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ABSTRACT

Experiments with simultaneous lower hybrid current drive and ion cyclotron resonance fre-

quency heating of minority protons in JET deuterium plasmas showed efficient coupling of LH

power to the MeV energy anisotropic protons. Such interaction represents parasitic loss of LH

power, intended for electron current drive, to the proton population, with important implications

for the efficiency of LH current drive schemes in fusion devices containing high energy charged

fusion products. We solve the hot-plasma dispersion relation in the LH range of frequencies for

plasmas containing high energy minority anisotropic protons and electrons, and find that multi-

ple solutions of the dispersion relation with perpendicular refractive index n⊥>40 exist in the

plasma centre due to the presence of the protons. These hot-plasma modes give ≈20%-40%

damping of LH input power onto the protons by perpendicular Landau damping. Combinations

of background plasma and LH antenna parameters exist for which no solutions of the LH disper-

sion relation are found with n⊥≥20, thus reducing damping of LH power to the protons to ≈5%-

10%. This suggests ways of reducing the parasitic loss of LH power to high energy charged

fusion products.

I. INTRODUCTION

Measurements using a Neutral Particle Analyser (NPA) have yielded the energy distribution

function of protons in the range 0.3≤E(MeV)≤1.1 in the Joint European Torus (JET) [1,2]. The

protons, a minority ion species in deuterium plasmas, are driven to MeV energies by Ion Cyclo-

tron Resonance Frequency (ICRF) heating, and their distribution function fp(E) is strongly ani-

sotropic for energies E>>ECRIT, where ECRIT is the critical energy at which the proton-electron

and proton-ion slowing-down time are equal [3]. The NPA measurement set-up and details of

deduction of the energy distribution function are given in [2]. For E>ECRIT the proton distribu-

tion function may be approximated by a bi-Maxwellian. Then the perpendicular temperature

and density of the proton population in the plasma centre can be deduced from the NPA meas-

urements [4,5].

During simultaneous Lower Hybrid Current Drive (LHCD) and minority ICRF heating of

protons, the NPA measurements showed efficient coupling of LH power to the high energy

anisotropic proton population. The coupling was deduced for driven as well as for slowing-

down protons. Perpendicular Landau damping [6] enables LH waves to couple energy to ions if

the resonance condition υ⊥>υTHR=c/n⊥MAX is satisfied. Here n⊥MAX is the maximum perpen-

dicular refractive index in the LH spectrum and υTHR is the minimum perpendicular velocity for

wave-particle resonance. The observed interaction is contrary to expectations in two respects:

(a) taking place in the whole energy range of the measurements, it suggested that n⊥MAX≥40,

whereas conventional model calculations in JET of LH dispersion under pertinent conditions
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give n⊥MAX≤20 [7,8]; and (b) from the measurements we deduced that ≈30% of applied LH

power was coupled to the protons, much exceeding the predictions of ≈5%-10%, based on

n⊥MAX≤20 [7,9].

This paper is organised as follows. In Section 2 we present measurements of ICRF-driven

protons during LHCD. In Section 3 we derive from the measurements the fraction of LH power

damped by the protons. In Section 4 we present numerical simulations of the perpendicular

proton distribution function, showing that an up-shifted perpendicular refractive index n⊥MAX≥40

could produce the observed absorption of LH power by the protons. In Section 5 we solve the

dispersion relation in the LH range of frequencies for plasmas containing high energy aniso-

tropic minority proton and electron populations. This shows that the required up-shift in n⊥
takes place in the centre of JET plasmas due to the protons. Then in Section 6 we compute the

fraction of input LH power coupled to the proton population. Section 7 summarises our conclu-

sions.

II. EXPERIMENTAL EVIDENCE OF ABSORBTION OF LH POWER BY HIGH

ENERGY PROTONS

Early observations in JET [9] showed qualitatively the possibility of interaction of LH waves

with high energy protons, but no direct measurements were made of fp(E). To establish experi-

mental evidence for coupling of LH wave power to the protons we analysed fp(E) for 74 plasma

pulses, 24 with ICRF and LH heating power applied simultaneously and 50 with ICRF heating

power alone. Plasma pulses with ICRF heating alone have been used to establish the compari-

son for those in which LH power was superimposed to ICRF heating. The pulses analysed here

span the range in central electron density 1.3<ne0(1019m-3)<4.7, central electron temperature

3.6<Te0(keV)≤7.2, toroidal magnetic field on axis 2.6<Bφ0(T)<3.4 and plasma current

1<Iφ(MA)<3, with ICRF and LH power PICRF≤9.5MW and PLH≤4.6MW.

Clearest evidence of interaction between the protons and LH waves is obtained when LH

waves are acting on the slowing-down proton population. Figs.1a and 1b show comparison of a

pulse with ICRF heating alone with one having ICRF and LH power applied simultaneously, the

proton-electron slowing down time τSD being equal in the two pulses. In Fig.1a we notice that

with ICRF heating alone the hydrogen flux to the NPA decays within the slowing-down time

scale after termination of ICRF heating. On the other hand, with simultaneous ICRF and LH

heating as in Fig.1b, the hydrogen flux is sustained for a longer time when the LH pulse extends

beyond the ICRF pulse. Thus these measurements show direct absorption of LH wave power by

the protons, sustaining flux and temperature of the proton population well above the expected

slowing-down level after termination of ICRF heating. This behaviour is seen in different plasmas

with respect to the toroidal magnetic field and current, electron density and temperature, pro-

vided a sufficient amount of LH power, PLH≥1MW, is coupled to the plasma.
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Usual simulations of LHCD in JET plasmas [7,8,9] omit the fast ion populations and

predict that only protons with perpendicular energy W⊥≥ETHR=mpc
2/2n2⊥MAX≈1.2MeV, would

interact with LH waves. NPA measurements of fp(E) show that the proton population is sus-

tained by LH waves in the whole energy range, E≥287keV. Thus, in contrast to expectations, we

deduce that the energy threshold for interaction between the protons and LH waves is much

lower than that predicted by usual simulations of LHCD in JET plasmas. We attribute the ob-

served interaction to modification of the LH wave spectrum in the plasma centre due to the

presence of the proton population.
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Figure 1. Time evolution of count rate (CH) for H-atoms measured by the NPA, central electron density (ne0) and

temperature (Te0), input power (PICRF and PLH) during on-axis D(H) minority ICRF heating. In Fig.1a, for a pulse

with Bφ0=2.8T, Iφ=1.25MA and central proton density np0=8.2x1017m-3, we notice that after switching-off ICRF

heating the high energy H-flux decays over τ≈τSD. In Fig.1b, for a pulse with Bφ0=3T, Iφ=3MA and

np0=2.8x1017m-3, we notice that the atomic flux is constant with time and sustained by LH waves for τ≈0.5τSD after

ICRF power is terminated. τSD≈0.6s is equal in the two plasma pulses.

III. DEDUCTION OF ABSORBED LH POWER

During ICRF heating of minority protons in deuterium plasmas the proton distribution

function becomes strongly anisotropic for energies E>>E CRIT [3], where

ECRIT=14.8ApTe[ΣnjZj
2/neAj]

2/3≈8.7Te is the critical energy at which the proton-electron and

proton-ion collision frequencies are equal. The energy range of the NPA measurements lies well

above ECRIT, and fp(E) is well described with a bi-Maxwellian of the form

f
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Here u||,⊥=(2T||,⊥/m)1/2 are respectively the parallel and perpendicular thermal speeds and

T⊥>>T ||. The total energy content of such distribution function is W=np(Tp⊥+T||/2). For ICRF-

driven protons the perpendicular energy is determined by the balance between the coercive

force of the ICRF wave field and the collisional drag on thermal electrons, giving

Wp≈Wp⊥=npTp⊥=ρICRFτSD/2, where ρICRF is the ICRF power density coupled to the protons.
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Figure 2. Comparison of ξ for ICRF heating alone and ICRF+LH heating. Fig.2a shows that during combined

ICRF+LH heating ξ is well in excess of that for ICRF heating alone if only ICRF power is considered for proton

heating, obtaining a correlation coefficient R=0.75. Fig.2b shows that to reconcile the magnitude of ξ for these two

heating schemes we need ≈30% of LH power added to ICRF power, obtaining a correlation coefficient R=0.97±0.01.

We determine the fraction of LH power coupled to the protons by comparing ion heating

in pulses with ICRF alone with those with ICRF+LH power. In order to normalise with respect

to variations in other variables, such as proton-electron slowing-down time, proton density and

applied power, we use as a figure-of-merit for proton heating the factor ξ=n
p
T

p⊥/ρTOT
τ

SD
, where

ρ
TOT

=ρ
ICRF

+αρ
LH

 is the total wave power density coupled to the protons. We wish to determine

α, the fraction of LH wave power directly absorbed by the protons. Here α ranges from 0 to 1

corresponding to limiting cases of none to all LH wave power coupled to the protons. We deter-

mine ξ by averaging the measurements over 200ms during the steady state heating phase of the

plasma pulses. In Fig.2a we show two groups of data, pulses with ICRF power alone and those

having ICRF+LH power for the same value of ρ
ICRF

. Entries in our data set have different values

of ρ
LH

, and therefore Fig.2a. shows large scatter in the data. We estimate the uncertainty in

ξ∼20%, mainly due to uncertainties in the proton density: thus we need to investigate systematic

trends in the measurements and we cannot rely simply on a pulse-to-pulse comparison. We then

iterate α to obtain the best correlation in the whole data set, as shown in Fig.2b.

We use a least-squares method with confidence level 0.95 to deduce the best fit α to the

heating factor ξ comparing ICRF alone and ICRF+LH data. The correlation R between two sets
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of data (X,Y) is defined as R(X,Y)=Cov(X,Y)/σXσY: here Cov(X,Y) is the covariance, σX and σY

are the standard deviations. Fig.2a shows the results of using α=0 whereby we obtain R=0.75.

Maximum value of R=0.97±.0.01 is obtained with α=0.3±0.05, the corresponding result is shown

in Fig.2b. We therefore conclude that on the average ≈30% of LH wave power is directly damped

by the protons, over a wide range in background plasma parameters and input ICRF and LH

wave power.

IV. SIMULATIONS OF PROTON DISTRIBUTION FUNCTION

To investigate the effect of LH wave power absorption on the proton distribution function we

have adopted Stix’s model for ICRF heating [3], which considers a balance between the coer-

cive force of waves and the collisional drag on the heated ions. This model has been extended in

[10] to the case of ion heating in a combined wave field of ICRF+LH. Following [10], a 1D

Fokker Planck equation in velocity space is constructed for the minority fast ion population

including the quasilinear (QL) diffusion coefficients describing ICRF (DICRF) and LH (DLH)

heating and collisional thermalisation with the bulk plasma (CSD). The equation is derived re-

ducing the original 3D velocity co-ordinate system (υ||,υ⊥,φ) to a 1D problem by assuming

toroidal symmetry, expanding the distribution function in Legendre polynomials in the pitch-

angle µ=υ||/υ⊥ and zero-order averaging over µ. Thus the only velocity co-ordinate surviving is

υ. This procedure gives the time-dependent QL evolution equation in velocity space for the

minority fast ion perpendicular distribution function

∂
∂ τ υ

∂
∂υ

υ τ ∂
∂υ

f
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where the QL diffusion operators in velocity space are
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Here mi and Ti are the majority ion mass and temperature, υC=(2ECRIT/m)1/2, Z, m and Ω
are the minority ion charge, mass and cyclotron angular frequency, Ψ+ and Ψ- are the amplitudes

of the left and right hand circularly polarised component of the ICRF wave field, k⊥ is the



6

perpendicular wavenumber and Ψ nII( ) 2
  is the LH wave energy density spectrum. H is the step

function and Jq±1 are Bessel functions of first kind. When stationary solution (∂/∂t=0) in the

high velocity limit (υ>> υC) are considered, equation 2 is integrated straightforwardly to give

f f
d

D DSD ICRF LH
0 0 0

1

0

( ) ( )expυ υ
τ

υ υ

υ

υ
= −

+









∫  . (3)

Here υ0 is the lowest velocity considered in the integration. This distribution function has

a temperature T⊥=m(DICRF+DLH)τSD, which reduces to the result of Stix [3] in the limit DLH→0.

The LH diffusion coefficient can be related to the LH power density absorbed by fast ions by

DLH=ρLH/3nm, where n is the fast ion density. In the linear approximation ρLH is given by

ρ
ω

π ωLH
p

LH
RMS

RES RESE

T

E

T
=





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−




⊥ ⊥

2

1 2
2

3 2

4 /

/

expΨ  . (4)

Here ωp=(4πZ2e2n/m)1/2 is the minority ion plasma frequency and |ΨRMS| is the root mean

squared average over n|| of the electric field in the LH wave spectrum. In equation 4, absorption

of LH power by fast ions reaches its maximum at ERES/T⊥=3/2, ERES≥ETHR. Since ETHR=mpc
2/

2n2⊥MAX, we obtain maximum absorption at n⊥=17.62/T⊥1/2(MeV)≤n⊥MAX. In JET deuterium

plasmas, the perpendicular proton temperature in typical combined ICRF+LH heating experi-

ments is 0.3≤T⊥(MeV)≤0.6. Thus maximum absorption of LH wave power by ICRF-driven

protons is theoretically obtained at 22≤n⊥≤33<n⊥MAX.

To simulate LH power absorption by an ICRF-driven proton population, the above LH

operator was incorporated in the time-dependent PION code [11,12], which self-consistently

calculates the ICRF power deposition and the fast ion distribution function. Details of the proce-

dures used for these calculations are given in [11,12]. Figs.3a and 3b [13] show examples of

simulated line-integrated perpendicular proton distribution functions in the plasma centre, cor-

responding to the high energy NPA measurements, for three typical cases: (1) ICRF heating

only, |ΨRMS|=0, (2) ICRF+LH heating, |ΨRMS|≠0 with n⊥MAX=20 and (3) ICRF+LH heating,

|ΨRMS|≠0, with n⊥MAX=40. For illustration, in cases (2) and (3) ≈10% of input LH power is

assumed to be absorbed by ICRF-driven ions, with the LH deposition profile coinciding with

the ICRF deposition profile. In Fig.3a the cross-over between the two distribution functions

occurs at E≥2MeV, whereas in Fig.3b it occurs at E≈1.5MeV.

The main effect of LH waves on the proton population is to flatten the high-energy tail of

their velocity distribution function beyond the threshold energy ETHR. In Fig.3a, using n⊥MAX=20

corresponding to ETHR≈1.2MeV, the perpendicular temperature of the ICRF-heated protons in-

creases for E≥1.2MeV and is slightly (<10%) reduced in the energy range of NPA measure-

ments. In Fig.3b, using n⊥MAX=40 corresponding to ETHR≈0.3MeV, the proton temperature is
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significantly increased (>20%) during combined ICRF+LH heating. These simulations show

that a LH wave spectrum with n⊥MAX≥40 reproduces qualitatively the main features of the

measurements.
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Figure 3. Simulations of the perpendicular proton distribution function during ICRF and LH heating [13]. In

Fig.3a, with n⊥MAX =20 corresponding to ETHR≈1.2MeV, there is no significant difference in T⊥ in the energy range

of the NPA measurements for DLH=0 or DLH≠0. In Fig.3b, with n⊥MAX =40 corresponding to ETHR≈0.3MeV, T⊥
increases in qualitative agreement with the measurements.

V. MODIFICATION OF LH DISPERSION RELATION BY ANISOTROPIC HIGH

ENERGY PROTONS

These simulations suggest that a LH wave spectrum with n⊥MAX≥40 could give rise to absorp-

tion by the protons as measured. We attribute such modification of the LH wave spectrum to the

presence of the protons. The dispersion relation is solved in the LH range of frequencies using

cylindrical geometry to describe wave propagation and absorption in non uniform plasmas with

parameters corresponding to the JET experiments, with toroidal magnetic field on axis

2.6≤Bφ0(T)≤3.4, LH wave angular frequency ωLH=2πx3.7x109rad/s and parallel refractive in-

dex nII=1.8. The poloidal component of the confining magnetic field is neglected in our calcula-

tions.

We consider a thermal isotropic deuterium plasma and include explicitly minority aniso-

tropic fast protons and fast electrons in the dielectric tensor, therefore adjusting the deuterium

concentration to maintain local plasma neutrality. The fast electron population arises due to

absorption of LH waves by Landau damping onto thermal electrons, and is responsible for the

electron LH current drive. We model the fast proton and fast electron populations using a bi-

Maxwellian distribution function
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Here we use the subscript e for thermal electrons, ef for fast electrons, D for deuterons and

p for protons. In our calculations we consider 0.05≤np/ne≤0.1, 0.1≤Tp⊥(MeV)≤0.5, TpII/Tp⊥=0.1,

up0=0, nef/ne=0.01, 2≤uef0/uef||≤4, 3≤TefII/Te≤5, and Tef⊥/TefII=0.2. For such plasma the proton

perpendicular beta (the ratio of plasma to magnetic field pressure) is of the order of the total bulk

plasma beta in the plasma centre, βp⊥≈βBULK=βD+βe. Radial profiles are taken as parabolic for

the background thermal ions and electrons, as gaussian for the protons and the fast electrons,

with half-width at half-maximum corresponding to the width of the ICRF and LH resonance

layers. The protons are localised close to the plasma centre [4,5], the fast electrons close to half

the minor radius [7,8]. The usual simulations of LHCD in JET [7,8,9] omit the protons and solve

the warm plasma dispersion relation, including first order corrections in the plasma temperature

and ion-electron collisions.

We consider the full hot-plasma electromagnetic dispersion relation, and solve for the

perpendicular component of the refractive index n⊥, summing over contributions of the particle

species mentioned. The dielectric tensor D(ω,k) is given by Stix [14] in the form
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Here δij is the Kronecker tensor and we use the Onsager symmetry relations. The subscript

s refers to the different particles’ species, the subscript q to the cyclotron harmonic number: the

cyclotron frequency is positive for ions and negative for electrons. Here Iq and Iq’  are the modi-

fied Bessel function of the first kind and its derivative, with argument λ=(k⊥u⊥/Ω)2/2. The

functions Aq, Bq and Cq are defined for any particles species by

A
k u

Z
k u T

T
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Here Zq is the Fried-Conte [16] plasma dispersion function of argument yq=(ω-qΩ -k||u0)/

k||u||, and Wq=-1-yqZq. All ion species and thermal electrons have u0=0. Fast electrons have u0≠0

and can reach energies at which relativistic effects are important: to account for them in a sim-

plified way we use the invariant mass mef=γefme, where γef=[1-(uef0/c)2]1/2 is the Lorentz factor

and me is the electron rest mass. Non-trivial solutions of the dispersion relation are obtained

from Det{D(ω,k)}=0  or from the poles in the dispersion relation, giving the resonance condition

k⊥
2→∞.

The cold-plasma approximation is obtained upon neglecting the minority particles species

and taking the limit Ts→0 for the bulk plasma species: the only surviving elements in the dielec-

tric tensor are (now s refers to bulk electrons and ions)

ε ε
ω

ω
εxx yy

ps

ss

= = +
−
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2

2 2Ω
 ,   ε

ω
ω ω

εxy
ps s
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xy=
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=∑
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2 2 0
Ω

Ω( )
 ,  ε

ω
ω

εzz
ps

s

= − =∑1
2

2 ||   , (8)

and the cold plasma dispersion relation reads

Cn Bn A⊥ ⊥+ + =4 2 0  , (9)

A n xy= − −[ ]⊥ε ε ε|| ||( )2 2
0

2  .   B n xy= + − +⊥ ⊥( )( )|| ||ε ε ε ε2
0

2  ,   C = ⊥ε  .

The warm plasma approximation is obtained keeping first order corrections in the tem-

perature, and the dispersion relation reads

Dn Cn Bn A⊥ ⊥ ⊥+ + + =6 4 2 0  , D
u

c

n T

n T

k u u

c
e pe

e

ef ef ef

e e

ef i

i
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ωω γ
ω

ω
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||  . (10)

Here the subscript i refers to the ion species, and the coefficient D is a perturbation to the

cold plasma dispersion relation, |D|<<{|A|,|B|,|C|} . The contributions from the protons and the

fast electrons have been included in the correction factor D.

For the purpose of solving the dispersion relation we use the code ZERINT [15], which

was developed for the solution of general, complex algebraic equations of the form F(z,p)=0,

where F and z are complex and p is a set of real parameters. A number of iterative numerical

methods are provided within the program to determine the accurate location of the zeros of F.

The most generally useful of these is based on Muller’s method, where three neighbouring
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points are used to fit a quadratic form derived from the local Taylor expansion of the function.

The new approximation to the required root is then calculated analytically from this interpolat-

ing expansion. The point with the highest residual is then replaced by the latest approximation

and the process repeated until a prescribed residual has been reached. In the neighbourhood of a

zero, Muller’s method exhibits nearly-quadratic convergence properties, but fails for a funnel

zero, that is when the function is very large except for a very small hole which contains the root.

Two further methods are provided which can prove useful in a few circumstances. The first is

similar to Muller’s method except that the local functional form is taken to be bilinear, which

can be of some advantage when roots are very close to poles of F. Secondly, a technique involv-

ing the Cauchy residue theorem can be employed to determine the number of roots in a closed

contour. Provided no poles are present and the roots are not degenerate, an estimate of their

positions can be obtained, and this method can be used to overcome the difficulties due to funnel

zeros. There are a number of safeguards implemented in ZERINT so that divergent behaviour

can be quickly detected and corrected.

We find that the presence of the protons affects the dispersion of waves in the LH range of

frequencies by introducing an ensemble of hot-plasma wave modes [17]. For a thermal plasma

without the proton population, the slow and fast waves are found with n⊥MAX≤20 using the cold

and warm plasma approximation; these solutions are continuous in ωLH/Ωp. For a thermal plasma

containing the proton population, solutions of the dispersion relation are found with n⊥MAX≥40

in addition to the (cold and warm plasma) slow and fast waves. These hot-plasma solutions

show a discrete resonant structure in ωLH/Ωp for given background plasma and nII. Figs. 4a and

4b show solutions of the dispersion relation in the LH range of frequencies with ne=3x1019m-3,

nD/ne=0.89, np/ne=0.1, nef/ne=0.01, Te=TD=5keV, Tp⊥=0.3MeV, Tp⊥/TpII=10, (uef0/ue)
2=10,

TefII=30keV, TefII/Tef⊥=5, n||=1.8, ωLH=2πx3.7rad/s. The slow and fast wave modes, below the

dashed line, have n⊥MAX<20 and are continuous in the wave harmonic number q=ωLH/Ωp. Hot

plasma solutions with n⊥MAX>30 are found for given n|| only in resonant bands (the three verti-

cal series above the dashed line) around discrete values of q=q0±∆q, with q0={74,86,98} and

∆q=2. The resonance width ∆n⊥/n⊥<0.1 of these hot-plasma modes increases with Tp⊥. Simi-

lar properties of the dispersion relation are found in the range of plasma parameters correspond-

ing to the experiments reported here.

The properties of the solutions of the LH dispersion relation are summarised as follows:

(a) for a thermal deuterium plasma, using either the cold or warm plasma approximation, the

slow and the fast wave roots of the dispersion relation are found with n⊥MAX<18;

(b) for a thermal deuterium plasma containing a minority anisotropic high energy proton popu-

lation βp⊥≈βBULK in the plasma centre, an ensemble of hot-plasma wave modes is found in

the plasma centre with n⊥MAX>40;

(c) hot plasma modes are found with similar properties in the range of parameters corre-

sponding to the experiments with combined ICRF+LHCD heating, reported in Section 1;
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(d) hot-plasma modes show a discrete resonant structure with respect to the wave harmonic

number q=ωLH/Ωp, suggesting cyclotron-like damping of LH waves on the protons;

(e) for given background plasma, values of ωLH/Ωp and nII exist for which such hot-plasma

solutions are not found, thus significantly weakening absorption of LH waves by the

protons.
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Figure 4. Solutions of the LH dispersion relation with ne=3x1019m-3, nD/ne=0.89, np/ne=0.1, nef/ne=0.01, Te=TD=5keV,

Tp⊥=0.3MeV, Tp⊥/TpII=10, (uef0/ue)
2=10, TefII=30keV, TefII/Tef⊥=5, n||=1.8, ωLH=2πx3.7rad/s, as function of the har-

monic number q=ωLH/Ωp for 70≤q≤100, corresponding to 2.4≤Bφ0(T)≤3.5. The slow and fast wave modes, below

the dashed line, have n⊥MAX <20 and are continuous in ωLH/Ωp. Hot plasma roots with n⊥MAX>30 (above the

dashed line) are found only in resonant bands around discrete values of the harmonic number for given n||: q=q0±∆q,

q0={74,86,98} and ∆q=2. The resonance width ∆n⊥/n⊥<0.1 of the hot plasma wave modes increases with Tp⊥.

Note that in Fig.4b for the slow and the fast wave Im(n⊥) is vanishingly small, whereas hot plasma wave modes

have large positive Im(n⊥), implying strong wave damping.

Using these results for n⊥, we computed the slow wave accessibility to the hot-plasma

solutions across the normalised minor radius r/a, as shown in Fig.5. Radial profiles are taken as

parabolic for background thermal ions and electrons, gaussian for minority non-thermal protons

and electrons, with half-width at half-maximum corresponding to the half width of the ICRF

and LHCD resonance layers. The sum over cyclotron harmonics is truncated at q
BES

=c
0
(A/

Z2)T⊥(keV): c
0
 is an empirical constant depending on the desired numerical accuracy. Stability in

the iteration procedure is obtained with relative accuracy ≤10-8 using c
0
=0.5 for ions and c

0
=0.2

for electrons.

We obtain an initial guess for n⊥HOT using the cold plasma approximation, and we iterate

the procedure until convergence is locally found for the slow wave mode: then we track this

slow wave root of the dispersion relation across the plasma cross-section. Mode conversion to

hot plasma wave modes with n⊥HOT>>n⊥COLD is found close to the plasma centre due to the fast

protons and close to half the minor radius due to the fast electrons if n|| is below the condition for

accessibility to the slow wave, n||<n||MC.
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Fig. 5 show the results of our calculations. For the plasma parameters of Fig.4, we find

that n||MC≈1.9, and no confluence is possible between the slow and fast wave modes, since the

critical parallel refractive [14] n||CRIT<0 for such plasma. These two mode conversion regions

are very narrow, approximately 0.1x(r/a), and their position coincides with the peak in the fast

particle perpendicular beta. Outside these regions the slow wave root returns to its cold plasma

value, and we do not follow further the hot-plasma wave modes. For n||>n||MC no mode conver-

sion is found and the perpendicular refractive index differs nowhere across the plasma cross-

section by more than 10% from the hot and cold plasma solutions.

Work is now underway in an attempt to develop an approximate analytic theory of the

above numerical results in order to shed further light on the role of the energetic minority pro-

tons and the fast current carrying electrons. Preliminary analysis indicates that these hot-plasma

wave modes are Bernstein-like waves: the non thermal minority populations provide the stronger

ion damping to account for the enhanced ion absorption of the LH waves. Their contribution is

effective only up to a certain value of k||. This result is in qualitative agreement with our numeri-

cal calculations and with measurements of fp(E) during combined ICRF+LH heating experi-

ments in which no coupling of LH waves to the protons seems to occur. For these cases, our

calculations indicate that 0.8≤n||MC≤1.3, well below the launched value of n||, so we would not

expect any mode conversion to occur.
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Figure 5. Hot plasma slow wave root of the LH dispersion relation as a function of the normalised minor radius r/

a with the same plasma parameter as in Fig.4. In Fig.5a modes with n⊥HOT>>n⊥COLD are found near the plasma

centre due to the fast protons and near half the minor radius due to the fast electrons. In Fig.5b wave modes with

n⊥HOT>>n⊥COLD are not found because n|| is now above the accessibility condition to the slow wave, n||MC≈1.9.

Work is in progress on the understanding of the critical parallel refractive index below

which mode conversion is found between the slow wave and the hot-plasma modes. We obtain

numerically that the value of n
||MC

 is always above n
||CRIT

, depends strongly on the bulk plasma

density for β
p⊥/β

BULK
~1, increasing for larger densities, and is much less sensitive to the mag-
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netic field and bulk plasma temperature. If β
p⊥/β

BULK
<<1 , no hot-plasma modes with n⊥≥40 are

found in the plasma centre irrespective of n
||
.

Finally, following the method developed by Woods, Cairns and Lashmore-Davies [18],

we compute the dispersion relation ω=ω(k⊥) for the hot-plasma modes across the normalised

minor radius, thus avoiding ambiguities about the direction of the group velocity of these wave

modes. We consider ω=ω1+δω, where ω1 is the launched LH wave angular frequency (corre-

sponding to the slow wave) and δω is the (complex) perturbation to ω1 induced by the fast

protons (near the plasma centre) and the fast electrons (near half the minor radius). We compute

locally δω using a fourth order equation for low-frequency waves derived under the condition

{|Ωe|,ωpe}>> ω≈ωLH

ω ω ω ω ω ω ω ωpe peA B C2 2 4 2 2
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2 2
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We consider ω1≈ωLH<< ω2≈ωpe, and we expand the conductivity tensor elements as the

sum of the cold bulk plasma and fast minority species contributions

ε ε εxx xx
f= +⊥

( ) . ε ε εxy xy xy
f= +0

( ) , ε εxz xz
f= ( ) ,

ε ε εyy yy
f= +⊥

( ) , ε εyz yz
f= ( ) , ε ε εzz zz

f= +||
( ) .

Here the superscript (f) refers to both the fast proton and electron species. We then derive

the following equation for the perturbation δω/ω1:
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In equation (12) we note that the cold plasma conductivity tensor elements {ε⊥,εxy0,ε||}

represent the dominant contribution, thus we can neglect quadratic terms in the fast particles’

contribution and obtain the following linearised equation for the perturbation δω/ω1:
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The perturbation produced by the protons to the launched slow wave mode is vanishingly

small outside the ICRF resonance layer: we then compute the average value of δω/ω1 in this

region. Fig.6 shows the results of our calculations. We find that the correction is small, thus

justifying use of perturbative theory and the neglect of quadratic terms, is quite insensitive to the

value of the launched n|| and has a negative imaginary part, corresponding to damping by the

protons. The parallel refractive index is then crucial in determining the accessibility of the

(launched) slow wave to the hot plasma modes, but it plays little role in further determining the

properties of these hot plasma modes once they have access to the slow wave.
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Figure 6. Real (Fig.6a) and imaginary (Fig.6b) parts of hot-plasma wave frequency induced by the protons as

perturbation to the launched LH frequency, averaged over the ICRF resonance layer, with the same plasma param-

eters as Fig.4. The correction is small, thus justifying use of perturbative theory and neglect of quadratic terms, and

is quite insensitive to the value of n||.

VI. POWER ABSORPTION BY FAST PROTONS

We compute, using the hot plasma roots of the LH dispersion relation, Fig.4, the fraction of LH

power absorbed by the protons averaging over the ICRF resonance layer assuming single pass

absorption, PABS=PLHexp(2ωIτ). Here ωI is the imaginary part of the frequency ω=ω1+δω, δω is

the perturbation induced by the high energy protons computed in Section 5 using equation (13),

and τ is the wave transit time across the ICRF resonance layer.
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Figure 7. LH power absorbed by the protons as function of n⊥, for the

same plasma as in Fig.4. The full vertical lines at n⊥>30 indicate the

hot-plasma wave modes induced in the plasma centre by the protons.

For clarity their resonance width ∆n⊥/n⊥<0.1 is shown only for one of

them. The dashed vertical line at n⊥≈16 indicates the cold plasma slow

wave. Note that no significant difference is found for values of n|| above

and below n||MC.

Fig.7 shows the result of such a procedure. Summing over all the hot plasma wave modes,

including their resonance width ∆n⊥, we find that ≈30% of the input LH power is absorbed by

the protons. For the cold-plasma slow wave mode, only ≈5% of input LH power is damped onto

the protons. It is worthwhile noting that maximum coupling of LH waves to the protons is found

for 20≤n⊥≤60, in good agreement with the linear approximation to the absorbed power density

computed using the QL diffusion coefficients, equation (4). This result further validates our

analytical approach to the numerical calculations.

VII.CONCLUSIONS

We have shown experimental evidence of interaction between LH waves and ICRF-heated pro-

tons in JET using NPA measurements of the proton distribution function in the range

0.3≤E(MeV)≤1.1. The coupling was observed for driven as well as for slowing-down protons.

Energy balance considerations give larger proton heating during application of combined ICRF

and LH power than would be obtained with ICRF heating alone. We deduce that ≈30% of LH

input power is coupled directly to the protons, with no significant dependence on background

plasma parameters. We have tested, using 1D numerical Fokker-Planck modelling, a conjecture

that this coupling is effected by modifications of LH dispersion in the plasma, and the experi-

mental observations are qualitatively reproduced using n⊥MAX ≥40. We investigated reasons for

the existence of wave modes with n⊥MAX≥40 by solving the hot-plasma dispersion relation in

the LH range of frequencies, including LHCD-driven electrons and ICRF-driven protons, using
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cylindrical geometry for the wave propagation and absorption. Solutions of the dispersion rela-

tion with n⊥MAX ≥40 are found in the LH range of frequencies in the plasma centre when the

proton population is added to a thermal deuterium plasma with βp⊥≈βBULK=βD+βe. Such hot-

plasma wave modes are not found if βp⊥/βBULK<<1. These modes correspond to LH waves

damping on the protons and show a discrete cyclotron-like resonant structure with respect to

ωLH/Ωp for given background plasma and nII. We interpret these hot-plasma wave modes as

Bernstein-like waves coupled to the protons. The protons provide the stronger ion damping to

account for the enhanced ion absorption of the LH waves up to a maximum value for k||. This

could explain certain experiments where no absorption of LH waves by the protons was ob-

served. Cold plasma modes with n⊥MAX ≤20 damp only ≈5-10% of LH input power onto the

proton population, consistent with the usual simulations of LHCD in JET. Hot plasma modes

with n⊥MAX ≥40 damp ≈30% of the LH input power onto the protons, consistent with measure-

ments and simulations of the proton distribution function. Hot plasma wave modes are not found

if βp⊥<<βBULK. For βp⊥≈βBULK, hot plasma wave modes are not found on increasing the launched

parallel wavenumber above the critical value for accessibility to the slow wave or, alternatively,

by adjusting the magnetic field and the launched LH frequency. This critical parallel refractive

index shows for βp⊥≈βBULK a very strong dependence on the electron density, increasing for

larger densities, and is much less sensitive to the magnetic field and bulk plasma temperature.

This result is therefore promising for maximising efficiency of LHCD in plasmas containing

high energy charged fusion products and give useful insights into the alpha-channelling scheme

proposed by Fisch [19].

Work is now in progress (a) to give a more complete physical interpretation to our numeri-

cal solution of the dispersion relation in the LH range of frequencies, and (b) to study the inter-

action of LH waves with charged fusion products in reactor relevant conditions, such as those

foreseen for ITER.
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