linear dis-

persion relation). Simulated reflectometer power (amplitude squared) and phase time signals are

then generated from

P(t) = ρ(t) ρ*(t), (4)

φ ρ
ρ

( ) tan
Im ( )

Re ( )
t

t

t
=







−1 (5)

The phase and power signals will have a mean and a fluctuating component, P = Po + Ρ̃

and φ = φo + φ̃ . Generally φo = const. while Po ranges between 0 and 1.

It is implicit in this model that the incident and reflected microwave beams are not af-

fected by plasma fluctuations in front of the cutoff layer. Plasma refraction can bend and spread

the beam profile, however refraction is not explicitly considered here since it is a machine de-

pendent effect. However it’s effects could be quantified with ray-tracing codes and then incor-

porated through adjustments to the beam radius and the angles of incidence and scattering.

3. ASYMMETRY

There are two forms of asymmetry that can affect reflectometer behaviour, (a) asymmetry in the

reflectometer geometry (misalignment), i.e. different launch and receive angles, and (b) asym-

metry (distortions) in the shape of the surface perturbations. Here the term distortion is used to
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mean a deformation to a symmetric sinewave type perturbation, or to a Gaussian distributed

random perturbation.

3.1 Misalignment

The launch and receive angles θ1 and θ2 can have any value between ±π in any combination.

However the four basic combinations of angles shown schematically in figure 2 cover all ex-

perimentally encountered situations:

JG98.213/2c

Aligned Misaligned

Normal

θ1 = θ2 = 0

Ideal
Monostatic

Specular

θ1 = θ2 ≠ 0

Ideal
Bistatic

Backscatter

 θ1 = –θ2

Monostatic
and tilt θ1 

General

θ1 ≠ θ2

Bistatic and
tilt 1/2(θ1 + θ2)

θ2θ1
θ2

θ1θ1

1) 2) 3) 4)

Figure 2 : Schematic showing four possible categories for the asymmetries in the
reflectometer geometry; (a) Normal incidence and reflection, θ1 = θ2 = 0 (b) Specular
reflection, θ1 = θ2 ≠ 0 (c) Non-normal backscatter, θ1 = −θ2 ≠ 0 (d) Asymmetric
scattering, θ1 ≠ θ2 ≠ 0.

(1) Normal incidence and reflection: θ1 = θ2 = 0. This is a monostatic configuration, i.e. a

single antenna for both launch and receive beams. It is also the simplest, and perhaps the

most widely studied idealized configuration. The received signal will contain both a specular

(coherent) and a diffuse (incoherent) component.

(2) Specular reflection: θ1 = θ2 ≠ 0. This is the idealized configuration for a bistatic

reflectometer, that is separate antennas for the launch and receive beams. Again the re-

ceived signal will contain a specular and diffuse component.

(3) Non-normal backscatter: θ1 = − θ2 ≠ 0. This is also a monostatic configuration, but now

only the diffuse incoherent backscattered power along the incident sight-line will be re-

ceived. The specular component is generally lost - depending on the value of θ1 and the

width of the scattered power lobe. This configuration is equivalent to the ideal monostatic

configuration with an antenna misalignment or a tilted plasma layer.

(4) Asymmetric scattering: θ1 ≠ θ2 ≠ 0. This configuration includes all other possible combi-

nations. As in the previous case generally only the diffuse incoherent component is re-

ceived. This configuration is also equivalent to the idealized bistatic configuration with an

antenna misalignment, or a tilted plasma layer, (the angle of tilt being (θ1 + θ2)/2).
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3.2 Distortions

The second category of asymmetry applies to the shape of the reflection layer perturbations.

Previously symmetric single frequency sinewave perturbations were used to model coherent

MHD type plasma modes [27] and random perturbations with symmetric Gaussian amplitude

distributions to model broadband plasma turbulence [10]. However as indicated earlier, rotating

magnetic islands might generate reflection layers with sawtooth shaped perturbations [16,29,30].

This effect can be modelled as a skewed or distorted sinewave where the surface displacement ζ
is generated by:

ζ π π π ϕ ω ϕ( , ) cos cosx t h
x

S
x

t= − +



 + +





2
4

2
Λ Λ

(6)

S is a skew factor between ±1.0 which distorts the sinewave into a smooth sawtooth per-

turbation. Λ is the perturbation wavelength (v = ωΛ/2π) and ϕ is the perturbation phase.

Alternatively the sinewave amplitude could be distorted towards a more cusp like shape:

ζ π ω ϕ( , ) cos( )x t h
x
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(7)

where C is a cusping factor greater than 0. These two types of asymmetric perturbations are

quite distinct and produce different responses in the reflectometer.  The first type of distortion is

to the distribution of the slopes (or gradients) of the perturbation, i.e. a non-symmetric probabil-

ity density function (pdf) for ζ’ = dζ/dx. The second type of distortion is to the amplitude distri-

bution, i.e. a non-symmetric amplitude ζ pdf.

For broadband turbulence the surface displacement ζ can be generated from a Fourier

summation of sinewaves:

ζ σ
ζ

ω ϕ( , ) ( )cos( )x t h k k x t
sd

i
i

N

i i i= + +
=
∑

1

(8)

with a linear dispersion relation v = ωi ki. ϕ is a random phase with a uniform distribution

between ±π, while h(k) is the weighting or (poloidal) k-spectral profile, which in this work is

defined as a Gaussian with half-width kw and mean km:

h k
k k

k
m

w
( ) exp= −





2

(9)

The summation is normalized by the standard deviation displacement ζsd to give a unity

standard deviation, then scaled by the amplitude factor σ.

Again, the two types of distortions to the layer perturbations (asymmetric amplitude pdf

and asymmetric gradient pdf) can be applied to the broadband fluctuations. Figure 3 illustrates
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some example surfaces and probability density functions for six categories of possible

perturbations. A surface with a preponderance of either negative or positive going spikes would

result in an asymmetric amplitude distribution, while random sawteeth would result in an asym-

metric gradient distribution. Both types of sequences are commonly observed in the ion-satura-

tion currents from Langmuir probe diagnostics. For example, the surface can be made either

spiky or sawtoothed by multiplying ζ with exponential functions such as

ζ = ζ × (exp(C ζ) + 1) (10)

ζ = ζ × (exp(S ζ′ ) + 1) (11)

prior to normalization. C and S are the cusping and skewing factors with values between ±200.
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Figure 3 : Schematic showing six possible categories of surface perturbations.
Left: (1) Single frequency mode, Right: (2) Broadband turbulence. Top row: symmetric
perturbation, middle row: asymmetric amplitude distribution p(ζ) (cusped), bottom
row: asymmetric gradient distribution p(ζ’) (skewed).

4. RESULTS

Initially it appears that there are a multitude of different possible scenarios to be considered -

four different antenna configurations combined with various types of surface perturbations,

multiplied by two for single frequency modes and for broadband turbulence. Fortunately the

simulations show that only two antenna geometries need be considered - aligned and misaligned.

Normal incidence and specular reflection are both aligned geometries, θ1 − θ2 =0. They give the

same results irrespective of the surface perturbation when the amplitude is replaced with hcosθ1.

Backscatter is just a special case of the more general asymmetric scattering, both are misaligned

with θ1 − θ2 ≠ 0. The degree of misalignment θ1 − θ2, irrespective of whether it results from

antenna misalignment or plasma layer tilt, is the salient parameter. Further, all possible forms of

surface perturbations, single frequency and broadband, can be categorized by two parameters

quantifying the degree of asymmetry in the distribution of their amplitudes and their gradients.



8

These three basic categories - misalignment, asymmetric amplitudes, asymmetric gradi-

ents - can be combined in a variety of ways to generate just about all possible experimentally

conceivable scenarios. However as will be shown in the following case studies, where misalign-

ment is combined with one or other form of distortion to single frequency and broadband fluc-

tuations, these scenarios are generally just linear combinations of more basic features relating to

each form of asymmetry.

The simulation model has six independent parameters: (i) The normalized perturbation

amplitude, h/λ or σ/λ (2h is the peak to peak mode amplitude, σ is the turbulent rms amplitude);

(ii) The normalized perturbation wavelength Λ/λ or kw/ko in the case of turbulence; (iii) The

normalized incident Gaussian beam radius w/λ; (iv) The transmit and receive angles θ1 and θ2;

(v) C and (vi) S, the two factors which define the asymmetry in the perturbation amplitude and

gradient distributions. Further, when the reflectometer has aligned geometry, θ1 − θ2 =0, the

wavelength and beam width parameters can be combined to form a single parameter Λ/w, or

kww in the case of turbulence with a Gaussian wavenumber spectrum.

4.1 Single frequency - Non-distorted sinewave - Aligned geometry

The case of normal incidence and reflection θ1 = θ2 = 0 has already been studied in some depth

[27,31]. These results can be extended to the general aligned case by simply replacing the mode

amplitude with (h/λ) cosθ1, and adjusting the incident beam spot size to account for the elliptic

footprint. (It should also be noted that large θ1 and h/λ can lead to shadowing of the surface and

hence the breakdown of the appropriate formulation for ζ.)

To briefly summarize, the reflectometer’s phase and power response shows three distinct

regions as a function of Λ/w.

(1) Λ/w >> 10 : For long wavelength fluctuations the surface appears flat. There is no attenu-

ation and very little modulation in the reflected power (Po → 1, Ρ̃  → 0) and the extent of

the phase modulation δφ increases linearly with the mode amplitude as expected from

geometric optics δφ = ± 4π cos θ1 h/λ.

(2) Λ/w < 1 : At very short fluctuation wavelengths the power is scattered into side-lobes

resulting in strong attenuation of the reflected power and zero phase modulation (
~Ρ  → 0,

~φ  → 0).

(3) 1 < Λ/w < 10 : In the transition region, both P and δφ fall with decreasing Λ/w. The phase

modulation no longer scales as predicted by geometric optics. The reflected power is modu-

lated with a strong cusp-like shape at twice the frequency of the phase modulation, fP = 2fφ
= 2fmode, i.e. no correlation between the phase and power fluctuations. See [24] for an

experimental example.
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4.2  Single frequency - Non-distorted sinewave - Misaligned geometry

The first major consequence of introducing

asymmetry in the geometry is the loss of the

specular zeroth order reflection with increas-

ing θ1. The rate of loss depends on the angular

width of the zeroth order lobe, which scales

inversely with the spot size w/λ [27]. The net

effect is the progressive loss of reflected power

at large Λ/λ (i.e. the reflectometer becomes

insensitive to long fluctuation wavelengths) as

shown in figure 4. Here the maximum P and φ
are plotted as a function of Λ/λ with increas-

ing backscatter angles (tilt) θ1 = −θ2 but fixed

h/λ = 0.1 and w/λ = 5. Note the swelling in the

phase response in the transition wavelength

region.

As well as losing the long Λ/λ, the short

wavelengths are also attenuated more severely

than for specular reflection. However certain

fluctuation wavelengths are not attenuated.

These are the Bragg backscatter wavelengths

given by
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Figure 4 : Maximum reflected power P and phase φ vs
normalized mode wavelength Λ/λ for various backscatter
angles θ1 = −θ2 = 0, 2.5, 5 & 10o with fixed mode am-
plitude h/λ = 0.1 and spot size w/λ =5.

Λ
λ θ θ

=
−
m

(sin sin )1 2
(12)

where m is the diffraction order. For the aligned case, increasing the beam width w/λ simply

translates the response curves to larger Λ/λ [31], but with misalignment increasing w/λ progres-

sively causes the loss of both long and short fluctuation wavelength Λ sensitivity. Except at the

Bragg wavelengths which become better defined with increasing w/λ with the Bragg backscattered

power tending to a constant −6dB independent of the incident angle, and the phase response

tending to a constant δφ = ± m(π/2).

With misalignment both the phase and power time signals become distorted. Figure 5

shows P and φ as a function of the perturbation phase ϕ through one complete period with w/λ =

2, Λ/λ = 5, θ1 = −θ2 = −2.5o and increasing mode amplitude h/λ. As h/λ increases, the phase φ
becomes more and more distorted around the zero crossing of the perturbation, ϕ = 270o (where

the power is also seen to dip) until at some critical value hc/λ the phase signal flips direction and

begins to ramp continuously. This is the phase runaway effect so often observed in experiments

[14-18,32,20] .
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Figure 5 : Reflectometer power P and phase φ vs per-
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The cause of the phase runaway, and the

reason for the amplitude threshold hc/λ be-

comes clear when the reflectometer signal is

plotted in the complex plane. The time evolu-

tion of the complex reflection coefficient ρ =

A exp(iφ) (A = √P) will map out a trajectory in

the complex/polar plane (Im ρ vs Re ρ or Asinφ
vs Acosφ). This “complex amplitude” plot has

already been shown by some investigators to

be an powerful analysis technique [13,32,19].

For a single frequency periodic perturbation the

complex amplitude trajectory will follow a

closed path through one complete perturbation

period, starting and finishing at the same point.

Figure 6 shows a series of complex amplitude

plots for various conditions with Λ/λ = 8, w/λ
=2 and perturbation amplitudes between 0.05

and 0.25 (5% to 25%). Symmetric sinewave

perturbations, figure 6(a), result in simple con-

centric arcs mirrored in the real axis (if φo =

0). The crosses mark the beginning and the end

of the perturbation period ϕ = 0o. As h/λ
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Figure 6 : Complex amplitude trajectory plots (Im ρ vs Re ρ) for single frequency perturbation with Λ/λ = 8, w/λ =
2 and increasing amplitude h/λ. Top row: no misalignment (a) Sinewave (b) Cusped C = 0.2, (c) Sawtooth S = −0.4,
Bottom row: with tilt θ1 = −θ2 = 2.5o (d) Sinewave, (e) Cusped, (f) Skewed.
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increases, the arc extends round to close on it-

self. This leads to phase wrapping at φ = ±π
but not to phase runaway since the trajectory

must retrace its path (unwind in φ) back to the

start point. Increasing the perturbation wave-

length Λ/λ increases the radius ρρ* ≈ 1 but also

moves the centre of curvature towards the ori-

gin.

When misalignment is introduced, fig-

ure 6(d), the trajectory does not retrace itself

but opens out to form a closed loop. The size

of the loop grows with increasing h/λ. If the

loop encloses the origin then the phase φ can

rotate through 2π in one perturbation cycle and

phase runaway occurs.
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Figure 7 : Critical phase runaway fluctuation ampli-
tude hc/λ vs normalized wavelength Λ/λ for increasing
beam width w/λ with fixed tilt θ1 = −θ2 =  2.5o

The critical mode amplitude hc/λ at which phase runaway starts varies with the perturba-

tion wavelength, beam width, incident and scattering angles. Figure 7 shows hc/λ as a function

of  Λ/λ for increasing beam width w/λ with θ1 − θ2 = 5o. (Since θ ≈ sinθ for moderate angles

the misalignment is expressed in terms of net angular difference θ1 − θ2). At long perturba-

tion wavelengths or small beam widths Λ > 10w, the critical amplitude rises to infinity, i.e. there

is no phase runaway in the 1D Geometric optics limit. At very short perturbation wavelengths Λ
≈ w the critical amplitude also rises, but here hc/λ becomes difficult to discern because of the

very small reflected power signal. The minimum in hc/λ occurs at around Λ ≈ 2w and drops

progressively in value with increasing w/λ. Increasing the misalignment θ1 − θ2 also reduces

hc/λ (almost to zero) and moves the minimum to larger Λ/λ.

In contrast to the aligned case where the power was always modulated at twice the fre-

quency of the phase, figure 5 shows that below the critical amplitude the power P is modulated

at the same frequency as the phase φ, i.e. correlated, but in quadrature (out of synchronization by

±π/2). When the surface displacement ζ is maximum at ϕ = 0o, P will be maximum at ϕ = ±90o

while φ is maximum at ϕ = 180o. Above the critical amplitude the 2nd harmonic modulation

reappears in both the power and phase signals.

For one complete perturbation period the reflectometer phase φ will always ramp by mul-

tiples of ±2π (depending on the dominant lobe order). The direction of ramping depends on the

sign of angular difference θ1 − θ2 relative to the direction of the mode propagation.

4.3 Single frequency - Sawtooth distortion - Aligned geometry

The second class of asymmetries, that of distorting the sinusoidal perturbation, introduces sev-

eral new effects. Figure 8 shows the reflected power P and phase φ (modulo 2π) through one

period of a smooth sawtooth perturbation (skew factor S = 0.4) for normal incidence and
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backscatter with increasing h/λ but fixed Λ/w

= 5 : Again for the specular case the perturba-

tion wavelength and beam radius can be com-

bined.

For small amplitudes h/λ the phase φ rep-

licates the shape of the perturbation, φ = −4π
cosθ1 ζ/λ. But as h/λ increases the phase be-

comes more and more distorted at the point of

maximum surface gradient (ϕ = 90o in figure

8) and is accompanied by a sharp dip in the

reflected power. When h/λ exceeds a critical

value, φ reverses direction and begins to ramp

in a similar manner to that due to misalignment.

Figure 8 also shows that the power P is modu-

lated at the same frequency as the phase φ (and

hence correlated) but in quadrature (±π/2).

In the complex plane the signal trajec-

tory again forms closed loops, figure 6(c), and

again the point at which the trajectory encloses

the origin marks the onset of phase runaway.

The direction of the phase ramp depends on

the relative direction of mode propagation and
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Figure 8 : Reflectometer power P, phase φ (modulo 2π)
and displacement ζ/h vs perturbation phase ϕ for
sawtooth surface, S = 0.4 with normal incidence θ1 =
θ2 = 0, Λ/w = 5 and increasing amplitude h/λ. Phase
runaway occurs for h/λ > 0.17

the slope (or skew) of the sawtooth. The critical amplitude hc/λ depends on the skew factor S as

well as Λ/w. Figure 9 shows hc/λ rising to infinity at large Λ/w for two values of skew S = 0.2

and 0.4. hc/λ also tends to rise as Λ/w → 1. As in figure 7 for misalignment, phase runaway

becomes more difficult to induce with small beam diameters.

The similarity between the sawtooth and the sinewave with misalignment is not unex-

pected. To a misaligned reflectometer the tilted surface of the sinewave will appear as a sawtooth

profile when projected into the effective plane of the reflectometer beam. It is the net asymmetry

in the apparent (or projected) surface gradient through one cycle of the moving perturbation that

causes the complex amplitude trajectory to open into a loop, and hence lead to the possibility of

phase runaway. However there is one major difference between the sawtooth and misalignment

cases, there is no loss of reflected power (i.e. sensitivity) at long perturbation wavelengths with

the sawtooth. This is illustrated in figure 10 which shows the maximum and minimum power

and phase as a function of Λ/w with S = 0.4 and increasing h/λ. Also note the absence of Bragg

backscatter enhancement with the sawtooth perturbation.



13

1.0

0.8
S = 0.2

C
rit

ic
al

 a
m

pl
itu

de
 h

c/
λ

 0.4

0.6

0.4

0.2

0
100 101

Wavelength    /w

102

JG
99

.1
5/

9c

Figure 9 : Critical phase runaway fluctuation ampli-
tude hc/λ vs Λ/w at normal incidence θ1 = θ2 = 0 , for
sawtooth perturbation with S = 0.2 and 0.4
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Figure 10 : Reflectometer power P and phase φ vs nor-
malized wavelength Λ/w (w/λ = 1) at normal incidence
for sawtooth S=0.4 at perturbation phases ϕ = 0, 90,
180, 270o and increasing amplitude h/λ.

4.4  Single frequency - Sawtooth distortion - Misaligned geometry

Individually, misalignment and sawtooth perturbations can both cause phase runaway if the

perturbation amplitude is greater than some threshold. When combined, the result depends on

the relative signs and magnitudes of S and (θ1 − θ2). If S and (θ1 − θ2) have the same sign

(majority reflection off the shallow face of the sawtooth) then hc/λ is substantially reduced for

all wavelengths Λ/λ, and the power dip becomes deeper. For some values of (θ1 − θ2), hc/λ
drops almost to zero. At small Λ/λ the phase ramp can be almost linear for all h/λ, while at large

Λ/λ the phase can also ramp by multiples of 2π and display complex 2nd and 3rd harmonic

modulations. Conversely if S and (θ1 − θ2) are opposite in sign, then hc/λ is raised and the

reflected power is enhanced.

In all cases adding a misalignment to a sawtooth distortion again leads to a general loss of

sensitivity at long perturbation wavelengths. The complex amplitude trajectory, figure 6(f), can

form complicated loops and twists, but in all cases they remain symmetric about their mean

phase, i.e. the real axis if φo = 0.

4.5 Single frequency - Cusped distortion - Aligned geometry

The second form of surface distortion, the cusped or ‘spiky’ surface has a very different effect on

the reflectometer signals. There is no phase ramping, but the phase response does depend on the

shape of the cusps, particularly whether they are pointing outward (towards the antennas) or

inward (away from the antennas) and on Λ/w.
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Figure 11 shows the minimum and maximum P and φ as a function of Λ/w with h/λ = 0.17

and various cusping values from C=0.5 (inward cusps) to C=4 (outward cusps). C = 1 is the

symmetric sinusoidal surface. At long perturbation wavelengths Λ/w > 10, the phase again fol-

lows the shape of the surface φ = −4π cosθ1 ζ/λ, just as with the sinusoidal and skewed

perturbations. However as Λ/w decreases two things happen. The phase modulation δφ → 0 as

before, but the phase also acquires an offset φo ≠ 0. The phase offset φo changes sign as C

increases from inward to outward cusps. The offset also varies non-linearly with h/λ as shown in

figure 12 at Λ/w =1. Secondly, Po increases, i.e. there is less attenuation when there is cusping

(C ≠ 1).
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Figure 11 : Reflectometer power P and phase φ vs nor-
malized wavelength Λ/w at normal incidence for C =
0.5 (inward cusped) through C = 1 (symmetric) to C = 4
(outward cusped) with fixed h/λ = 0.17 at perturbation
phases ϕ = 0, 90, 180o.
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Figure 12 : Phase offset φo as a function of perturbation
amplitude h/λ with Λ/w = 1 at normal incidence θ1 = θ2

= 0  for selected values of cusping.

Between Λ/w ≈ 2 and 3 there is a pronounced increase in the modulation of the power

signal. The degree of modulation and the perturbation wavelength Λ at which it occurs, in-

creases with the value of C, i.e. the sharper the outward cusps or spikes. This is possibly due to

some form of resonance between the beam diameter and certain perturbation wavelengths caus-

ing additional defocusing/focusing of the reflected beam, or perhaps because sharp outward

spikes tend to make the surface appear more like a ruled grating.

The perturbation cusps, whether outward or inward, cause dips in the reflected power.

Since these coincide with the cusps in the phase, 
~φ  and 

~Ρ  are thus correlated - with a relative

cross-phase difference of 0 for outward cusps, and π for inward cusps.
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In the complex amplitude trajectory of figure 6(b) for C=0.2 the phase offset and cross

correlation are revealed as a non-linear rotation (and stretching) about the origin, clockwise for

negative (inward) cusps, anti-clockwise for positive (outward) cusps. The offset arises from the

inability of the microwave beam to penetrate all the way down into the depth of the inward cusp

(same effect as waveguide cutoff), while for outward cusps the very narrow tops become invis-

ible to the microwave beam. The effective surface displacement at the cusp approaches the

mean value as the cusp becomes narrower.

4.6 Single frequency - Cusped distortion -

Misaligned geometry

Adding an antenna misalignment to the cusp

distortion results in some very strange behav-

iour in the phase and power signals. Figure 13

is an example of P and φ through one period of

a negative cusp perturbation (C = 0.2) with a

misalignment of θ1 − θ2 = 10o, long wave-

length Λ/λ = 20, narrow beam w/λ = 2 and in-

creasing perturbation amplitude. The phase

offset is still evident, but also note how the

phase and power maxima and minima move

away from ϕ = 180o and become progressively

more skewed and asymmetric with increasing

h/λ.

Again as θ1 − θ2 increases there is the

usual loss of reflectometer sensitivity at long

and short perturbation wavelengths, and of

course, above hc/λ phase runaway occurs.

4.7 Broadband - Gaussian - Aligned

geometry

The converse to the single frequency MHD

mode is broadband random Gaussian turbu-
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Figure 13 : Effect on reflectometer power and phase of
adding surface tilt θ1 = −θ2 = 5o to cusped surface C =
0.2 with Λ/λ = 20 and w/λ =2. Bottom trace is displace-
ment ζ/h as function of perturbation phase ϕ, arrows
indicate beam directions.

lence. The case of normal incidence has also been previous studied in depth [10]. For complete-

ness, and to provide a comparison for the asymmetry cases the results are briefly restated.

(i) The phase fluctuations φ̃  are symmetrically distributed (roughly Gaussian) about a zero

mean φo = 0, while the power fluctuations Ρ̃  are non-symmetrically distributed. The level

of reflected power Po (i.e. carrier strength) varies inversely with the level (standard

deviation) of phase fluctuations φsd and power fluctuations Psd. See [24] for experimental

example.
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(ii) For moderate fluctuation amplitudes σ/λ ≤ 0.1 and large beam diameters kw .w > 2π, the

phase standard deviation (same as rms if φo = 0) scales [24] with the rms amplitude of the

turbulence σ/λ, the turbulence wavenumber spectral width kw (km = 0), and the beam

radius w as:

φ πσ
λ

θ
πsd

wk w= 





−4
2 2

1
0 6cos .

(13)

(iii) For kw .w << 2π the phase standard deviation scales as the 1D geometric optics limit φsd

= 4π cos θ1 σ/λ; with Psd → 0 and Po → 1.

(iv) For very large amplitude turbulence, i.e. σ/λ > 0.2, the phase fluctuations are uniformly

distributed between ±π (which results in φsd saturating at 0.6π); Po goes to 0 and

Psd/Po → 1. The fluctuation spectra of φ̃  (and Ρ̃  to a lesser extent) tend to a 1/f2 form.

The auto-correlation times (C(τ) = 1/e) of both ̃φ  and Ρ̃  scale directly with the beam

width w and inversely (weakly) with kw and (very weakly) with σ/λ. There is no correlation

between the phase and power fluctuations for specular reflection.

4.8 Broadband - Gaussian - Misaligned geometry

As before, introducing any form of antenna misalignment moves the receiver off the specular

axis of the scattered power lobe resulting in a decrease in the coherent reflection and an increase

in the incoherent scattering. This is illustrated in figure 14 where (a) the phase standard devia-

tion φsd, (b) mean power Po and (c) relative power standard deviation Psd/Po are plotted as a

function of the net misalignment angle θ1 - θ2 for increasing amplitude σ/λ with fixed kw/ko

= 0.5 and w/λ = 5. Just a few degrees of misalignment are all that is necessary for the phase and

power fluctuations to rise to saturation at φsd → 0.6π, and Psd/Po → 1. Figure 14(b) illustrates

how the specular return is lost with increasing σ/λ.
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Figure 14 : (a) Phase φsd, (b) Mean power Po and (c) Power Psd/Po as function of net misalignment angle θ1 −
θ2 for increasing amplitude σ/λ with fixed kw/ko = 0.5 and w/λ = 5.
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The rate at which φsd and Psd/Po saturate depends on the width of the scattered lobe.

Figure 14 shows that the lobe broadens with increasing σ/λ, but increasing w/λ or kw/ko reduces

the angular spread of the lobe.

In the single frequency perturbation, adding a surface tilt leads to phase runaway if the

perturbation amplitude exceeds a certain value. The equivalent effect of phase runaway for a

moving random perturbation is a Doppler shift (fD = dφ/dt) in the frequency spectrum of the

phase fluctuations.
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Figure 15 : Top row: Complex amplitude trajectory; Bottom row: Double-sided Fourier spectra for phase exp(iφ),
power P, and complex amplitude Aexp(iφ) signals, for amplitude (a) σ/λ = 0.025, (b) 0.05 and (c) 0.10, with fixed
kw/ko = 0.5, w/λ = 5 and θ1 − θ2 = 5o. Phase and complex amplitude spectra show Doppler shift at kD/ko.

Figure 15 shows the double-sided Fourier spectra (i.e. power spectra) of the phase φ,

power P and complex amplitude Aexp(iφ) (A = √P) signals for three values of fluctuation ampli-

tude σ/λ with kw/ko = 0.5, w/λ = 5 and θ1 − θ2 = 5o. The spectra are plotted in terms of

normalized wavenumber k/ko = f/fo × c/v to remove the scaling of the transverse perturbation

velocity v. Also plotted are segments of the complex amplitude trajectories. At large amplitudes

σ/λ = 0.1, figure 15(c), the Fourier spectra of both the phase and complex amplitude signals

show a clear Doppler shifted peak at

k

k

v

c

f

f

v

c
D

o

D

o
= = −(sin sin )θ θ1 2 (14)

The Ρ̃  spectrum shows no Doppler shift and is symmetric about the peak at zero fre-

quency (since P is a purely real signal). The complex amplitude trajectory circles around the

origin which, as in the single frequency case, results in phase runaway.
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As σ/λ decreases, figure 15(b), the complex amplitude trajectory moves away from the

origin along the positive real axis. This is similar to figure 6(d) for the single frequency mode

which shows that there is a σc/λ amplitude threshold for phase runaway. σc/λ behaves in a

similar fashion as hc/λ, it rises with decreasing w and kw and falls with increasing misalignment

θ1 − θ2.

Decreasing σ/λ below σc/λ leads to the appearance of a second peak at −kD/ko in the φ̃
spectrum and the formation of symmetric peaks at ±kD/ko in the Ρ̃  spectrum. At σ/λ = 0.025,

figure 15(a), the ̃φ  spectrum is almost symmetric resulting in a net zero frequency difference

relative to the carrier frequency, i.e. the negative peak balances the positive Doppler peak, and

hence no phase runaway.

The circular path of the complex amplitude trajectory results in the power (radius squared)

being modulated at the same frequency as the phase - hence the strong peaks in the Ρ̃  spectrum.

Note however that the complex amplitude frequency spectrum still only displays one correct

Doppler peak, whatever the turbulence amplitude.
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Figure 16 : Double-side Fourier spectra for phase exp(iφ), power P, and complex amplitude Aexp(iφ) signals for
kw/ko = (a) 0.05, (b) 0.1 and (c) 0.5 with θ1 − θ2 = 10o, σ/λ = 0.1 and w/λ = 5.

Unfortunately this is not the whole story. The peak in the Aexp(iφ) spectrum may not

necessarily be at the true Doppler frequency - even if phase runaway is evident and the φ̃
spectrum has no negative (balancing) peak. Figure 16 shows three double-sided Fourier spectra

for (a) kw/ko = 0.05, (b) 0.10 and (c) 0.50 with σ/λ = 0.1, w/λ = 5 and θ1 − θ2 = 10o. The

Doppler peak should be at kD/ko = 0.174, but when the product of the spectral and beam widths

kw .w < 2, the high frequency part of the φ̃  spectrum becomes truncated. The result is that the

shift in the spectral peak does not reach the expected kD in either the phase or complex

amplitude spectra. At the same time the Ρ̃  spectrum splits to form symmetric peaks at ±kp, the

same position, as the φ̃  spectral peak. This peak (relative to kD) is plotted in figure 17 as a

function of kw .w for various values of km/kD where km is the mean wavenumber in the Gaussian

distribution of equation 9. At large kw .w the spectral peak appears at the expected Doppler

position, but as kw .w falls the peak moves towards the mean fluctuation wavenumber. This is to

be expected since, as kw → 0 the surface perturbation approaches the single frequency case
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(where km = 2π/Λ) which, with misalignment,

showed both the power and phase to be

modulated at the mode frequency. Likewise as

w → 0 the simulation approaches the 1D Geo-

metric optics limit in which Doppler shifts do

not appear.

Whenever there is a peak in the Ρ̃  spec-

trum, such as at low fluctuation amplitudes σ
< σc, or small wavenumber-beam widths kw

.w  < 2 then there will also be a strong peak in

the coherence γ2 spectrum (between φ̃  and ̃Ρ ).

For σ < σc, the coherence can approach unity.

An example is shown in figure 18(a) where the

Fourier, coherence, and cross-phase spectra are

plotted for σ/λ = 0.025, kw/ko = 0.5, w/λ = 5
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Figure 17 : Normalized spectral peak position kp/kD vs
turbulence wavenumber width times beam width kw .w
for various values of spectral mean km/kD.

and θ1 − θ2  = 5o. The dashed curve is the wavenumber spectrum h(k) of the surface

perturbations.

Figure 17 gives the position of the principle γ2 peak. In addition there are often smaller

coherence peaks where there are no corresponding φ̃  or Ρ̃  spectral peaks. These peaks appear at

Bragg backscatter wavenumbers:

k

k

f

f

v

c

n

m
B

o

B

o
= = −(sin sin )θ θ1 2 (15)

where n is the harmonic number, and m is the Bragg order. Note that the n/m = 2/2 Bragg peak

coincides with the Doppler peak in φ̃  spectrum. Figure 18(b) is an example which displays both

Bragg peaks and a Doppler peak - in this case at km/ko = 0.2 (σ/λ = 0.1, kw/ko = 0.1, w/λ = 2 and

θ1 − θ2 = 10o). Note how the relative cross-phase alternates between +π/2 and −π/2 with

increasing harmonic number. The ±π/2 phase difference appears as an anti-symmetric (about

zero delay τ = 0) time delayed cross correlation CφP(τ).

As σ/λ increases the level of coherence around kp is reduced. Significant coherence is

only observed when the phase fluctuations are not saturated, φsd < 0.6π, which generally means

θ1 − θ2 ≤ 12o. For σ > σc and kw .w above 2 there are no peaks in the Ρ̃  spectrum, but as in

the example of figure 18(c) substantial coherence at Bragg wavenumbers can still occur. [24]

shows an experimental example.
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Figure 18 : Fourier spectra, γ2 coherence and cross-phase spectra of broadband Gaussian perturbation with mis-
alignment: (a) θ1 − θ2 = 5o, σ/λ = 0.025, kw/ko = 0.5, w/λ = 5; (b) θ1 − θ2 = 10o, σ/λ = 0.10, kw/ko = 0.1, km/
ko = 0.2, w/λ = 2; and (c) θ1 − θ2 = 10o, σ/λ = 0.10, kw/ko = 0.5, w/λ = 5. The dashed line in the Fourier spectra
is the surface perturbation k spectrum.

4.9  Broadband - Cusped distortion - Aligned geometry

As for the single frequency mode, introducing cusping into the broadband perturbation, i.e.

making the reflection layer spiky, leads to a phase offset φo ≠ 0 (non-zero mean) and a non-

symmetric phase distribution (pdf). The direction (sign) and magnitude of the offset and skewness

of the phase pdf depends on the degree of cusping and the amplitude σ/λ. Increasing σ/λ
increases φo but decreases the skewness - note that the sign of the phase pdf skewness is oppo-

site to that of the surface ζ pdf. In the complex amplitude trajectory the phase offset and skewness

is seen as a rotation and a non-linear stretching of the trajectory in the polar direction, similar to

that in figure 6(b) for the single frequency perturbation.

There are no peaks or shifts in any of the signal spectra, they remain symmetric about zero

frequency; and, there is no phase runaway. However, as with the single frequency case where P

and φ were both modulated in synchronous with the perturbation displacement ζ, the γ2 coher-

ence spectrum (between 
~φ  and 

~Ρ  fluctuations) shows substantial coherence for broadband

cusped perturbations.

Figure 19(a) shows typical Fourier, γ2 coherence, and cross-phase spectra for a cusped

surface C = +20 with σ/λ = 0.025, kw/ko = 0.2 and w/λ = 5. The coherence spectra displays a

series of γ2 peaks at:

k

k k w

p

o
n

w
= 1

2 π
(16)
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for positive cusping C>1. If the cusping is negative, C<1, then equation 16 gives the positions of

dips in γ2 instead of peaks. This appears to be the same wavelength-beam width resonance

phenomena observed in the single frequency cusped case. The peak positions are generally

independent of the turbulence amplitude, but increasing σ/λ does decrease the level of coher-

ence (maximum at around σ/λ = 0.05). The coherence also increases slightly with kw .w and the

degree of cusping C.
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Figure 19 : Fourier spectra, γ2 coherence and cross-phase spectra of (a) broadband cusped perturbation C = +20
with normal incidence θ1 = θ2 = 0o, σ/λ = 0.025, kw/ko = 0.2 and w/λ = 5; (b) Cusped C = +20, θ1 − θ2 = 10o,
σ/λ = 0.05, kw/ko = 0.1 and w/λ = 5; (c) Skewed S = +200, θ1 − θ2 = 0, σ/λ = 0.05, kw/ko = 0.1 and w/λ = 2.
Dashed line is the surface perturbation k spectrum.

The relative cross-phase difference is either 0 or π (and often alternates between succes-

sive γ2 peaks). If the cusping is positive, i.e. upward spikes, then the cross correlation coefficient

CφP(0) is positive and symmetric about τ = 0 time delay; and the high n peaks have zero cross-

phase difference. If the cusping is negative, i.e. downward spikes, then CφP(0) is negative and

the high n peaks have ±π cross-phase difference.

4.10 Broadband - Cusped distortion - Misaligned geometry

Adding a small misalignment to the cusping leads to a combination of Doppler frequency shift

and skewness in the phase distribution. The degree of the frequency shift is the same as for the

misaligned non-distorted turbulence (with the same kw/ko cutoff and the same phase φsd broad-

ening) while the phase skewness is the same as observed with the cusped-aligned case. Al-

though the coherence is generally dominated by the misalignment, the cross correlation peaks

become shifted in τ, i.e. the relative cross-phase difference is no longer exactly ±π/2. The corre-

lation is also non symmetric in magnitude as well as delay. Figure 19(b) shows a particularly
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striking example for a misalignment of θ1 − θ2 = 10o and C = +20. The first coherence peak

is the (reduced) Doppler/Bragg peak due to the misalignment while the second γ2 peak is due to

the cusping. A possible experimental example is shown in [10].

4.11 Broadband - Sawtooth distortion - Aligned & misaligned geometry

Introducing asymmetry into the perturbation gradient distribution, for example making the re-

flection layer resemble random sawteeth, has basically the same effect as with the single fre-

quency sawtooth perturbation. At low perturbation amplitudes there is again a strong correlation

between ̃φ  and Ρ̃  with a relative ±π/2 phase difference. The coherence however does not ap-

pear at all wavenumbers but only in selected peaks, figure 19(c), which vary in position with kw/

ko and w/λ. There are no peaks in either the φ̃  or Ρ̃  spectra at these positions. The φ̃  spectrum

is centred on zero frequency but there is an asymmetry or imbalance between the positive and

negative high frequency tails - similar to the spectral truncation in figure 15(a) at low amplitudes

with misalignment.

Increasing the amplitude σ/λ reduces the coherence, until at some critical value σc/λ (which

as before decreases with increasing asymmetry factor S, beam width w/λ and kw/ko) the γ2

peaks are destroyed and phase runaway begins.

Adding misalignment to the gradient asymmetry can again raise or lower the critical am-

plitude for phase runaway, and generate looped and indented bean shaped complex amplitude

trajectories as in figure 6(f) for the single frequency mode.

5. DISCUSSION AND CONCLUSIONS

The simulations show that asymmetry can result in unexpected behaviour in the reflectometer

response. This asymmetry can be in the geometry of the reflectometer launch and receive anten-

nas, which is either:

(1) Aligned : θ1 − θ2  = 0 (Specular reflection) or

(2) Misaligned : θ1 − θ2 ≠ 0  (Backscatter).

Or the asymmetry can be in the plasma reflection layer perturbations, which have either:

(3) Symmetric amplitude and gradient probability density distributions,

(4) Non-symmetric amplitude distributions (spiky or cusped),

(5) Non-symmetric gradient distributions (sawtooth or skewed),

(6) Non-symmetric amplitude and gradient distributions.

Each form of asymmetry has a distinct set of characteristic effects on the reflectometer

response. For low to moderate fluctuation amplitudes, combining different asymmetries gener-

ally results in a simple addition of these basic features. However, at higher amplitudes, particu-

larly above the critical value, complex interactions and modulations can appear in the signals.

The basic features for the three types of asymmetry are summarized in Table 1. Some of these

effects are straightforward, others require further comment.



23

Table 1 : Summary of effects introduced by the three categories of asymmetry on single frequency perturbation and
broadband Gaussian perturbations.

Asymmetry Single frequency Broadband

Misalignment Loss of coherent/specular return Increase in φsd and Psd

Decrease in long Λ sensitivity Doppler peaks in φ and Aexp(iφ) a

Enhanced P at Bragg Λ φ̃  & Ρ̃  coherent (γ2) at Bragg k

fP = fφ with ±π/2 phase with quadrature phase

Phase runaway if h > hc  
b Phase runaway if σ > σc  

b

2nd harmonic  if h < hc High γ2 if σ < σc

Asymmetric amplitude Non-inear phase offset φo 
 c Non-symmetric ̃φ  pdf

Increase in P at Λ/w ≤ 1 φ̃  skewness opposite ζ pdf

Enhanced δP at Λ/w ≈ 2 - 3 No spectral peaks but γ2 coherence

fP = fφ with 0 or π phase with co- & counter phase  d,e

Asymmetric gradient Phase runaway if h > hc Phase runaway if σ > σc 
f

φ̃  & Ρ̃ correlate if h < hc γ2 peaks with quadrature phase

fP= fφ with ±π/2 phase if σ < σc  
d

footnotes.
a. Doppler spectral shift depends on turbulence kw and w/λ.
b. Critical amplitude depends on Λ/λ, θ1 − θ2 and w/λ (kw/ko).
c. φo depends on sign and magnitude of amplitude asymmetry.
d. γ2 peaks vary with kw and w, coherence decreases with increasing σ/λ.
e. Phase-power correlation is positive for upward cusps, negative for downward cusps.
f. Critical amplitude depends on degree of gradient asymmetry and Λ/w.

A Doppler shift with misalignment is expected, but the presence of a critical amplitude for

phase runaway is less obvious. But when the signal trajectory is plotted in the complex plane the

reason becomes apparent. Phase runaway can only occur if the fluctuation (sideband) amplitude

exceeds the carrier wave amplitude. A similar phenomena appears in the FM capture effect in

radio reception. Here, the stronger of two radio stations close in frequency will be demodulated

while the weaker one will be suppressed [33]. There have been some recent attempts to use the

Doppler shift in the ̃φ  spectrum to experimentally deduce the propagation velocity of the

perturbations. However as figure 17 shows this can give misleading results if either the beam

width or the spectral content of the perturbations is small. The shift in the φ̃  spectral peak can

only be considered a reliable measure of the Doppler frequency if there is no corresponding

peak in the ̃Ρ  spectrum.

Doppler shifts and phase runaway are essentially 2D effects, and indeed the simulation

results show that as the 1D limit is approached by reducing the beam radius w → 0 then the
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spectral peak in the phase goes to fm = v × km/2π and the critical amplitude for phase runaway

goes to infinity. In practical terms this means that phase runaway becomes less of a problem for

small diameter (tightly focussed) reflectometer beams.

The enhanced modulation and phase-power coherence which appear at certain combina-

tions of beam width and cusped/skewed perturbation wavenumbers is also an unexpected fea-

ture. It is clearly a 2D spatial resonance or interference effect, perhaps akin to Bragg backscatter.

The complex amplitude analysis shows that ignoring the amplitude fluctuations in the

reflectometer signals - as has been an accepted practice for many years - is in fact worse than

throwing away half the available information. Without knowledge of the power Ρ̃ , the phase ̃φ
signal can, potentially, be totally misinterpreted.

The simulations reveal a sufficient number of unique features in the signals to permit the

experimentalist to identify the presence and types of asymmetries. These indicators include:

(1) Phase runaway - which can only occur with large amplitude sawtooth perturbations or

misaligned antennas.

(2) Skewness in the distribution of phase fluctuations - which can only arise from cusped or

spiky perturbations.

(3) Correlation between the phase and power fluctuations.

Generally reflectometer signals display a degree of broadband background fluctuations

with perhaps some well defined coherent MHD type oscillations. However peaks in the signal

spectra do not, as the broadband simulations show, always correspond to coherent modes. But,

when combined with the information in the coherence and cross-phase spectra, and other indica-

tors such as the shape of the complex amplitude trajectory, it is possible to discriminate between

the various asymmetry effects. Table 2 lists the possible combinations of peaks in the Aexp(iφ),

φ, P, γ2 and cross-phase spectra together with their interpretation.

When a misalignment or plasma tilt is combined with an asymmetric surface perturbation

the simulation results suggest that it is possible to replicate almost any reflectometer fluctuation

signal observed in experiments to date. In other words all experimentally observed features -

phase ramping, ̃φ  and ̃Ρ  correlations, skewed φ̃  distributions etc. could be explained and quan-

tified in terms of reflectometer misalignment and asymmetric plasma cutoff layer perturbations.

Finally, it was previously shown that for symmetric perturbations and aligned geometry it

is possible from measurements of the phase and power distributions together with knowledge of

the beam width, to deduce the turbulence amplitude σ/λ and spectral content kw/ko, i.e. the

transverse fluctuation correlation length [10]. Nevertheless even with the additional complica-

tions of antenna misalignment and perturbation asymmetry the latest results indicate that it may

still possible to obtain σ/λ and kw/ko from the additional information in the higher order mo-

ments of the phase distribution, and the coherence and cross-phase spectra of φ̃  and Ρ̃ .
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Table 2 : Possible combinations of spectral peaks in the complex amplitude Aexp(iφ), phase φ, power P, coherence
γ2 and cross-phase C-P spectra together with their interpretation.

eA iφ φ P γ2 P-C noitaterpretnI

P P - - - ,edomtnerehoceurT Λ 01> w tnemngilasimon,

P P dn2 - - 2,edomtnerehoceurT w < Λ 01< w tnemngilasimon,

P P )dn2( +P ro0 π tnemngilasimon,depsuc,edomtnerehoC

P P )dn2( +P ±π2/ tnemngilasimon,deweks,edomtnerehoC

P/S P/H P P ±π2/ dengilasim,edomtnerehoC

- - - P ro0 π depsuc,dnabdaorB

- A - P ±π2/ deweks,dnabdaorB

S S - - - relppoDeurt,dengilasim,dnabdaorB

S S - + ±π2/ ggarB,relppoDeurt,dengilasim,dnabdaorB

S A/S P P ±π2/ relppoDdecuder,dengilasim,dnabdaorB
P = Peak (coincident)
+ = Plus other non-coincident peaks
S = Shifted peak in double-sided spectrum, but will appear as (coincident) peak in single-sided spectrum
A = Asymmetric or truncated (double-sided spectrum)
2nd = 2nd harmonic
H = Many harmonics
() = May or may not be present depending on mode amplitude
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