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ABSTRACT

Intense ion cyclotron resonance heating can produce anisotropic non-Maxwellian velocity dis-

tributions with high energy tails. The distribution functions of the heated ions are determined by

wave-particle interactions and Coulomb collisions. A quasi-linear diffusion theory for general

wave-particle interaction in a fully toroidal geometry was developed by Kaufmann [1]. In con-

trast to the theory developed by Stix [2], Kaufmann’s quasi-linear diffusion contains diffusion in

real space as well as in velocity space. The RF-induced spatial transport as well as the finite orbit

width are important for determining the velocity distribution, in particular for small and medium

sized devices.

1. INTRODUCTION

The damping of magnetosonic waves by ion cyclotron absorption can produce highly aniso-

tropic velocity distributions with very energetic tails. Such tails can strongly enhance the fusion

yield, affect the stability of MHD-modes [3], change the absorption and thereby the power par-

tition between the absorbing species. The latter is particularly important for harmonic cyclotron

resonance heating for which the absorption of the fast wave by a Maxwellian distribution is in

general weak [4]. The development of a non-isotropic velocity distribution may also produce

currents, which can be used as central seed currents in bootstrap driven tokamaks, to stabilise

MHD-modes [5, 6] and facilitate the formation of transport barriers.

The distribution function of the heated ions can be determined by a Fokker-Planck equa-

tion in which the wave-particle interactions are described as a quasi-linear diffusion process.

The velocity distributions in the presence of ICRH was first studied by Stix [2]. He derived a

2D-diffusion operator in velocity space, and obtained an analytical solution for a reduced 1D-

equation. Subsequently the effects of trapped particles were included in a bounce-averaged Fokker-

Planck equation by Kerbel and McCoy [7]. However, these theories were based on the assump-

tion that the drift orbits follow the magnetic surfaces. When modelling ion velocity distributions

of RF-heated plasmas, high energy ions in the MeV range were predicted to appear because of

the peaked power deposition, and were also observed [8]. However, the predicted energy con-

tent of these ions were not always consistent with the experimental observations. For large

power levels the deviation becomes stronger and a smaller fast energy content was in general

observed than predicted from simple models [9]. These high energy ions move essentially on

trapped orbits near the centre with large excursions across the minor radius of the plasma. Ex-

planations of this deviation were put forward in terms of the finite orbit width effects and RF-

induced spatial transport. RF-induced spatial transport were discussed by Riyopoulos et al [10]

and Chen et al [11]. The RF-induced spatial transport arises because of the toroidal acceleration

of resonating ions interacting with toroidally propagating waves. For an asymmetric wave spec-

trum this leads to a radial drift similar to the Ware pinch. For symmetric spectra, cancelling the
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drift terms, only an RF-induced spatial diffusion remains. They concluded that the RF-induced

spatial transport was small and negligible compared with the anomalous particle transport. How-

ever, by modelling the problem as a 2D-diffusion, in radius and velocity, it was seen that the RF-

induced spatial diffusion during intense ICRH with strongly focused waves had a strong effect

on the tail formation [12]. The high energy ions diffused away from the heating region thereby

curtailing the formation of a high energy tail, which also resulted in broader power transfer

profile. The RF-induced spatial drift appearing for asymmetric toroidal wave spectra can both

flatten the power transfer profile or peak it up further depending on the directivity [13].

A quasi-linear diffusion theory for general wave-particle interactions in a fully toroidal

geometry, including finite orbit width effects, had been developed by Kaufmann in 1972 [1], but

was not until recently applied to ICRH. In Kaufmann’s theory the evolution of the distribution

function was reduced to a 3D-diffusion equation in a space of invariants of the unperturbed

particle motion. In contrast to Stix’s theory, Kaufmann’s quasi-linear diffusion contains diffu-

sion in real space as well as in velocity space.

Ion cyclotron heating produces high energy ions with most of the energy in the perpen-

dicular component. Such ions make large excursions across the magnetic surfaces. This excur-

sion is here denoted as finite orbit width, which plays an important role for the evolution of the

velocity distributions as well as for the power deposition profiles. The finite orbit width effects

are important for central heating because of the weak poloidal magnetic field and formation of

non-standard orbits, so called potato orbits [14]. As a result of the finite orbit width the collisional

power transfer profile is broader than the profile of the absorbed power; because the heated ions

absorb power at their Doppler shifted cyclotron resonance but transfer it to the background

plasma species all along their orbits. This is further enhanced by the fact that the slowing down

is in general faster at the outer part of the orbit where the electron temperature is lower. In small

and medium sized devices direct losses due to wide orbits are important [15]. Not only the

power transfer but also the absorption is affected by the finite orbit width. Thermonuclear α-

particles created in the centre of the plasma can absorb power further out because of their wide

banana orbits. The details of the velocity distribution is in particular important for current drive

where the finite orbit width effects and RF-induced spatial transport give rise to new current

drive mechanisms [14-15, 17-18].

Owing to the complexity of the 3D-diffusion problem, solutions have so far mainly been

obtained with Monte Carlo codes, which have demonstrated the importance of the RF-induced

spatial transport and the finite orbit width [13, 16, 18-20]. Orbit following codes [13, 20] as well

as codes calculating the orbit averaged distribution function [14] have been developed. An effort

to solve the 3D-equation with a finite difference method has also been made [21].

First experimental evidence of an RF-induced drift of trapped ions has recently been re-

ported from JET showing a strong effect on the neutral particle spectra, excitation of TAE-
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modes and ELMs [23]. In Tore Supra and DIII-D asymmetry in the current drive efficiency

during fast wave current drive have been observed [24, 25] being consistent with the different

tails formed for the different phasings [22].

2. QUASI-LINEAR DIFFUSION IN A TORUS

The quasi-linear theory was originally developed to calculate the saturation of wave fields driven

by micro instabilities. It is based on the assumption that the amplitudes of a set of uncorrelated

waves are small, so that the zero order distribution function evolves on a slow time scale com-

pared to a wave period. For ICRH the wave field consists of a correlated set of Fourier modes

driven by an antenna. However, the theory can still be applied if one assumes the gyro phase of

the particle to be decorrelated by Coulomb collisions or non-linear effects [26-28] between the

different interactions. Since the collision frequency and the time to change the energy by wave-

particle interactions are long compared to the bounce time. It is possible to perform a multiple

time scale expansion of the distribution function in which the slowly varying component of the

distribution function is a function of the three invariants only [1]. Thus, the diffusion is reduced

to 3-dimensions.

In an axisymmetric toroidal geometry the

guiding centre trajectories are integrable im-

plying that invariants describing the orbits can

be found. A particle will stay on its guiding

centre orbit, if it is not subjected to collisions

or wave-particle interactions and if its orbit

does not intersect the wall or any another ob-

stacle. To describe an orbit we use the invari-

ants (E, Pφ, Λ) [29], where E is the energy,

P Rmv eZ rφ φ ψ= + ( )  is the canonical angular

momentum and Λ =B0µ/E is an adiabatic

invariant , defined by the ratio between the
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Fig. 1 The invariant space of a 100keV proton.

magnetic moment and energy normalised with the respect to the magnetic field at the magnetic

axis. There is not a unique relationship between these invariants and the orbits; the same triple

may describe different types of orbits. To distinguish between them, a label σ  is introduced. To

classify the orbits, it is useful to separate the invariant space (E, Pφ, Λ) into nine regions [30] as

illustrated in Fig. 1. In the regions I-IV two solutions exist, in the regions V-VIII only one

solution exists and in region IX there is no solution. During ICRH the number of ions with non-

standard orbits appearing in regions III-IV and VIII is increased because of the preferential

perpendicular heating.

Wave-particle interactions and Coulomb collisions will break the invariants and cause a

random walk in the invariant space. Thermal ions will be subjected to a rather rapid energy
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diffusion and pitch angle scattering with other ions which will tend to isotropise and produce

nearly Maxwellian distribution functions. For highly energetic ions, the Coulomb collisions

with other ions become negligible. The ions will instead lose their energy to the electrons by a

non-diffusive process [2]. The energy of the resonating ions are determined by the balance be-

tween absorbed power by wave-particle interactions and power transferred to the background

plasma species. As a thermal resonating ion is gradually heated by cyclotron damping, it will on

the average increase its perpendicular energy and as a consequence the orbit will turn into a

trapped one. As the particle is further heated, the turning point of the trapped orbit will drift

vertically along the cyclotron resonance. When the cyclotron resonances passes through the

magnetic axis the radial drift with respect to minor radius, vT, is given by

v T =
n φqp n φ( )
mωω ci rn φ

∑ , (1)

where p denotes the absorbed power per parti-

cle for a given toroidal mode number nφ. For

waves propagating in the opposite direction as

the plasma current, the banana tips of the ion

orbits will drift vertically outwards along the

cyclotron resonance. These ions will then ei-

ther hit the wall or be thermalised as they move

into a region with lower wave field strength. If

the wave propagates in the same direction as

the plasma current, the turning point of the ions
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will drift vertically inwards along the cyclotron resonance. As the turning points approach the

mid plane, the orbits will turn into passing orbits or into potato orbits or counter passing orbits

lying on the low field side of the magnetic axis not encircling the magnetic axis. Which of these

orbits they will turn into depends on the position of the cyclotron resonance and their energy.

For a symmetric spectrum, cancelling the drift terms, the trapped high energy ions diffuse

radially away from the region of intense wave-particle interactions due to the large density

gradient of high energy ions and the relatively high diffusion coefficient for these ions. In the

limit of small Larmor radius ρi , k ⊥ρi << 1( ) and for heating at the fundamental cyclotron fre-

quency the RF-induced radial diffusion coefficient for the turning point of the trapped ions is

given by

DT =
2p nφ( )

m

v⊥nφq

ωω cir







2

n φ

∑ . (2)
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The evolution of the orbit averaged distribution function, f, of the heated ions can be calculated

by deriving a Fokker-Planck equation. Since in a toroidal geometry the parallel and perpendicu-

lar velocities vary along the orbit, which couples the space and velocity variables, it is conven-

ient to express the diffusion equation for the orbit averaged distribution function in the space of

orbit invariants [1, 31]

∂
∂
f

t
Q f C f= +( ) ( ) , (3)

where Q  is the orbit averaged quasi-linear RF-operator and C  the Coulomb diffusion opera-

tor. Eq. (3) can then be written in the form

∂
∂

∂
∂

∂
∂

f

t g I
g a f D D

f

Ii
Ci Cij RFij

j
= ⋅ + +( ) ⋅























1
, (4)

where g  is the Jacobian and I i the invariants. The orbit averaged distribution function can also

be obtained by calculating the changes of the invariants over the unperturbed orbits of test par-

ticles and then solving the corresponding stochastic Langevin equation with a Monte Carlo

method. The distribution function is then obtained as a set of points in the invariant space. These

two approaches are equivalent [31]. The orbit averaged Monte Carlo increments can either be

calculated directly [32] or be derived from the orbit averaged Fokker-Planck equation [31].

When averaging over the gyro phase, the Coulomb collisions are described as scattering

in a local v⊥ ,v ||( )-space at each position along the guiding centre orbit. Locally the collisions

will scatter the invariants along a surface in the invariant space. The surface depends on the

position of the collision and thus produce a 3D-diffusion in the invariant space. Scattering of

trapped ions and between trapped and passing leads to neo-classical diffusion.

The changes in the invariants due to wave-particle interactions are given by

∆E
eZv

m
E J k E J k

m

n
res

n L n L
c

= +⊥
+ − ⊥ − + ⊥1 1

2
( ) ( )

| ˙ |
cosρ ρ

ω
ϕπ

,

∆Λ =
2 nω c0 − Λω( )

ωE
∆E,       ∆Pφ =

nφ

ω
∆E , (5)

where ϕ  is the difference between the gyro phase of the particle and the phase of the wave and

v res⊥  is the perpendicular velocity at the Doppler shifted cyclotron resonance. For high energy

ions, it is important to keep the E_-component of the electric field and the unexpanded Bessel

functions. The terms within the bracket in Eq. (5) may cancel, leading to an effective barrier for

diffusion in the velocity space [33]. In the case ω̇c = 0, i. e. when the turning point of the orbit

coincides with the cyclotron resonance, the variation of the gyro phase has to be expanded to

higher order. In this case ∆E  can be expressed in terms of Airy functions [7]. The RF-interaction
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for a single frequency and a single toroidal mode number represents a one dimensional diffusion

in the invariant space. The wave-particle interactions if not decorrelated should be calculated by

adding the interactions by the different wave numbers in a correlated wave, since the wave field

and hence the changes in phase between the different wave interactions are uniquely determined

by the current distribution in the antenna. The time between the interactions for the different nφ

are in general too short to be decorrelated by Coulomb collisions; this is particularly important

for particles which are close to tangency resonance i. e. ω̇c = 0. However, the interactions can

be decorrelated by non-linearities.

The Langevin equation is not uniquely determined, an equation for the changes in E, Pφ

and Λ  is given by [34]

E t t

t t

P t t

E t

t

P t

t t
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The expectation values are defined by µ̇i it I∆ ∆= , ζi are random numbers with unit

variances and zero expectation values, Xi, Yi  and Zi  are given by

X t Y
t

t
Y t Y Z

t

t

Z t Y Z t Y Z t Z Z

EE
E

EE

P E

EE

P P P

1 1 2 1
2

1

2 1 1 1
2

3 1
2

2
2

= = = − =

= −( ) − = − −

˙
˙

˙
, ˙ ,

˙

˙
,

˙ ˙ , ˙

σ σ
σ

σ
σ

σ

σ σ σ

φ

φ φ φ

∆ ∆
∆

∆
∆

∆

∆ ∆ ∆

Λ
ΛΛ

Λ ΛΛ

,       

  
 (7)

where ˙ ˙ ˙σ µ µij i i j jt I t I t∆ ∆ ∆ ∆ ∆= −( ) −( )  define the variances and the covariances. The dou-

ble bracket ...  denotes averaging locally and along the orbit. The averaging includes also

weighting over the toroidal and the poloidal mode number spectra. A dot on top of a variable

denotes the total time derivative. In general, the changes in the invariants due to collisions and

wave-particle interactions vary quite smoothly within the different regions in the space of in-

variants, but may change more rapidly near the boundaries. The expectation values and variances

are related to Dij  and a i  in Eq. (3) by [31]

˙ ˙µ ∂
∂

σi i
j

ij ij ij ji ija
g I

gD D D D= − + ( ) = + =1
2  and . (8)
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3. TAIL FORMATION

Information on the high energy tail produced by ICRH can be observed from various diagnos-

tics. In steady state the fast energy of the heated ions is given by

Wfast = pets

2
, (9)

where pe is the power transferred to the electrons and ts  is Spitzer’s slowing-down time [2].

Deviations may be caused by that high energy ions passing through the outer region with a

lower electron temperature. They will slow down faster and at the same time broadening the

power transfer profile. For wide orbits the slowing down time has to be averaged over the parti-

cle trajectories. The RF-induced spatial transport has also a strong effect on the tail formation,

which can be rather different for low and high nφ -spectra. For modest power levels good agree-

ments between Wfast deduced from experimental measurements and estimates of Eq. (9) is often

obtained. However, at higher power levels discrepancies appear. When the slowing down time is

averaged over the orbits, better agreements are obtained [9]. How the fast energy content agrees

with more advanced 3D-calculations of minority heating scenarios with constant temperature

and density profiles made with the FIDO-code [15] can be seen in Fig. 3. The FIDO code com-

putes the orbit averaged distribution function in terms of the invariants (E, Pφ, Λ). The total

energy distribution functions, neglecting the RF-induced spatial transport and the wide orbits,

agree fairly well with those obtained from thin orbits. The latter were obtained by choosing a

high plasma current which agreed fairly well with the Stix’s solutions except at very high ener-

gies (Fig. 3). The spatial variation of the energy distribution of the heated ions deviates consid-

erable from the thin orbit model. For symmetric low |nφ| - spectra the orbit width effects domi-

nate whereas for high |nφ|-spectra the RF-induced spatial diffusion becomes important. This can

be seen by studying the energy spectra of ions impinging the wall as shown in Fig. 4 [15]. For

low |nφ| the turning points of the trapped ions

remain fairly unchanged. A fraction of these

ions will be heated up until they hit the wall;

this results in a degradation of the heating effi-

ciency coming from the losses of high energy

ions. For high |nφ| the heated high energy ions

will diffuse away from the centre and a frac-

tion of them hits the wall but with a lower en-

ergy than for low |nφ|. The spatial transport of

high energy particles becomes stronger and

more important for asymmetric spectra.

The confinement of the high energy ions

is particularly important for heating at higher

harmonics for which the cyclotron absorption
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for thermal ions is weak, the total absorption by the ions depends then strongly on the confine-

ment of high energy ions [4]. If the drift is directed inwards, the high energy ions can be

confined whereas if it is directed outwards, the confinement is reduced. In Fig. 5 the energy

distributions for different phasings during third harmonic heating of deuterium are shown, for

parameters given in Ref. [22] similar to those used in some current drive experiments in Tore

Supra [24].

4. MINORITY CURRENT DRIVE

Minority ion current drive, originally proposed by Fisch [35], is obtained by coupling toroidally

directed waves. The absorption takes place at different locations in real space and velocity space

due to the resonance condition ω = nω c + k ||v || . Owing to the localised diffusion in velocity

space and the energy dependence of the Coulomb collision frequency the perturbation of the

distribution function at low energies will be smoothed out faster than at high energies resulting

in a net ion current. For a magnetic field decreasing with the major radius, a bi-directional ion

current around the cyclotron resonance is formed. In the Fisch model of minority current drive

neither the absorption of the waves toroidal angular momentum, the RF-induced spatial trans-

port, the trapping and the orbit width effects are accounted for. Since ICRH produces ion tails

with a large fraction of trapped ions, these effects are therefore expected to become important;

when including them new mechanisms forming the current appear. The wave interaction takes

place at the Doppler broadened cyclotron resonance determined by k|| whereas the RF-induced

drift depends on nφ. For Fourier modes with high |m| the sign of k|| and nφ can even be different.

The importance of the RF-induced spatial drift and the finite orbit width effects can be seen by

comparing the predicted current drive density from the Fisch theory with the FIDO-code for

high plasma currents for which the finite orbit width effects can be neglected. The comparison
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shows good agreement for low power levels as

seen in Fig. 6 [19]. However, as the wave field

is increased the deviation from the Fisch model

essentially arises because of trapped particles

are created with high power densities. For lower

plasma currents the bi-directional current cre-

ated by trapped ions and the RF-induced drift

dominates the formation of the current. The

back current carried by electrons and the back

ground ion species are not included in Fig. 6,

but can be included by locally correcting the

minority current density [36].

The non-standard orbits in the centre pro-

duce a current even for symmetric spectra [14,

17]. This current can be used as a central seed

current in a bootstrap current driven tokamak.

By using nφ < 0 and heating the α-particles in
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flux surfaces, r = 25 cm (top) and at r = 35 cm (bottom),

versus the absorbed power inside these pairs of flux

surfaces.FIDO-code (solid) and Fisch model (dashed).

The resonance surface is at Rc=30 cm.

the centre a relative large seed current is obtained [19]. Through this article the geometry has

been chosen so that the plasma current is negative. For nφ < 0 the wave is propagating in the

same direction as the plasma current resulting in that the turning points of the trapped high

energy ions drift along the cyclotron resonance towards the mid plane and detrap into ions with

co- and counter-passing orbits as discussed in section 2. If the cyclotron resonance is located on

the high field side of the magnetic axis, trapped ions having their turning points close to the mid
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Fig. 7. Current drive for on-axis resonance nφ=-15, at

different levels of coupled powers (0.6, 1, 5 and 10MW)

for JET like parameters [18].

plane will scatter into co- and counter orbits

producing a bi-directional ion current. If the

cyclotron resonance passes close to the mag-

netic axis, potato shaped orbits will be formed

for high energy ions which will preferentially

scatter into counter-passing orbits [19]. When

the cyclotron resonance passes at the low field

side of the magnetic axis, the trapped ions turn

into counter passing orbits in region VIII in the

(E, Pφ Λ)-space as shown in Fig. 1. Although

the transition of the orbits from one type to an

other takes place directly, the current distribu-

tion associated with the orbit changes continu-

ously due to the precession of the orbits. For

these scenarios a net negative current is
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produced with respect to the plasma current. In Fig. 7 the current densities from trapped and

passing ions are illustrated. For nφ > 0 the trapped ions drift outwards which can almost com-

pletely curtail the tail formation. However, if the power density is sufficiently high, a bi-direc-

tional current is obtained caused by the trapped ions, due to the precession drift a net current

appears. For symmetric spectra the drift terms only partly cancel because of the peaked wave

profiles and that the wave-particle interactions take place at different flux-surfaces.

5. THE EFFECT OF THE FINITE ORBIT WIDTH ON THE WAVE ABSORPTION

Although the finite orbit width and RF-induced transport can substantially affect the local distri-

bution function and in particular the high energy part, the change in the absorption may not be as

spectacular. This depends on the relative change of the anti-Hermitian part of the dielectric

tensor. If the tail particles are few, the modifications may be small. Often the main effect comes

from modifications of the distribution function just above the thermal velocity. By increasing

the parallel velocity distribution the width of the resonance layer increases, and in the case of

minority heating at the fundamental cyclotron resonance the absorption often improves. For

second harmonic heating the absorption is increased, if a perpendicular tail is formed. High

energy ions like α-particles making large excursion across the plasma radius may absorb power

on flux surfaces where they are not created. To calculate the absorption in a volume element, the

contributions to the dielectric tensor from all resonating ions passing through this element have

to be included, which become more complicated, if a non-local distribution function expressed

in terms of orbit invariants is used. This is the case when the distribution function is obtained by

solving the orbit averaged distribution function with a Monte Carlo code, such as FIDO. The

local velocity distribution has then to be evaluated from a set of orbits. This can be done by

adding contributions to all fluid elements in phase space (r, v) for which each orbit passes through.

Expressing these contributions in finite element basis functions φ j(v || )  and ϕk (v⊥ ) one obtains

f (r,v) = akj (r)ϕk (v⊥∑ )φ j(v || ). (10)

The derivatives appearing in the susceptibility tensor elements are obtained in a similar

way by expressing them in terms of the derivatives of the basis functions

∂f (r,v)
∂v⊥

= akj (r)
∂ϕk (v⊥ )

∂v⊥
∑ φ j(v || )   and  

∂f (r,v)
∂v ||

= akj (r)ϕk (v⊥ )
∂φ j(v || )

∂v ||
∑  . (11)

Using the susceptibility tensor for the resonating ions, given for an arbitrary velocity dis-

tribution in a homogenous plasma for propagating plane waves (see e. g. [26] ), the absorption

by the high energy ions can be included by using the local dispersion relation for k ⊥  in the

argument of the Bessel functions [37]. For high energy ions it is important to keep the unexpanded

Bessel functions in the dielectric tensor since their Larmor radii can become comparable with

the wave length of the fast wave. In particular for high energy ions the contributions from the E+

and E- terms sometimes nearly cancel [33].
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The susceptibility tensor expressed in a local orthogonal coordinate system (x, y, z), where

z is along the magnetic field and y chosen so that ky = 0, is given by

χ
α

=
2πω pα

2

ω
v⊥

2 dv⊥ dv ||

∂f

∂v⊥

+ k ||

ω
v⊥

∂f

∂v ||

− v ||

∂f

∂v⊥





















−∞

∞

∫
0

∞

∫
Tn

ω − k ||v || − nω cαn=−∞

∞

∑ 

α

(12)

 where Tn =

n2Jn
2

z 2

inJnJn ′
z

− inJnJn ′
z

Jn ′( )2

















and Jn(z) with the argument z = k ⊥v⊥ ω cα . The acceleration by a parallel electric field is not

included. To reduce the fluctuations caused by using a finite number of orbits when numerically

evaluating χ
α

, the fluid elements have to be sufficiently large.

Assessment of the absorption by thermonuclear α-particles using the above method has

been done in Ref. [37] for second harmonic heating of tritium in a JET plasma, where some of

the α-particles produced in the centre make large excursions across the plasma and may absorb

power at their Doppler shifted second harmonic resonance near the edge. The contributions of

the resonating ions to the dielectric tensor were added as described above and the wave field

calculated with the LION code [39-40]. The absorption by the α-particles near the boundary

turned out to be negligible due to higher order Larmor radius effects, but became significant at

the fundamental resonance at the high field side.

How the RF-induced spatial drift affects

the absorption through differences in the high

energy tails in the distribution functions can

be illustrated by studying absorption at the third

harmonic deuterium resonance. This absorp-

tion appears as a parasitic absorption during

fast wave current drive by direct electron damp-

ing and has been shown to be important when

the tail ions are confined [4]. To show how the

absorption is affected by the differences in the

tails due to different radial drift caused by dif-

ferent toroidally directed waves, we plot the

increase in single pass absorption normalised

to a Maxwellian one for different toroidal mode

numbers in Fig. 8. The parameters have been

chosen similar to those in Tore Supra given in

Ref. [22].
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Because the velocity distribution of the heated ions strongly affects the power deposition,

self-consistent calculations of the power deposition and velocity distribution have to be done to

assess the impact of ICRH during fast wave current drive where parasitic third harmonic cyclo-

tron absorption on deuterium takes place. Calculations of the wave field including these effects

using the SELFO-code have been done in Ref. [22] including orbit width effects and RF-in-

duced transport. In this case the confinement of the tail is of utmost importance for calculating

the wave field and the power partition. The dependency of the confinement of fast ions on the

directivity of the fast wave is consistent with the observed asymmetry of the current drive

[24-25]. The increase of the single pass damping changes the wave field from one being weakly

damped, which is well spread over the plasma cross section, to one strongly damped, which is

focused close to the magnetic axis.

6. SUMMARY

The large excursions of the drift orbits across the magnetic surfaces are important for the evolu-

tion of the velocity distribution of ions heated by ICRH. The absorption profiles for high energy

ions like thermonuclear α-particles, created in the centre of the plasma, can absorb power fur-

ther out due to the wide banana orbits. The collisional power transfer profiles are broader than

the profile of the absorbed power.

Owing to the toroidal acceleration of resonating ions interacting with toroidally propagat-

ing waves, the quasi-linear RF-diffusion results in diffusion in real space as well as in velocity

space. For a toroidally directed wave spectrum a radial drift similar to the Ware pinch appears.

For symmetric spectra for which the drift terms cancel only an RF-induced spatial diffusion

remains.

In small and medium sized devices prompt losses due to wide orbits lead to a reduction in

the heating efficiency. These losses can become devastating for heating in smaller machines

with low plasma current and may be one of the reasons why ICRH was not efficient until experi-

ments with sufficient high plasma current such as in PLT and TFR became available.

The estimate of the fast energy of the heated ions given by Eq. (9) often overestimates the

fast energy. A first correction is obtained by averaging the slowing down time over the trajecto-

ries of the particles. The RF-induced spatial transport can also have a strong effect on the tail

formation in particular for asymmetric high nφ -spectra.

Because ICRH produces at typical experimental parameters large perpendicular ion tails

with a large fraction of trapped ions, the effects of the finite orbit width and the RF-induced

spatial drift result in new current drive mechanisms.

Although the finite orbit width and RF-induced transport can substantially affect the local

distribution function and in particular the high energy part, the change in the absorption may not

be as spectacular. The RF-induced spatial transport affects the confinement of high energy ions

and becomes particularly important for heating at higher harmonics for which the absorption is
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in general weak. When modelling high energy tail and the absorption by high energy particles it

is important to keep the Bessel functions unexpanded in the dielectric tensor.

Because the velocity distribution of the heated ions strongly affects the power deposition,

self-consistent calculations of the power deposition and velocity distribution have to be done in

order to assess the impact of ICRH. For many heating scenarios, in particular for heating and

current drive in smaller machines, the effects of finite orbit width and the RF-induced spatial

transport have to be included.

Experimental evidence of an RF-induced drift has been reported from JET showing a

strong effect on the neutral particle spectra, excitation of TAE-modes and ELMs [23]. In Tore

Supra an asymmetry in the current drive efficiency during fast wave current drive has been

observed [24-25] being consistent with the different tails formed for the different phasings [22].

Experimental evidence of the importance of higher Larmor radius corrections for the high en-

ergy tails has recently been reported from JET [33].
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