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ABSTRACT

We developed an iterative method for solving the hot-plasma dispersion relation and computing

power deposition during multispecies minority Ion Cyclotron Resonance Frequency (ICRF)

heating experiments. Here the distribution function of resonating ions becomes strongly aniso-

tropic and significantly hotter than that of non-resonating particles. Therefore we have consid-

ered thermal and overlapping cyclotron harmonics effects for the interpretation of the measure-

ments. We compute wave propagation and absorption for plasmas containing minority aniso-

tropic fast ions using a complex perpendicular wavenumber in cylindrical geometry. In the mi-

nority heating scheme, we find that most of the ICRF power is coupled to minority ions and

collisionless bulk ion heating is negligible when Tibulk≤Te. However, if Tibulk>Te, then ICRF

power couples also to the majority ions. We have successfully applied this method to the inter-

pretation of measurements of hydrogen isotope ion distribution functions during multispecies

minority ICRF heating of deuterium plasmas in JET.

P.A.C.S. numbers: 52.50.GJ, 52.35.HR, 52.55.FA, 52.65.FF

1. INTRODUCTION

Waves in the ion cyclotron range of frequencies (ICRF) have been effectively and reliably used

to heat magnetically confined fusion plasmas. For the high power densities and long slowing-

down times achieved in present-days experiments, the distribution function of resonating ions

becomes strongly anisotropic, with a perpendicular temperature much higher than the parallel

temperature, and significantly greater than that of non-resonating plasma species. These high

energy anisotropic ion populations can significantly enhance the fusion yield above that of a

thermal isotropic plasma for the same total energy content, and may also stabilise sawteeth and

low frequency MHD modes [1,2]. Reliable measurements of the energy distribution function of

such ions have also become well established [3,4].

Wave propagation and absorption is usually analysed using approximate expressions for

the dielectric tensor and for the power deposition mechanisms [5,6,7]. Conversely, much greater

effort has been made in incorporating into the analysis the correct geometry of the confining

magnetic field. The most commonly used approximations for computing the dispersion relation

are the cold plasma limit, which neglects thermal effects, and the warm plasma limit, which

considers thermal corrections only to first order. The wavevector is treated as a real quantity, on

the basis that its imaginary part is vanishingly small compared to the real part. Finite gyro-radius

effects are generally considered only to second order in k⊥ρi<<1 . Thus cyclotron heating due to

the counter-rotating component (E-) of the wave electric field may not be properly accounted

for, because the ratio between the co (E+) and counter-rotating polarisation depends critically on

k⊥ρi and Im(k⊥).
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In JET, a number of sophisticated codes are used for interpretation of experiments with

ICRF heating. They make use of the pertinent magnetic geometry, taking into account the D-

shaped configuration of the JET tokamak and the presence of a poloidal magnetic field, thus

allowing for a shift in the launched parallel wavenumber. Conversely, a simplified approach is

used for the solution of the dispersion relation, which neglects minority ion species and uses the

warm plasma approximation with a real perpendicular wavenumber.

These approximations may become inadequate to describe wave propagation and absorp-

tion in the presence of resonating ions since for them k⊥ρi≈1 and Im(k⊥)<<Re(k⊥) does not hold

true at the plasma edge, due to coupling of the launched fast magnetosonic waves to surface

modes, in the ion cyclotron resonance layer, due to thermal effects of the resonating ions, and

where mode conversion to Bernstein waves occurs. Thus cyclotron heating due to E- as well as

power absorption due to overlapping cyclotron harmonic effects can no longer be ignored. This

mechanism is important since in a non-uniform magnetic field wave-particle interaction is a

non-local process because for resonant ions k⊥ρi≈1. The governing equations are coupled inte-

gro-differential equations for the components of the wave electric field {Ex, Ey, Ez}. Such a

system has been formulated and solved for ICRF waves in fusion plasmas [8], and it has been

shown [9,10] that an approximate method in which ICRF waves are described by a single sec-

ond order differential equation is adequate as long as a sufficient number of overlapping har-

monics is included in the computation. Here we follow this method.

Hot plasma theory allows us to fully analyse wave propagation and absorption for arbi-

trary ion gyro-radius, thus including implicitly the effect of overlapping cyclotron harmonics,

by using a complex perpendicular wavenumber. We have developed a method for solving the

hot plasma dispersion relation and computing power deposition in the ion cyclotron range of

frequencies for plasmas containing minority anisotropic fast ions. The method uses measured

thermal and non-thermal ion densities and temperatures and a complex wavenumber in cylindri-

cal geometry to describe wave propagation and absorption in axisymmetric plasmas with a non-

uniform magnetic field. Here we shall present details of such analysis.

For the minority ICRF heating scheme, in which resonating ions are present with different

concentrations, a larger fraction of wave power is coupled to the minority ion species, and direct

collisionless bulk ion heating is expected to be negligible for thermal plasmas with Te≥Tib (elec-

tron temperature greater than bulk ion temperature), so that nibTib<nfT⊥f (bulk ion energy smaller

than minority fast ion perpendicular energy) [11]. Conversely, injection of fast atoms into the

plasma provides substantial collisional bulk ion heating. In this situation we show that cyclotron

heating of majority ions becomes non-negligible for Tib≥Te and nibTib>nfT⊥f, thus reducing the

ICRF power available to minority ions. These results agree quantitatively with measurements

and modelling of the minority ion distribution functions.

For ICRF heating the power absorption mechanisms and the distribution function of reso-

nant ions depend on each other, and much effort has been put into computing these two quanti-
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ties self-consistently [7,12]. Fast anisotropic ions affect power deposition in two ways: (a) the

parallel temperature determines the Doppler width of the ICRF resonance layer, modifying the

absorption profile; (b) the perpendicular temperature determines the absorption strength, par-

ticularly for heating at frequencies other than the fundamental. However, minority resonant ion

species have generally been neglected when computing the dispersion relation.

Our aim is to model and validate the measured minority fast ion distribution function in

the plasma centre by analytically solving its evolution equation in velocity space, to demon-

strate self-consistency between measurements and wave absorption and provide quantitative

understanding of the experiments. Therefore we use a simplified magnetic configuration to avoid

unnecessary numerical complications, however we consider the formal wave theory without

simplifying the algebra required for its treatment to fully exploit its usefulness.

We use Neutral Particle Analyser (NPA) measurements [3,4] of the perpendicular distri-

bution function of resonant ions in the energy range 0.3≤E(MeV)≤1.5 as input for the calcula-

tions. We solve the hot-plasma ICRF dispersion relation in cylindrical geometry using a com-

plex wavenumber, considering hydrogen isotope ion species with their respective concentra-

tions and summing over an appropriate number of cyclotron harmonics. Using the dispersion

relation we compute collisionless power partition between electrons and ions due to Landau

Damping (LD), Transit Time Magnetic Pumping (TTMP) and Cyclotron Damping (CD). We

compare the results of our calculations with Fokker-Planck (FP) modelling of the minority fast

ion distribution function, magnetic measurements of the fast ion energy content and with a

simple energy balance which neglects diffusion in velocity space and includes only losses due to

ion-electron collisions, thus giving Wi=ni(T⊥i+T||i/2)=ρABSτS/2 (absorbed power density times

ion-electron slowing down time). We obtain quantitative agreement within the uncertainties of

the measurements, usually of the order of 15%.

This paper is organised as follows. In section 2 we discuss the dispersion relation and the

power absorption mechanisms for ICRF waves. In section 3 we present the modelling of the

velocity distribution function of ICRF heated high energy minority deuterons. In section 4 we

apply this model to JET experiments with deuterium NBI and second harmonic ICRF heating of

deuterium plasmas containing a background minority proton population. Finally, in section 5 we

discuss our results and in section 6 we summarise our conclusions.

2. DISPERSION RELATION AND POWER ABSORPTION MECHANISMS IN THE

ION CYCLOTRON RANGE OF FREQUENCIES

The ICRF dispersion relation is solved using cylindrical geometry for axisymmetric plasmas

containing majority thermal isotropic and minority non-thermal anisotropic ion species. We

consider Maxwellian distribution functions for thermal ions and electrons (with T||=T⊥=T), and

bi-Maxwellians for fast ions (with T||<T⊥). The computation is carried over across the plasma

minor radius for waves propagating from the low field side. We consider the antenna parameters
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(wave angular frequency ωICRF, parallel wavenumber k|| and ICRF heating power PICRF) and

profiles for temperature, density and magnetic field as obtained in JET experiments with

ICRF+NBI heating. The main difference between toroidal and cylindrical geometry is that the

launched parallel wavenumber is kept constant across the plasma cross-section in the latter

since there is no poloidal magnetic field. Conversely, toroidal tokamak geometry gives rise to a

shift k||(x)=k||(launched)±k⊥(x)Bθ(x)/√2Bφ(x). Here Bθ and Bφ are the poloidal and toroidal com-

ponents of the magnetic field and x=r/a is the normalised minor radius, where x=0 corresponds

to the plasma centre and x=±1 corresponds to the plasma edge at the low (+1) and high (-1)

magnetic field side.

We compute the dielectric tensor ε(ω,k) summing over contributions of hydrogen isotope

ion species and electrons. In the ion cyclotron range of frequencies |εzz|>>| εij |, and a simplified

solution for the dispersion relation is obtained neglecting cross-field terms as [11,13]
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Using the above distribution functions the conductivity tensor elements are given by
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Here s denotes the different plasma species, λ=(k⊥ρ)2/2 and yl=(ω-lΩ)/k||υth, Il and I’ l are

modified Bessel functions of first kind and their derivative of argument λ, Z and W are plasma

dispersion functions of argument yl and δij  is the Kronecker’s unitary tensor. For ICRF waves

ω≈Ωi<<{ ωpe,|Ωe|}, therefore neglecting cyclotron resonances and using the small Larmor ra-

dius approximation λe<<1 , the electron contribution to the conductivity tensor simplifies to
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First we solve the (2×2) cold plasma dispersion relation for n⊥. Here n⊥C is real, the

conductivity tensor is independent of n⊥C, and we obtain the second order equation
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Here the reactive part of ε⊥ and εxy0 is neglected, the sum is intended over the ion species

and Zkj=Zj(yk). Including now first order corrections in the temperature, and the reactive part of

ε⊥ and εxy0, we obtain the warm plasma dispersion relation as the fourth order equation
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Here D is treated as a perturbation to the cold plasma dispersion relation: thus using

n⊥W=n⊥C(1+δ) the solution of the warm plasma dispersion relation is obtained as
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We obtain an initial guess for the complex hot plasma perpendicular refractive index n⊥H

by computing the hot plasma (2×2) dielectric tensor using n⊥C and solving the second order

dispersion relation

n n n nxx H xx yy xy|| || ||
2 2 2 2 2 0−( ) + −( ) −( ) −[ ] =⊥ε ε ε ε  . [4]

An iterative method is applied to obtain convergence of the hot plasma solution to the

desired accuracy: for computational stability we need to sum over a number of cyclotron har-

monics proportional to the ion Larmor radius, lBES=c0(A/Z2)T⊥(keV), where c0 is a constant

depending on the numerical accuracy. For JET deuterium plasmas corresponding to typical ICRF

heating experiments containing two minority anisotropic fast ion species, protons and deuter-

ons, with central parameters ne0=4x1019m-3, Te0=TDBULK0=10keV, np=nDFAST=0.05ne,

T⊥DFAST0=150keV, T⊥p0=300keV, T||p,DFAST=T⊥p,DFAST/10, we obtain convergence to the local

solution of the hot-plasma dispersion relation with relative accuracy ≤10-8 using c0=0.5 for ions

and c0=0.2 for electrons. Our approach corresponds to considering one cyclotron harmonic per

2keV of ion temperature and 5keV of electron temperature, consistent with the method proposed

in [10].

Using the hot plasma dispersion relation we compute the fraction of power absorbed through

LD+TTMP for electrons and ions using the (3×3) dielectric tensor, whereas to compute CD to

ions it is again sufficient to retain only the (2×2) dielectric tensor. The y-component of the wave

electric field Ey(x) is computed locally [9,10] using the WKB approach to describe the propaga-

tion of a wave from the low field side to the plasma centre (the x-direction, whereas the mag-

netic field lies in the z-direction, corresponding to the toroidal axis)
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The normalisation constant E0 is defined using the Poynting flux S(x) at the plasma edge,

close to the antenna location, S(1)=c|n⊥(1)Ey
2(1)|/8π=PICRF/A, where A is the area of the poloidal

surface intercepted by the wave beams. The x, z, left (E+) and right (E-) handed polarised com-

ponents of the electric field are computed from Ey using the dispersion relations

E x

E x

i

n
x

y

xy

xx

( )

( ) ||

= −
−

ε
ε 2  , 

E x

E x

i n i n n

n n n n
z

y

yz xx xy xz

xx zz xz

( )

( )

( ) ( )

( )( ) ( )
|| ||

|| ||

=
− + +

− − − +
⊥

⊥ ⊥

ε ε ε ε
ε ε ε

2

2 2 2  ,

E x

E x

i n

ny

yy xx

xx xy

+ ⊥=
− − −

+ −
( )

( )

( )

( )||

ε ε
ε ε

2

22
 , 

E x

E x

i n

ny

yy xx

xx xy

− ⊥=
− −
− −

( )

( )

( )

( )||

ε ε
ε ε

2

22
 .

CD occurs with absorption of energy by particles that, in their own frame of reference, feel the

wave electric field at their cyclotron frequency: the resonance condition is ω-k||υth||=l Ω. LD and
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TTMP involve energy absorption by particles moving along the direction of the magnetic field

with the parallel phase velocity of the wave: therefore the resonance condition is ω-k||υth||=0.

For LD the force acting on the particles is qE, for TTMP is -µ∇||B, µ being the particle’s mag-

netic moment. The power density absorbed due to collisionless wave-particle interaction is gen-

erally given as [13] ρ=ωIm(E*•ε•E)/8π: the superscript *  denotes complex conjugation. The

power densities for LD+TTMP (cross terms must be retained because the two effects are coher-

ent) and CD are [13]

ρ ω
π

ε ε εCD x xx y yy x y xyE E E E= ( )+ ( ) − ( ) ( ){ }∗
8

22 2| | Im | | Im Im Im  , [6]

ρ ω
π

ε ε ε εLD TTMP z zz y yy l y z yz x z xzE E E E E E+ =
∗ ∗= ( )+ ( ) − ( ) ( ) + ( ) ( ){ }8

2 22 2
0

| | Im | | Im Im Im Re Im

. [7]

A very interesting result is obtained for the ion populations using the small Larmor radius

approximation λi<<1 : in this limit the ion LD+TTMP is given in term of the ion CD as [13]

ρ λ ρ ρLD TTMP
i

i CD
i

CD
i

+ ≈ <<( ) ( ) ( )4 . An important consequence of this method is that we only need to

normalise the wave electric field using the Poynting flux at the plasma edge to compute the

power absorbed by different plasma species. This is due to the fact that allowing for Im(k⊥)

intrinsically gives rise to power dissipation, for instance due to coupling of the launched fast

wave to surface modes in the low density region at the plasma edge. Conversely, usual model-

ling of ICRF experiments in JET uses a real perpendicular wavenumber [12,14]. With this ap-

proach power dissipation occurs only due to the reactive part of the dielectric tensor computed

for a real wavevector: parasitic losses at the plasma edge was included as ad-hoc factor to match

experimental observations [7]. This procedure is no longer required when Im(k⊥) is explicitly

considered in the analysis. For fast evaluation of the resonating ion distribution function, these

conventional modelling use power deposition profiles tabulated from full-wave and ray-tracing

calculations performed considering the actual D-shaped toroidal geometry of JET. With our

approach, and although using a much simplified magnetic geometry, we obtain quantitative

agreement with these much more sophisticated codes on power deposition profiles for ions and

electrons.

3. MODELLING THE VELOCITY DISTRIBUTION FUNCTION OF ICRF HEATED

HIGH ENERGY MINORITY DEUTERONS

High energy deuterium NBI combined with ICRF tuned to the 2nd harmonic of the deuterium

cyclotron frequency (ωICRF=2ΩD) is routinely used in JET to heat the plasma. Following Stix,

these NBI deuterons undergo ICRF-driven diffusion in velocity space, and a very significant
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enhancement of the non-Maxwellian tail on their slowing down distribution function can be

produced with energy well in excess of the injection energy [11,13].

The distribution function of NBI deuterons under the combined effects of Coulomb scat-

tering on bulk deuterons and electrons and the resonant interaction with the ICRF wave field is

described by a FP equation with quasi-linear diffusion operators. However, because ICRF diffu-

sion acts preferentially on the perpendicular component of the velocity, the resulting tail is highly

anisotropic. Thus a complete solution of the FP equation requires a full 2D velocity space ap-

proach and is not readily amenable to an analytic treatment. A number of numerical codes have

been developed to solve the FP equation and other related problems: the PION code is used in

JET for this purpose [7,12,14]. However, to compute the ICRF power absorbed by NBI deuter-

ons, the energy transfer to the background plasma species, the fusion reactivity, and to interpret

the measured resonant ion distribution functions only the lowest order or isotropic part of the

solution is required.

We solve analytically the FP equation for NBI deuterons to lowest order using the cyclo-

tron wave field characteristics given by the hot plasma dispersion relation, section 2. Finite

Larmor radius effects and, when the 1st and 2nd cyclotron harmonic are both active, the effect of

other resonating ions within the plasma are included. This is particularly important for deute-

rium NBI into a deuterium plasma with a minority proton concentration since Ωp=2ΩD. In this

situation, due to finite Larmor radius effects, 2nd harmonic ICRF heating of bulk plasma deuter-

ons is not expected to play a role in the heating of NBI deuterons and will be neglected.

The FP equation describing the collisional relaxation and the resonant interaction of the

NBI ions with the ICRF wave field is given as [11,13]

∂
∂

δ υ υ
υ υ τ

∂
∂υ

υ ∂
∂υ υ τ

∂
∂υ

υ υ

υ
∂

∂υ
υ ∂
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f

t
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+ 
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
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( )
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( )0
2 2

2
2

3 3

2
2

1

1
 . [8]

Here f is the pitch-angle averaged distribution function, τS the Spitzer slowing-down time,

T the effective plasma temperature, υC the critical velocity at which the ion-ion and ion electron

collision frequencies are equal, S(t) the NBI ion birth rate, υ0 the NBI ion injection velocity:

f t f t( , ) ( , , )υ ∂ς υ ς=
−
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e the
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Z e n
= 3

16

3

2 4 ln Λ
 , υ π υC

e

i
the

m

m
3 33
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e

p

e

e
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
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
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




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



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
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−1 1
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1 2
/ /

/ξ  , ξ ρ τ= P S

e pT n3
 .
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Here ζ=cos(υ||/υ) is the pitch angle variable, Λ is the Coulomb scattering coefficient [15],

ξ is the Stix parameter for 1st harmonic heating of the minority protons [11], which also de-

scribes the increase in electron temperature due to the presence of the high energy proton tail

within the plasma, ρp is the surface averaged ICRF power density absorbed by the protons; np

and ne are the proton and electron density, m, mp, and me are the NBI ion, proton and electron

mass, Te and Ti are the electron and bulk ion temperature, and υthe is the electron thermal speed.

The pitch-angle averaged ICRF diffusion coefficient is [11,13]

D K E J
k

E J
k

ICRF l l
ICRF

l
ICRFl

( )υ ∂ς ς υ
ω

ς υ
ω

ς= −( ) −






+ −




−

+ −
⊥

− +
⊥

=−∞

∞

∫∑
1

1
2

1
2

1
2

2

1 1 1  . [9]

Here E+ and E- are the left and right-handed polarised components of the wave electric

field at ωICRF=2ΩD, Kl is a constant determined from energy balance considerations. Using the

ICRF power density absorbed by the resonant ions at the lth harmonic ρl
ABS , Kl is obtained from

ρ ∂υ υ ∂
∂υ

υ υABS
l

ICRFm f t D( ) ( , ) ( )= [ ]
∞

∫
0

3  . [10]

The procedure for solving the FP equation for the resonant ion distribution function, eq.[8],

is well known. First we use the Laplace transform technique, defined by

f t
i

dp f p pt
c i

c i

( , ) ( , )exp( )υ
π

υ=
− ∞

+ ∞

∫1
2

 ,

where Re(c)>0, to effect a reduction to a second order equation in the velocity variable which,

with suitable initial conditions, is most conveniently solved using the Green function method.

For the situation of NBI heating switched on before ICRF heating, the equation is solved with

the initial condition of a slowing down NBI ion distribution function. Thus we obtain for Kl

K
Z e

l m
l

D

= π 2 2

28 | | Ω
 . [11]

Considering now the NBI heating to be switched on at time t0<0, the ICRF heating at time

t=0 and neglecting energy diffusion, the initial NBI ion distribution function is

f t S t
C

S C

C

( , ) lnυ
υ υ

τ υ υ
υ υ

= =
+

− − +
+



















0
1

33 3 0
0
3 3

3 3  . [12]

Using the above procedure and the WKB method [16] to determine the Green functions,

the NBI ion distribution function is obtained for subsequent times t>0. Therefore in the velocity

range υ<υ0, below the NBI injection energy, we have
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In the velocity range υ≥υ0, above the beam injection energy, we have

f t

S t T

m
D

T

m
D

S C

C

C

S ICRF C

S ICRF C

( , )

ln

exp

υ

τ υ υ
υ υ

υ υ

υ τ υ υ υ

υ τ υ υ υ

υ

υ

=
− − +

+


















+

+ ( )′ + +

+ ( )′ + +



















×

× −

0
0
3 3

1
3 3

1
3 3

1
1
2

1
3 3

2 3 3

1

3
2

2

∫∫ ∫

∫

+





+ ( )′ + +
−

+( )
+























+

+
+ ( )′ + +

− −

3
2

2

1
2 2

2

2 3 3

1

3 3

2 2

2 3 3

0

2

u
T

m
du

Tu

m
u D u

u du

u
T

m
u D

T

m
D

S t
u du

Tu

S ICRF C

C

S ICRF

S ICRF C

S

τ υ

υ

τ

υ τ υ υ υ

τ

υ

υ

υ

υ

mm
u D u

u
T

m
du

Tu

m
u D u

u du

u
T

m
u D

S ICRF C

S ICRF C

C

S ICRF

+ ( )′ + +



















×

× −
+





+ ( )′ + +
−

+( )
+























∫ ∫

τ υ

τ υ

υ

τ
υ

υ

υ

υ

2 3 3

0

2

2 3 3

0

3 3

2 2

3
2

2
exp

[14]



11

Here υ1>υ2 are respectively the solution of the equations

t
u du

Tu

m
u D u
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2
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2 3 32
0 . [16]

The superscript ′ and ′′ denote derivative and double derivative with respect to the argu-

ment. Eqs.[13] and [14] with the subsidiary eqs.[15] and [16] define the general solution for the

problem satisfying the initial condition of eq.[12]. To increase analytical tractability, we con-

sider only heating at the 2nd harmonic: thus in the limit E-/E+<<1  the ICRF diffusion coeffi-

cient is

D K E
t dt

t
J

k
tICRF

ICRF
≈

−





+

⊥∫2
1

2
2

0

1
3

2 1
2 υ

ω
 . [17]

Now using the small Larmor radius approximation J1(x)≈(x/2)2 and the definition of the

Beta function B(x,y)=Γ(x)Γ(y)/Γ(x+y) we obtain

D K E
k

B K E
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υ( , / )  . [18]

Now the integrals occurring in eqs.[15] and [16] are elementary and read for υ1,2 as

t
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Therefore in this approximation the effective NBI ion slowing down time is

t
D
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EFF S

S
S
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( ) ln ( )=
+( ) + +











τ
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τ υ
υ3 1 4

1 1 4
2

2
0
3

3  . [19]

We can now relate this pitch-angle averaged distribution function to its bi-Maxwellian

form, corresponding to the NPA measurements discussed in [3,4,17], by noting that in the above

derivation υ=(υ||+υ⊥)1/2 and ζ=cos(υ||/υ). Thus we obtain
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Now we can perform a straightforward integration over the pitch-angle variable ζ using

the definition of the error function erf(x) and obtain for T||≠T⊥
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It is important to note here that the eqs.[12], [13] and [14] defining the NBI ion distribu-

tion function are no more Maxwellian in their energy dependence. Thus, in the applications of

the above procedure we will use the NBI ion density as measured by the NPA [17] and introduce

an effective tail temperature given at the mean energy of the measurements E*  by [4]

T T E
d F E E

dE
E EEFF = − ( ) ( )[ ]











=( )∗ ∗

ln /
@  . [21]

4. ANALYSIS OF 2ND HARMONIC ICRF DEUTERIUM HEATING IN JET

As application of the results of the previous sections we consider the case of deuterium NBI into

deuterium plasmas containing background minority protons. The ICRF system is tuned to deu-

terium 2nd harmonic heating in the plasma centre. This process is more effective for ions with

larger Larmor radius, thus NBI deuterons are predominantly heated. The presence of a second

resonant species, the minority protons, causes part of the ICRF power to be absorbed by the

protons at the 1st cyclotron harmonic. Direct coupling of ICRF power to majority bulk deuterons

is observed to be negligible for TDBULK≤Te, but becomes significant for TDBULK>Te. Thus bulk

ion heating predominantly occurs due to collisions with the NBI deuterons. Typical parameters

for the experiments are central electron and bulk ion temperatures Te0=5-10keV and TDBULK0=5-

30keV, central electron density ne0=3-5×1019m-3, thermal and NBI deuterium and proton con-

centration nDBULK/ne=0.8-0.9, nDFAST/ne=0.01-0.1 and np/ne=0.03-0.15, ICRF power PICRF=3-

5MW, NBI power PNBI=10-20MW, beam injection energy E0=80/140keV, toroidal magnetic

field on axis Bφ0=2-3.4T, plasma current Iφ=2-4MA. NBI heating is usually switched on 0.5-1s

before ICRF heating.

The system of eqs.[12]-[16] and [20] is solved using the JET ICRF antenna parameters

and the measured ion and electron distribution functions as input quantities for the calculations

of the dispersion relation and power absorption. Thus we obtain k⊥ and the ICRF power coupled
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to different plasma species, which enables us to compute DICRF and thus f(υ) and the effective

perpendicular tail temperature TEFF. We then compute the total fast ion energy content using a

collisional energy balance, which includes only losses due to ion-electron collisions [4,17]

W dV dV nT
T

T
WFAST

FAST
PLASMA

ABS S

FAST
PLASMA

FAST
MAG= = +















 =∑ ∑∫ ∫ ⊥

⊥

ρ τ
2

1
2

||  . [22]

Here the sum is intended over all reso-

nant ion species, ρABS=ρCD+ρLD+TTMP and

VPLASMA is the plasma volume. We compare

WFAST with the total energy content of the

measured distribution functions and the mag-

netic measurement WMAG, TEFF with the tem-

perature T⊥FAST inferred from WFAST and

WMAG using the measured fast ion densities and

with the NPA measurements of T⊥NPA in the

energy range 0.3≤E(MeV)≤1.5, which typically

lies 2-5 times above the typical T⊥NPA for the

ICRF heating experiments reported here.

In fig.1 we show the effect of wave in-

duced diffusion on NBI deuterons for a model

situation: we use k⊥=(25,i5)m-1 and the ICRF

power coupled to protons and NBI deuterons

Pp=0.5MW and PDFAST=3MW. We obtain a hot

tail in the deuterium distribution function: the

effective temperature TEFF=<mυ2/2> of NBI

deuterons increases from TEFF=77keV for

PDFAST=0 to TEFF=129keV for PDFAST=3MW,

with a energy enhancement factor <∆E>≈0.68

defined by
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Fig.1: The NBI deuterium distribution function in
the plasma centre as function of the normalised
injection velocity υ/υ0. We consider here a model situa-
tion with ne0=4.5×1019m-3, nDBULK/ne=0.94, np/
ne=0.03=nDFAST/ne, Te0=7keV, TDBULK0=15keV,
E0=140keV, PNBI=10MW, PDFAST=0-3MW, using the
solution of the hot-plasma dispersion relation
k⊥=(25,i5)m-1. NBI heating is switched on 1s before
ICRF heating. The effective tail temperature
TEFF=<mυ2/2> increases from TEFF=77keV for
PDFAST=0 to TEFF=129keV for PDFAST=3MW, with a
significant enhancement of the total energy content of
the NBI deuterons, <∆E>≈0.68.

∆E
T P MW T P

T P
EFF DFAST EFF DFAST

EFF DFAST
=

= − =
=

≈
( ) ( )

( )
.

3 0

0
0 68 . [23]

Our calculations contain T|| for NBI deuterons as a free parameter. Using wave dispersion,

we obtain energy equi-partition as T||/T⊥≈(k||/k⊥)2: T⊥ is directly measured by the NPA, k|| is

given by the antenna and k⊥ is the solution of the dispersion relation, which implicitly depends

on T|| and T⊥. We determine T|| for NBI deuterons through self-consistent solution of the disper-

sion relation: we use the above initial guess for T||, solve the dispersion relation, obtain k⊥,

update T||, and iterate until we find convergence with the prescribed residue for k⊥. We typically
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need 2-3 iterations to obtain the true T|| with a residue ≤10-8 and |T||(guess)-T||(true)|/

T||(true)<5%.

A more difficult problem is related to the basic fact that Ωp=2ΩD, and 2nd harmonic deu-

terium heating coincides with 1st harmonic proton heating. We model the proton population

with a bi-Maxwellian distribution function using independent measurements of np/nD, and en-

ergy equi-partition for the proton parallel and perpendicular temperatures. Thus we obtain [17]

T T
m

m

W

W W
Tp DBULK

D

p

e

DBULK DFAST
DFAST⊥ ⊥= +

+
 , T

k

k
Tp p||

||=
⊥

⊥

2

2  .

Here We is the electron energy density. These results are critical for our calculations, since

the magnetic measurement WMAG of the fast ion perpendicular energy content gives the sum

over ion species. Thus we have a very important test of this procedure by comparing WMAG with

W⊥p+W⊥DFAST: a discrepancy indicates lack of accuracy in our modelling of the proton popula-

tion.

We neither use a-priori power deposition profiles, as in conventional JET modelling [12,14],

nor ad-hoc factors to normalise the total absorbed power to the ICRF power. We determine

power tunnelling through the low-density region at the plasma edge, local power absorption and

power partition between ions and electrons using the species contribution to the hot plasma

conductivity tensor and to Im(k⊥). Thus we have two more important tests of our procedure: (a)

the power computed must not exceed the input power; and (b) CD must occur in the ICRF

resonance layer, as determined by the wave frequency and Doppler width.

We present results for three pulses, illustrating typical experiments with deuterium NBI

and central ICRF heating at ωICRF=Ωp=2ΩD. Pulse #40305 exemplifies polychromatic heating:

the antennae are used at different frequencies with dipole phasing 0π0π, to give a spreading in

the resonance position of the order of the Doppler width, and k||≈7m-1. This scheme gives broader

power deposition profiles, to reduce the minority resonant ion tail temperature and increase bulk

ion and electron heating. Pulse #40474 is an example of monochromatic heating with dipole

phasing: a single frequency is used, to give centrally localised minority ion heating. Pulse #40554

is an example of monochromatic heating with mixed phasing π/2-0π0, to give k||≈(3-7)m-1. This

scheme aims at producing non-inductive electron current drive to modify the plasma current

profile, since now the launched wave spectrum is toroidally asymmetric.

Figs.2, 3 and 4 show the main central parameters for the above pulses: the magnetic field

and plasma current are constant during the ICRF+NBI additional heating phase. The electron

density increases due to NBI fuelling and the bulk deuterium temperature becomes larger than

the electron temperature due to collisions with NBI deuterons. The measured NBI deuterium

density and temperature are constant after the initial transient phase of the heating for #40305

and #40474, and are slowly changing in time for #40554. Therefore we consider satisfied the

steady-state approximation used for modelling the NBI deuterium distribution function.
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Fig.2: Main central parameters for JET pulse #40305:
the toroidal magnetic field Bφ0 and the plasma current
Iφ are constant during the additional heating phase. The
background plasma is slowly varying: therefore we con-
sider satisfied the steady-state approximation for mod-
elling the NBI deuterium distribution function. The bulk
ion temperature increases over the electron temperature
due to NBI heating. The NBI deuterium temperature is
sustained after termination of ICRF heating for τ≈0.4s.,
consistent with the slowing-down time τD≈1.1s.
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Fig.3: Main central parameters for JET pulse #40474:
the toroidal magnetic field Bφ0 and plasma current Iφ
are constant during the NBI+ICRF heating phase. The
background plasma is slowly varying with time: there-
fore we consider satisfied the steady-state approxima-
tion for modelling the NBI deuterium distribution func-
tion. The bulk ion temperature increases over Te due to
NBI heating. The NBI deuterium temperature is sustained
after termination of ICRF heating for τ≈0.4s.: this is
consistent with the measured slowing-down time
τD≈1.0s.
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Fig.4: Main central parameters for JET pulse #40554:
the toroidal magnetic field Bφ0 and plasma current Iφ
are constant during the additional heating phase. The
background plasma is slowly changing with time after
the initial transient phase: therefore we consider satis-
fied the steady-state approximation for modelling the
NBI deuterium distribution function. The bulk ion tem-
perature increases over Te due to NBI heating. The NBI
deuterium temperature slowly decreases following re-
duction of ICRF power from 6MW to 2MW at t=6: this
is very well related to a much longer slowing-down time
τD≈1.8s.
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Fig.5: Central NBI deuterium and proton density for the
pulses analysed here as function of normalised time:
heating starts at τ=0 and ends at τ=1. NBI fuelling sus-
tains nDFAST0, and after the initial transient phase np0
steadily increases over nDFAST0 due to recycling from
the walls, particularly relevant when NBI heating is
switched-on or off. For #40305 and #40554 the fast deu-
teron and proton densities are comparable during the
main heating phase, whereas for #40474 nDFAST0>>n p0
due to higher ICRF power, PICRF=5MW compared to
PICRF=2MW.
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Fig.5 shows the minority proton np0 and NBI deuteron density nDFAST0 in the plasma

centre for the pulses considered here: we use a normalised time scale, where τ=0 marks the

beginning of the NBI+ICRF heating phase and τ=1 its end. NBI determines nDFAST0, whereas

np0 is largely sustained by recycling from the walls. Power partition between CD at 1st and 2nd

harmonic is determined for the same Larmor radius by nDFAST0/np0: higher np0, less the CD on

deuterons.

Figs.6, 7 and 8 show (for #40305, #40474 and #40554) the power deposition profiles for

CD and LD+TTMP on majority and minority ions and electrons as function of r/a, computed

using the dispersion relation. We average the measurements over 50ms and consider three dif-

ferent time-points during the heating phase: (a) at the end of the initial transient phase, (b)

during the steady-state phase, (c) immediately before the final ramp-down of the heating.
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Fig.6: Direct collisionless polychromatic ICRF heating
for pulse #40305 as function of r/a. We compute power
partition between plasma species and deposition pro-
files from wave dispersion. Strong influx of hydrogen
due to recycling from the walls at the beginning and end
of the heating phase determines CD onto minority pro-
tons and deuterons. In fig.6a we present our results for
t=12.225, at the end of the initial transient phase; fig.6b
for t=12.825, during the steady-state phase; fig.6c for
t=13.475, immediately before the final ramp-down of
the heating. The electron heating profile broadens fol-
lowing the raise in Te due to collisions with injected and
ICRF-heated fast ions, and its magnitude increases due
to NBI fuelling. The first peak at r/a≈0.5 can be attrib-
uted to ELD, the second peak at r/a≈0.8 to TTMP.

Our calculations show some general features of the heating in these experiments. Ion LD

is negligible compared to cyclotron heating, since the wave phase velocity is much larger than

the ion parallel thermal speed. This is a well-known theoretical result: it further validates our

numerical procedure and verifies the assumption that parallel ion heating essentially occurs due
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to collisions and energy equi-partition. At the beginning of the heating phase power absorption

due to CD on the fast ion populations (NBI deuterons and protons) is the dominant process, but

when TDBULK≥Te direct collisionless bulk ion heating appears to prevail. This result can be

misleading: power absorption increases almost linearly with density for different ion species

with same Larmor radius, being proportional to the conductivity tensor elements. Conversely,

the increase in electron heating over ion heating can be directly related to the increase in elec-

tron temperature due to collisions with injected and ICRF-heated fast ions.
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Fig.7: Direct collisionless monochromatic ICRF heat-
ing in pulse #40474 as function of r/a. Power partition
between plasma species and deposition profiles are com-
puted using wave dispersion. Influx of hydrogen due to
recycling from the walls at the end of the heating phase
determines CD onto the protons and NBI deuterons.
Fig.7a presents our results for t=12.225, at the end of
the initial transient phase; fig.7b for t=12.825, during
the steady-state phase; fig.7c for t=13.475, immediately
before the final ramp-down of the heating. The electron
heating profile broadens following the raise in Te due to
collisions with NBI and ICRF-heated fast ions, the mag-
nitude increases due to NBI fuelling: here we do not see
two separate peaks corresponding to the position of the
maxima in ELD and TTMP. We attribute the stronger
bulk ion heating to the much higher ICRF power den-
sity in the plasma centre.

We notice that for polychromatic heating, as shown in fig.6 for #40305, the CD deposition

profile is broader than that obtained for monochromatic heating, as shown in fig.7 for #40474

and fig.8 for #40554. The peak in ion CD is in the ICRF resonance layer: its location depends on

Im(εxx+εyy)|E+|2. This factor varies for different ion species: for polychromatic heating we ex-

pect the shape of the CD deposition profile for protons and deuterons to be similar but not

exactly overlapping, with a shift depending on wave frequency and ion species temperature

[12]. The electron deposition profile depends on LD ≈Im(εzz)|E|||
2 and TTMP ≈Im(εyz)|Ey|

2: for
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Fig.8: Direct collisionless monochromatic ICRF heat-
ing in pulse #40554 as function of r/a. Power partition
between ions and electrons and deposition profiles are
computed using wave dispersion. Influx of hydrogen due
to recycling from the walls occurs after t=6, determin-
ing the strong increase of CD onto the protons over that
onto NBI deuterons. Fig.8a presents our results for t=5.5,
at the end of the initial transient phase; fig.8b for t=6.5,
during the steady-state phase; fig.8c for t=7.5, immedi-
ately before the final ramp-down of the heating. Con-
trary to #40474, where we have a similar wave power
density, at the beginning of the heating phase bulk ion
heating is negligible due to the lower ion temperature.
The electron heating profile shows two clear peaks, at
r/a≈0.4 for ELD, and at r/a≈0.6 for TTMP.

large electron temperature the position of their maxima may not be identical, although we ex-

pect a broad gaussian shape peaked near the centre of the poloidal cross-section [12]. Our results

agree with these predictions even if we use cylindrical geometry for the magnetic field, which is

much simplified with respect to the D-shaped toroidal geometry of JET. Thus we are confident

in their accuracy and ability to model the NBI deuterium distribution function.

We see for #40305 in fig.6 that CD on NBI deuterons and protons are comparable only for

the steady-state heating phase, CD on protons being larger otherwise. This result depends on the

fact that the proton density is larger than the NBI deuterium density at the beginning and end of

the heating phase due to recycling from the walls, and during the initial transient phase wave

power is coupled preferentially to 1st harmonic heating. We see for #40474 in fig.7 that CD on

NBI deuterons is larger than CD on protons but at the end of the heating phase, where we

observe strong influx of hydrogen due to recycling from the walls. For #40554 (different anten-

nae phasing) we see in fig.8 that the electron absorption profile has two clear peaks, whereas for

#40305 and #40474 we see a quite broad gaussian shape. We attribute the peak at r/a≈0.3 to

wave-driven current carrying electrons, localised closer to the plasma centre since in resonance
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with the fraction of the wave spectrum launched with π/2 phasing. The electrons in resonance

with the waves launched with dipole phasing produce the peak at r/a≈0.5-0.6.

Figs.9, 10 and 11 show power partition between ions and electrons for #40305, #40474

and #40554. We notice two important results: (a) the total power PCALC (including Bernstein

wave heating) computed from wave dispersion accounts for almost exactly the ICRF input power,

the difference being <10%; (b) some power PLOST/PICRF≤5% is lost due to coupling to surface

modes in the low-density region at r/a>0.9. We notice that CD on the protons is the dominant

absorption process for the initial transient phase of the heating: collisionless bulk ion heating is

important only for TDBULK>Te. Similarly, electron heating increases significantly following the

increase in Te due to collisions with fast ions: at the most, ≈25% of wave power is directly

coupled to electrons due to the combination of LD and TTMP. In PION, loss of power at the

plasma edge is used in modelling similar experiments to reconcile the calculations with global

and local measurements such as plasma energy and neutron rate, without a clear explanation

being proposed [7]. Here we show that this loss process is a typical feature of the hot-plasma

ICRF dispersion relation due to coupling of the launched fast magnetosonic wave to surface

modes in the low-density region at r/a>0.9. Using the hot-plasma dielectric tensor, a second

solution is possible in the ion cyclotron range of frequencies with the perpendicular refractive

Pe≈ 0.5MW PDBULK≈ 0.8MW PDFAST≈ 0.5MW Pp≈ 1.0MW

Pe/PICRF≈ 17% PDBULK/PICRF≈ 27% PDFAST/PICRF≈ 17% Pp/PICRF≈ 33%

12.0 13.0 14.0
0

3
2
1

0

1

2
0

1

2
0

1.0

Time (s)

3

3

3

4

2

2

2

1

1

1

PCALC

PLOST
PICRF

Total absorption 

Cyclotron

Landau + TTMP

Pulse No: 40305

JG
98

.4
46

/2
7c

(1)   Bulk deuterium
(2)   Fast deuterium

(3)   Protons
(4)   Electrons

(x
10

3 
W

)
(x

10
6 

W
)

(x
10

6 
W

)
(x

10
6 

W
)

Fig.9: Power partition between plasma species for JET pulse #40305. At the beginning of the heating phase CD on
protons dominates. CD on the NBI deuterons is lower than that on the protons: we attribute this result to the use of
polychromatic heating. Ion LD accounts for <1% of total heating, as predicted by theory. Electron heating in-
creases following an increase in Te due to collisions with fast ions, reaching a maximum absorbed power Pe≈0.7MW.
On the average, a small fraction of power PLOST≈0.2MW is lost at r/a>0.9 due to coupling to low-density surface
modes. We observe negligible mode conversion in the plasma centre to ion Bernstein waves (≈0.05MW) and at the
plasma edge to electron Bernstein waves (≈0.05MW).
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index at the plasma edge given by n nzz xx yy⊥ ≈ −( )2 2ε ε ε|| / . This mode is backward propagating

and highly evanescent as the density increases. Coupling to the launched fast wave is locally

effected by Im(n⊥H), subtracting power to the fast wave at a rate given by PLOST/PICRF≈Im(n⊥H)/

Re(n⊥H). From these general results, we conclude that our approach is adequate to describe

ICRF wave propagation and absorption in JET deuterium plasmas with minority protons and

NBI deuterons.

In fig.9 for #40305 we see that the proton and deuteron slowing-down times are τp≈0.6s

and τD≈1.1s: the increase in electron heating is well related to the increase in Te due to collisions

with fast ions. CD on NBI deuterons is lower than on protons: we attribute this result to use of

polychromatic heating. During the steady-state heating phase, with PICRF=3MW, we obtain for

the fraction of wave power absorbed by electrons, bulk deuterons, NBI deuterons and protons:

In fig.10 for #40474 we see that CD on NBI deuterons is much higher than on protons but

for the initial transient phase: we attribute this result to use of monochromatic heating. The fast

ion slowing-down times are τp≈0.6s and τD≈1.0s: we relate the increase in electron heating to

collisional transfer from fast ions. For the steady-state heating phase, with PICRF=5MW, the

fraction of wave power coupled to electrons, bulk deuterons, NBI deuterons and protons are:

Pe≈ 1.1MW PDBULK≈ 1.0MW PDFAST≈ 1.6MW Pp≈ 1.0MW

Pe/PICRF≈ 22% PDBULK/PICRF≈ 20% PDFAST/PICRF≈ 32% Pp/PICRF≈ 20%
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Fig.10: Power partition between ions and electrons for JET pulse #40474. CD on NBI deuterons is significantly
higher than on the protons but during the initial transient phase: we attribute this result to use of monochromatic
heating. Ion LD accounts for <1% of total heating, as predicted by theory. Electron heating increases following the
increase in Te due to collisions with fast ions, reaching a maximum absorbed power Pe≈1.4MW. On the average, a
small fraction of power PLOST≈0.3MW is lost at the plasma edge due to coupling to low-density surface modes. We
observe negligible mode conversion in the plasma centre to ion Bernstein waves (≈0.05MW) and at the plasma
edge to electron Bernstein waves (≈0.1MW).
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In fig.11 for #40554 we see that CD on protons is the main heating process during ramp-

up of ICRF power, and bulk deuterium heating is important in the steady-state phase. For t=7.5-

7.8 we find mode conversion to Bernstein waves at 0.6<r/a<0.8, producing predominant elec-

tron heating. The fast ion slowing-down times are longer, τp≈1s and τD≈1.8s: this relates well to

a slower increase in electron heating. For the steady-state heating phase, with PICRF=2MW, the

fraction of wave power absorbed by electrons, bulk deuterons, NBI deuterons and protons are:

Pe≈ 0.1MW PDBULK≈ 0.8MW PDFAST≈ 0.1MW Pp≈ 0.8MW

Pe/PICRF≈ 5% PDBULK/PICRF≈ 40% PDFAST/PICRF≈ 5% Pp/PICRF≈ 40%
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Fig.11: Power partition between plasma species for JET pulse #40554. At the beginning of the heating phase CD
on protons is the dominant absorption process, whereas for the steady-state phase we find significant CD on bulk
deuterons. For the plasma conditions of this pulse, the antennae with π/2 phasing (k||=3m-1) produce a wave
spectrum prone to mode conversion to electron Bernstein waves in the outer region of the plasma, for 0.6<r/a<0.8.
This becomes the dominant absorption mechanism at t=7.5-7-8. On the average, a small fraction of power
PLOST≈0.2MW is lost at the plasma edge due to coupling to surface modes, and we observe negligible mode con-
version in the plasma centre to ion Bernstein waves (≈0.05MW).

Fig.12 shows the perpendicular fast ion energy content for #40305, #40474 and #40554:

our results agree quantitatively with magnetic and NPA measurements. Proton heating domi-

nates during the initial transient phase of the heating, and CD on bulk deuterons becomes impor-

tant only for TDBULK ≥Te and nDBULKTDBULK≥{npT⊥p, nDFASTT⊥DFAST} . We see that

W⊥CALC>W⊥MEAS: we see this systematic small difference, comparable to the uncertainties of

the measurements, but for the initial transient phase of #40554. We attribute this result to the use

of a simplified energy balance, neglecting ion-ion collisions and conservation of toroidal angu-

lar momentum: thus in our calculations we tend to overestimate the fast ion energy. Inclusion of

such effects is beyond the scope of this work, since it would require a considerable effort on the

modelling of the NBI deuterium distribution function without adding significantly to its inter-

pretation.
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Fig.12: Perpendicular ion energy content for the pulses
analysed here. Our calculations are in quantitative
agreement with NPA and magnetic measurements, usu-
ally within <15%. The increase in TDBULK due to colli-
sions with NBI deuterons produces stronger absorption
of ICRF power, which in turn subtracts wave power to
protons and NBI deuterons, determining an increase in
the bulk ion energy content. We notice that the calcu-
lated perpendicular energy content of NBI deuterons is
systematically in excess of ≈15% of that measured by
the NPA.

Fig.13 shows comparison between the perpendicular temperature of NBI deuterons meas-

ured by the NPA T⊥NPA, the modelled temperature TEFF and that deduced from the fast ion

energy T⊥DFAST. Using eq.[22] to interpret the magnetic measurements, we deduce a perpen-

dicular temperature using toroidal symmetry, assuming gaussian profiles for the fast ion densi-

ties and temperatures with widths λ and δ, considering fixed T||/T⊥=α and normalising WMAG to

the fast ion density measured by the NPA. Thus we obtain

W R a erf n T W WMAG
FAST

FAST FAST DFAST p= +( )( ) ( ) = +∑ ⊥ ⊥ ⊥1 2 0
2α π πβ β  .

Here a and R0 are the plasma minor radius and geometric centre, and β=1/δ+1/λ. We

obtain quantitative agreement between these results within the uncertainties of the measure-

ments, usually 15%. This finally confirms the capability of our approach to interpret experi-

ments with ICRF+NBI heating of deuterium plasmas. We find that TEFF and T⊥DFAST are larger

than T⊥NPA, which could confirm the need for inclusion of ion-ion collisions and conservation of

toroidal angular momentum in modelling the velocity distribution function of NBI deuterons.
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Fig.13: Comparison for the pulses analysed here be-
tween the perpendicular temperature of NBI deuterons
measured by the NPA in the plasma centre and those
computed from fast ion energy content and FP model-
ling of the distribution function using wave dispersion.
These results agree quantitatively within the uncertain-
ties of the measurements, usually 15%.

5. DISCUSSION

In this paper we have shown interpretation and modelling of measurements of the distribution

function of hydrogen isotope ions during multispecies minority ICRF heating of deuterium

plasmas in JET. ICRF power is tuned to central 1st harmonic heating of minority protons. The

presence of a second minority resonant species into the plasma, such as the NBI deuterons,

causes part of the ICRF power to transfer to 2nd harmonic heating of these supra-thermal ions.

Hot plasma theory allows us to consider thermal and overlapping cyclotron harmonic

effects in the analysis of wave propagation by using a complex wavenumber in cylindrical ge-

ometry. An iterative method for computing the hot-plasma dispersion relation and power depo-

sition for ICRF waves has been developed for plasmas containing minority anisotropic fast ions

using measured thermal majority and non-thermal minority distribution functions as input for

the calculations. We solve iteratively the hot-plasma dispersion relation considering electron

and hydrogen ion species with their respective concentrations, summing over an appropriate

number of cyclotron harmonics to account for the non-local interaction of the ions with the wave
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field. We compute collisionless partition of ICRF power between electrons and ions due to CD,

LD and TTMP, mode conversion to ion and electron Bernstein waves and parasitic loss of power

due to coupling of the launched fast magnetosonic wave to low-density surface modes at the

plasma edge. During the initial transient phase of the heating CD on the protons is the dominant

absorption process. Collisionless bulk deuterium heating is negligible for TDBULK≤Te, but in-

creases with the ion temperature and can become significant for TDBULK>Te. Direct electron

heating, due to LD+TTMP damping, accounts for ≤25% of ICRF power, and increases follow-

ing the increase in Te due to collisions with fast ions.

The perpendicular energy content of NBI deuterons and protons deduced from the meas-

ured distribution functions and calculated using hot-plasma dispersion relation and ion-electron

collisional energy balance is compared with the magnetic measurement. We find quantitative

agreement within the uncertainties of the measurements. Finally the measured perpendicular

temperature of the NBI deuterons is compared in the plasma centre with those computed from

magnetic measurements of the fast ion energy and FP modelling of the distribution function:

quantitative agreement is again found within the uncertainties of the measurements.

The computational time required to perform these calculations on the JET IBM 3090 sys-

tem using a space resolution ∆r≈3cm is typically ≈3-5 minutes of CPU time per time point with

a required numerical accuracy <10-8 on the iterative solution of the wave dispersion relation.

Work is now underway to optimise the algorithms used in our numerical procedures.

6. CONCLUSIONS

We have obtained quantitatively self-consistency between NPA measurements of the proton and

deuteron distribution functions and modelling of the ICRF-heated ion distribution function by

using a complex perpendicular wavenumber in cylindrical geometry for the wave dispersion

calculations. Inclusion of ion-ion collisions and conservation of toroidal angular momentum

could be required to further improve the accuracy of our model, though at the expense of a

considerable effort on the analytical modelling and numerical computation of the ICRF-heated

ion distribution function.

Despite the very significant differences between the previous calculations used in JET and

those considered here, they both appear to be able to interpret satisfactorily the experiments,

thus complementing each other. Moreover, we have demonstrated the necessity for inclusion of

power loss at the plasma edge through coupling to low-density surface modes, which was unex-

plained by the previous JET approach. We conclude that for our purposes the actual magnetic

geometry is not of primarily importance, since we are mostly interested in quantities evaluated

in the plasma centre, where the effects due to the presence of the poloidal magnetic field are

negligible. Conversely, we need to consider the full hot-plasma dispersion relation summing

over an appropriate number of cyclotron harmonics to account for the large Larmor radius of the

fast ion populations and to model in a phenomenological way the non local interaction between

the wave field and the ions.
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