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ABSTRACT

In a toroidal plasma the distribution function of ions interacting resonantly with waves in the Ion

Cyclotron Range of Frequencies (ICRF) can be described with a three dimensional orbit-aver-

aged Fokker-Planck equation. This equation can be solved with a Monte Carlo method. Explicit

expressions for the Monte Carlo operator describing wave particle interaction, within the frame-

work of quasilinear theory, are given. Furthermore, properties of the operator are discussed.

1. INTRODUCTION

Resonant interaction between ions and waves in the Ion Cyclotron Range of Frequencies (ICRF)

leads to a distortion of the velocity distribution function and a concomitant spatial transport of

the resonating ions. In an axisymmetric toroidal device it is possible to reduce the Fokker-

Planck equation, which describes wave particle interaction and collisions, to three dimensions

by averaging it over unperturbed orbits, see e.g. Ref. [1]. The velocity distribution function of

the resonating ions is then a function of three invariants of the unperturbed motion. A convenient

way of solving the orbit-averaged Fokker-Planck equation is to use Monte Carlo technique.

Previously, Monte Carlo operators for the orbit-averaged Fokker-Planck equation have been

constructed [1].

The orbit-averaged quasilinear Monte Carlo diffusion operator for wave particle interac-

tion presented in Ref. [1] is, however, not given in a fully explicit form. In particular, the part

related to the expectation values in the Monte Carlo operator is given in terms of derivatives of

the diffusion tensor with respect to the invariants. To carry out these derivatives numerically can

be difficult. The purpose of this paper is to show that by using a special set of invariants the

numerical evaluation of the expectation values can be considerably simplified.

The outline of the paper is as follows. In section 2 we write the orbit-averaged quasilinear

diffusion operator for Fokker-Planck equations derived by Kaufman [2] in a general set of coor-

dinates. We discuss some features of the quasilinear diffusion operator, particularly wave-in-

duced spatial transport, in section 3. In section 4 we present the Monte Carlo operator in a form

that is suitable for fast numerical evaluation, and in section 5 we illustrate the importance of

proper evaluation of the operator using numerical computer simulations. Finally, section 6 sum-

marizes our results.

2. THE ORBIT-AVERAGED QUASILINEAR DIFFUSION OPERATOR

As has been shown for example in Ref. [1], the orbit-averaged Fokker-Planck equation for ions

interacting with waves can be written as

∂
∂
f

t
C f Q f0

0 0= +( ) ( ) , (1)
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where f0 is the orbit-averaged distribution function, C is a collision operator and Q is a quasilinear

operator for wave particle interaction. The orbit-average is defined as

  
L L= ( )∫∫∫ d d dθ θ θ1 2 3, (2)

where θ1, θ2 and θ3  are the angles of an action-angle coordinate system J,θ( )  [2], which exists

in an axisymmetric magnetic configuration. In such a coordinate system the unperturbed Ham-

iltonian for a particle depends only on the actions J , and the angles evolve linearly in time:

˙ ( )θ ∂
∂i i i
H

J
= =0 Ω J . (3)

Here, Ω1
1

0= ∂ ∂H J/  is the orbit-averaged cyclotron frequency,

Ω2
2

0 2= = =∂ ∂ τ ωH J/ /π b b is the bounce frequency (τb  is the time it takes for a particle to

complete an orbit) and Ω3
3

0= =∂ ∂H J/ ϕ̇  is the orbit-averaged time derivative of the toroidal

angle. The angles θ1, θ2 and θ3  roughly describe the position of a particle in the Larmor rota-

tion, the poloidal position along the guiding centre orbit and the toroidal position of the banana

center, respectively. Furthermore, the actions J1 and J3  are given by

J m Ze1 = ( )µ / = ( )⊥m ZeB2 2v2 /  and J P3 = ϕ  = +Ze mR B Bψ ϕp ||v/( ) /2π , where m is the mass,

Ze is the charge, B is the magnetic field strength, Bϕ  is the toroidal component of the magnetic

field, ,     v|| = ⋅v B / B and v is the particle velocity. Furthermore, R is the major

radius coordinate, and ψ p is the poloidal magnetic flux. The expression for J2  is omitted since

it will not be used later. For a detailed exposition of action-angle variables we refer the reader to

Ref. [2].

The orbit-averaged quasilinear diffusion operator for wave particle interaction has been

derived by Kaufmann and it reads [2]

Q f
J

D
f

Ji
ij

j0
0( ) = 





∂
∂

∂
∂

. (4)

Following the steps outlined in Ref. [1] and making the normal assumption that the

stochastisation of the resonating ions is sufficient to prevent them from having super-adiabatic

motion, the diffusion tensor Dij  can be written as

D D n nij i j

n N

= ∑ 0
, ,

,
ω

(5)

where

D H n N0 1
2= π

ω
ω

b
( , , , )J , (6)
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, (7)

Here, n n1 =  (cyclotron harmonic), n N3 =  (the toroidal wave number of the wave), n2 is

given by the resonance condition ni
iΩ = ω  [1], β ω= ⊥ ⊥k v c/ , ωc = ZeB m , 

  
vg  is the guiding

center velocity of a particle, k is the wave vector, Jn  is the Bessel function of the order n, and

E+  and E−  are the left-hand and right-hand components of the electric field, respectively.

For a general set of invariants,  I I J= ( ), we can now write the quasilinear operator as

Q f
g I

gD n n
I

J

I

J

f

Ii
k l

i

k

j

l j
n N

( )
, ,

0 0
01=







∑ ∂

∂
∂
∂

∂
∂

∂
∂ω

, (8)

where g  is the Jacobian of the transformation. Later on we will find it convenient to write the
orbit-averaged quasilinear operator in an the following alternative form (see appendix)

Q f L D L f

L n
I

J I

n N n N
n N

n N
k

i

k i

( )

.

, , , ,
, ,

, ,

0 0 0= ( )

=

∑ ω ω
ω

ω
∂
∂

∂
∂

(9)

For convenience, we now specialize to the invariants (E , Λ , Pϕ ), where E m= v2 2/ ,

Λ = = ⊥µB E B B0 0
2/ /( )v v2  and B0 is the magnetic field at the magnetic axis. These invariants

are frequently employed in the literature, but it should be emphasized that the analysis below

can easily be adapted for other sets of invariants. In the adopted set of invariants Q f( )0  can be

written as [1]

Q f
g I

gD
f

Ii
ij

j( )0
01= 





∂
∂

∂
∂

, (10)

where the diffusion tensor elements D Dij ji=( )are given by

D DEE

n N

= ∑ω
ω

2
0

, ,

, (11)

D
n

E
DE

n N

Λ Λ= −∑ ω ω ω

ω

c0
0

, ,

, (12)
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D ND
EP

n N

ϕ ω
ω

= ∑ 0
, ,

, (13)

(14)

D
n

E
ND

P

n N

Λ Λϕ ω ω

ω
= −∑ c0

0
, ,

, (15)

D N D
P P

n N

ϕ ϕ

ω
= ∑ 2

0
, ,

. (16)

Alternatively, using Eq. (9) we obtain

Q f L D L fn N n N
n N

( ) ( ), , , ,
, ,

0 0 0= ∑ ω ω
ω

(17)

where the operator L is given as

L
E

n

E
N

Pn N, , .ω
ϕ

ω ∂
∂

ω ω ∂
∂

∂
∂

= + − +c0 Λ
Λ

(18)

Finally, let us turn to the diffusion coefficient D0. We consider a case where the resonant

interactions between a wave and a particle are well separated in space and de-correlated. The

integral in Eq. (7) will then be made up of individual contributions from around the points where

the phase Φ  in Eq. (7)  is stationary. These individual contributions can easily be calculated with

the method of stationary phase and the result is,

D
Ze

n
E J E Jn n0 2

2

1 1
2

4
= ( ) ( ) + ( )⊥ + − − +∑1

ω ω
β β

˙ R
R

2
R R

stationary

points

v , (19ed0s)

where subscript R refers to a quantity evaluated at a stationary point, i.e. at a resonance.

3. PROPERTIES OF THE OPERATOR

The operator written in Eq. (18) is not so easy to identify with operators derived in earlier works.

In order to relate it to the operator used by Stix in his seminal work on ICRF heating [3], let us

now change invariants to the perpendicular velocity, , the parallel velocity, , and the

poloidal flux, ψ p1, at a given magnetic field B B= 1. This set of invariants can be related to our

previous set as:

E
m= +( )⊥2 1

2
1

2v v|| ,    P mF B Zeϕ ψ ψ π= +( ) / /( )||p pv1 1 1 1 2 , (20)
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where F RB( )ψ ϕp = . With this new set of invariants the operator Ln N, ,ω  in Eq. (18) can be

expressed as

(21)

For a particle which has a resonance at our chosen magnetic field, B1, we have (in the

small banana width limit)  With these expressions one

can easily see the close connection between velocity space part of the operator Ln N, ,ω  and the

one used by Stix [3], which was originally derived by Kennel and Engelmann for a straight field

line geometry [4]. In fact, the only difference is that a term containing a derivative with respect

to the local poloidal flux appears in Eq. (21).

From the characteristics of the operator Ln N, ,ω  we can derive the following relationships

between the change in the velocity and the poloidal flux (i.e. the spatial position) a particle

receives as it passes a resonance point

    

v v   v v

v

v

R R
cR

||R ||R
cR

pR

p p p R pR
D

R

R
cR

||R
p

p
p pR

⊥ ⊥

=

= = −

=
−( ) − ⋅

+
















∆ ∆ ∆ ∆

∆ ∆

1 1

2

m

n
E

m

n
E

RB k B k B B F

B m
F

E

ω
ω

ω ω
ω

ψ
ψ

ω ω ∂ ψ
∂ψ

ϕ ϕ

ψ ψ

, ,

( )

( )

,||

k v

π

(22)

where vD is the perpendicular component of the guiding center velocity and all quantities are

evaluated at the magnetic field, BR, where the particle orbit crosses the resonance. Note the

complexity of the expression for the change in the poloidal flux at the resonance as compared to

the expressions

,       ∆ ∆P
N

Eϕ ω
= (23)

for the change in Λ  and toroidal angular momentum.

As can be seen from Eqs (22) and (23), the change in the poloidal flux at the resonance

depends not only on the wave frequency but also on all three components of the wave vector

(
  
k kϕ ψ ψ, , /p p pk ⋅ ∇ ∇ ), whereas the changes in the invariants Λ  and Pϕ  only directly depend

on the wave frequency and the toroidal mode number (N k R= ϕ ). Thus, in spite of the apparent

importance of kp  and 
  
k ⋅ ∇ ∇ψ ψp p/  for the change in ψ pR (and thus for the change in the
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spatial position where the orbit crosses B B= R ), for a given ∆E  it is only the toroidal mode

number that is important for the spatial transport of resonating ions. The reason for this some-

what surprising fact, which at first sight seems to be a contradiction, is that as kp  and

  
k ⋅ ∇ ∇ψ ψp p/  change, both the location of the interaction and the relative changes in v vR ||R⊥ ,

and ψ pR are modified. The combined effect of these modifications is such that the relative

changes of the invariants Λ  and Pϕ  are independent of kp  and 
  
k ⋅ ∇ ∇ψ ψp p/ . It is only

through the diffusion coefficient,D0, that kp  and 
  
k ⋅ ∇ ∇ψ ψp p/  play a role.

The change in the spatial position at the resonance when k B k Bp pϕ ϕ− ≠ 0  is the same

effect as has been discussed in the context of interaction between short wavelength waves, e.g.

Lower Hybrid waves, and fast ions [5]. As discussed above, this effect does not play a role for

the spatial transport of ions interacting with ICRF waves.

One should note that for wave propagation in a torus the launched toroidal mode number

spectrum is invariant, while the parallel wave number k|| can upshift significantly especially in

the case of weakly damped waves. The reason for the upshift in k|| is that modes with higher

poloidal mode numbers m than emitted by the antenna are excited through mode coupling, and

k
m

r

B

B

N

R

B

B|| = +p ϕ  where r is the minor radius. As our results show, such an upshift in k|| does

not directly affect the radial transport of the resonating ions since the toroidal mode number is

conserved.

Finally, we see that for a symmetric toroidal mode number spectrum the wave-induced

transport of trapped particles is purely diffusive, whereas for an asymmetric spectrum there also

is a convective component.

4. MONTE CARLO OPERATOR

In the Monte Carlo approach to solve the orbit-averaged Fokker-Planck equation, a large number

of “particles” are followed in invariant space (a particle in this context does not represent a real

single  particle but an ensemble of particles with the same invariants that are distributed along an

orbit). The invariants of a “particle” at a time step, tn , are changed to those at the next time step,

t t tn n+ = +1 ∆ , according to

I t I t Ii
n

i
n

i( ) ( )+ = +1 ∆ . (24)

The components of the Monte Carlo operator, ∆Ii , are stochastic variables, whose expectation

values and covariances are given by

E I
t

ti
i

∆ ∆[ ] = d

d

µ
(25)
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C I I
t

ti j
ij

∆ ∆ ∆,[ ] = d

d

σ
. (26)

The time derivatives of the expectation values, µi , and covariances, σij , are obtained

from the orbit-averaged Fokker-Planck equation by following the time evolution of a distribu-

tion function,   f g0
1 2

0= −− / ( )δ I I  representing a single particle at t tn= ,

d

d
d

µ µ ∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

i
i i

j
i j

j
k l

i

k

j

lt
I

f

t
g I

g I
gD

g I
gD n n

I

J

I

J
= = = ( ) =






∫˙ 0 3
0

1 1
, (27)

d

d
d

σ σ µ µ ∂
∂

ij
ij i i j j ij

t
I I

f

t
g I D= = − − =∫˙ ( )( ) 0 3 2 . (28)

The Monte Carlo operator can now be written as a sum of two components,

∆ ∆ ∆I
t

t A ti
i

ik
k= +d

d

µ ξ , (29)

where ξk  are uncorrelated stochastic variables with zero expectation value and unit variance;

and the matrix Aik  must fulfill the relation: A A tik jk

k

ij∑ = d dσ / (note that this is not a tensor

summation, i.e. k is a contra-variant index in both of the tensors). There is no unique solution for

Aik , two methods for obtaining a solution are discussed in Refs. [6, 1]. Following Ref. [6] one
can obtain the following explicit expression:

∆ ∆ ∆E t tE
E

EE= +˙ ˙µ ξ σ (30)

∆ ∆ ∆Λ Λ Λ
Λ

ΛΛ Λ= + + − ( )







˙ ˙ ˙ ˙ ˙ ˙µ ξ σ σ ξ σ σ σt tE

E EE E EE2
(31)

∆ ∆ ∆P t S S t
P

E
EP EE P

P
P P EP EE P

ϕ µ ξ σ σ ξ ξ σ σ σϕ ϕ ϕ
ϕ

ϕ ϕ ϕ ϕ= + + + − 



 − 

















˙ ˙ ˙ ˙ ˙ ˙Λ
Λ Λ2 2

.

(32)

where S
P P E EP EE E EEΛ Λ Λ ΛΛ Λϕ ϕ ϕσ σ σ σ σ σ σ= −



 − ( )˙ ˙ ˙ ˙ ˙ ˙ ˙

2
 is zero in the case of interac-

tion with a single frequency.

In order to keep the computation time down, it is essential to evaluate d dµi t/  and

d dσij t/ efficiently. While the time derivative of the variances are just two times the diffusion
tensor elements, the time derivative of the expectation values are much more complicated to

evaluate, involving derivatives with respect to the invariants. Since the diffusion tensor ele-

ments can be precalculated and stored in a table, allowing for fast subsequent calculation by
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interpolation, one could in principle easily evaluate the expectation values by numerical differ-

entiation using the elements in the table. However, this method only works when a particle

interacts resonantly with the same toroidal mode numbers and frequencies in all of the grid

points used for the interpolation. In practice one will frequently encounter particles for which

this condition is not fulfilled or particles which are outside the grid (e.g. with energies above the

maximum energy of the grid). For such particles it is important to evaluate the Monte Carlo

operator directly as efficiently as possible.

Using the result from the appendix we can write the expectation values as

d

d

µ ∂
∂

∂
∂

∂
∂

∂
∂ω

ω
ω

i
k

j

k j
l

i

l
n N

n N
l

i

l
n Nt

n
I

J I
D n

I

J
L D n

I

J
=







=







∑ ∑0 0
, ,

, ,
, ,

. (33)

From this form we can see that in order to evaluate the expectation values directly in a numeri-

cally efficient way, it is essential to find a set of invariants in which Ln N, ,ω  takes a suitable

form. Such sets of invariants exist. For example, with the set of invariants given by

I E
n⊥ = Λω
ωc0

,  I E
n|| = −







1
Λω
ωc0

,   I P
N

Eϕ ϕ ω
= − (34)

the operator Ln N, ,ω  takes the simple form:

L
In N, ,ω ω ∂

∂
=

⊥
(35)

and we have

d

d

µ ω ∂
∂

∂
∂

∂
∂

∂
∂ω

i
l

i

l
l

i

l
n N

t
D

I
n

I

J
n

I

J

D

I
=







+











⊥ ⊥

∑ 0
0

, ,

. (36)

Thus, we can evaluate the expectation values for the invariants 
  
I = ( , , )E PΛ ϕ  as

d

d

µ ω ∂
∂ω

E

n Nt

D

I
=

⊥
∑ 2 0

, ,

(37)

d

d
cµ ω ω ω ∂

∂ω

Λ Λ
t

n

E

D

I E
D

n N

= − −








∑

⊥

0 0
0

2

, ,

(38)

d

d

µ ω ∂
∂

ϕ

ω

P

n N
t

N
D

I
=

⊥
∑ 0

, ,

, (39)

which is relatively easy since we only need to calculate ∂ ∂D I0 / ⊥  numerically. In practice this

means that D0 must be evaluated in two points around the central point, i.e. at

E E I= ± ⊥0 ∆ (40)
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Λ Λ ∆
∆

= + ±
+ ±

−
+













⊥ ⊥

⊥ ⊥

⊥

⊥
0

0n I I

I I I

I

I I

ω
ω

c

|| ||
(41)

P P
N

Iϕ ϕ ω
= ± ⊥0 ∆ . (42)

5. NUMERICAL ILLUSTRATION

In order to illustrate the importance of proper evaluation of the Monte Carlo ICRF operator for

modeling of ICRF heating, we use the FIDO code [7]. This code solves Eq. (1) using the Monte

Carlo operators described in Section 4, with the expectation values of the invariants (E, Λ, Pϕ)

calculated according to Eqs (37)−(39). The term ∂ ∂D I0 ⊥ in Eqs (37)−(39) is obtained by evalu-

ating the diffusion coefficient D0 in two points given by Eqs (40)−(42) around the central point.

For ions with resonances well separated along the orbit we assume the interactions to be de-

correlated. The integral in Eq. (7) is then made up of individual contributions from around the

points where the phase Φ  in Eq. (7) is stationary and the resulting D0 is given by

D
Ze

n
E J E Jn n0 2

2

1 1
2

4
= ( ) ( ) + ( )⊥ + − − +∑1

ω ω
β β

˙ cR
R

2
R R

stationary

points

v , (43)

where subscript R refers to a quantity evaluated at a stationary point, i.e. at a resonance. For ions

which have resonances close to each other along the orbit (i.e. particles which are near tangency

resonance where d dcR cRω ωt = →˙ 0 ) the contributions to Eq. (43) are modified and involve

Airy functions [8]. In FIDO D0 for particles having near tangency resonance is calculated using

Eq. (43) imposing a lower limit to nω̇cR  so that the contribution to D0 does not exceed the

maximum contribution obtained from the correct expression involving Airy functions.

In the simulations we use the steady-state parameters of an ICRF-only deuterium plasma

on JET with fundamental minority heating of hydrogen. A magnetic field of 3.5 T and a plasma

current of 3.3 MA are used, and the fundamental hydrogen resonance is located on the high field

side about 10 cm from the magnetic axis. Furthermore, the central electron density is

4.1×1019 m-3, and the central electron and ion temperatures are 3.5 keV and 2 keV, respectively.

The hydrogen concentration is 1 %.

The wave parameters and the power deposition profiles used in FIDO are taken from the

ICRF code PION [9]. In particular, we have k⊥ = 35 m-1, E−/E+ = 4, and the total hydrogen

absorption is 3.5 MW. We have performed calculations for a symmetric toroidal mode number

spectrum (N = 28, −28) which is representative of the phasing normally used in JET. In addition

we have studied effects of asymmetric toroidal mode number spectra with a single toroidal

mode number (N = 28 and N = −28), using the same parameters. For N = 28 the wave-induced

spatial transport of resonating particles is inwards and for N = −28 it is outwards.
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As can be seen in Fig. 1, the ICRF-

induced spatial transport of resonating ions

plays an important role for the fast-ion pres-

sure profile. In particular, the pressure profile

in the case where the ICRF-induced spatial

transport of resonating ions is outwards (N =

 −28) is broader than in the other two cases.

Also, the differences in the calculated fast-ion

pressure profiles between the inward drift case

(N = 28) and the symmetric phasing (N = 28, −
28) are smaller than compared to the outward

drift case. The main reason is that for the

80

60

40

20

0
0 0.2 0.4 0.6

r/a

N = 28

+28, –28

–28

p 
(k

P
a)

0.8 1.0

JG
98

.4
23

/8
c

Fig. 1 Pressure profiles of the resonating ions for differ-

ent toroidal mode number spectra.

inward drift case and for the symmetric phasing, most of the fast ions have wide non-standard

orbits which pass near the plasma center, whereas in the outward drift case standard banana

orbits which do not pass near the plasma center dominate. These general observations are con-

sistent with experimental evidence for the existence of ICRF induced drifts [10].

To assess the sensitivity of the fast-ion

pressure profile to possible errors in the calcu-

lation of the Monte Carlo ICRF operator, we

have performed three further simulations with

the FIDO code for each toroidal mode number

spectrum studied. When calculating

∂ ∂D I0 ⊥ in these simulations we have still used

Eqs (40)−(42), but we have neglected in turn

the variation in E in Eq. (40), in Λ in Eq. (41)

and in Pϕ in Eq. (42). This corresponds to ne-

glecting the term proportional to the derivative

of E, Λ and Pϕ , respectively, in the operator L

given in Eq. (18).

12

14

10

8

6

4

2

0
0.20 0.4

Correct ∂Do/∂I^

E = Eo

P = Pjo

= o

0.6
r/a

p 
(k

P
a)

0.8 1.0
JG

98
.4

23
/9

c

Fig. 2 Pressure profiles of the resonating ions for N=-

28 calculated with the correct expectation  values and,

for assessing the sensitivity,  when the E, Λ and Pϕ in

turn have been kept constant in Eqs.(40) - (42).

The results from these simulations with N = −28 are displayed in Fig. 2, together with the

result from the simulation where ∂ ∂D I0 ⊥  has been calculated correctly using Eqs (40)−(42).

While the fast-ion pressure profile calculated by neglecting the variation in Pϕ does not differ

much from the pressure profile calculated properly, neglecting the variation either in E or Λ has

a major effect on the pressure profile. The reason for these differences is the relatively strong

dependence of D0 on E and Λ, and its relatively weak dependence on Pϕ. Somewhat smaller

differences are found in the case of inward drift (N = 28) and the symmetric phasing

(N = 28, −28).
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6. SUMMARY

A 3D Monte Carlo operator for the orbit-averaged Fokker-Planck equation describing wave

particle interaction in a toroidal geometry has been derived from a quasilinear differential opera-

tor. Based on earlier work [1], the operator has been developed here to make it more suitable for

numerical implementation. Furthermore, properties of the orbit-averaged quasilinear differen-

tial operator have been discussed. By rewriting the differential operator in a special set of invari-

ants, the close relationship between this operator and the more familiar quasilinear operator for

a straight field line geometry could be demonstrated. Examination of the characteristics of the

quasilinear differential operator shows that, although all three components of the wave vector

influence the local change in the radial position an ion receives as it passes a resonance, the

relative changes in the particle invariants depend only on the toroidal component of the wave

vector. Consequently, it is only the toroidal component of the wave vector that is of direct impor-

tance for wave-induced spatial transport, the other component can only have an indirect effect

through the diffusion coefficient.
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APPENDIX

From Eq. (8) we obtain
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The last term in the above expression is zero, which can be shown as follows. Let

A = (1,0,0); hence ∇ ⋅ =J A 0. Transformation from Ji  space to Ii  space yields
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Following the same procedure for A = (0,1,0) and A = (0,0,1), we obtain
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Hence, Q f( )0  in Eq. (8) can alternatively be written as in Eq. (9).


