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ABSTRACT

Empirical scaling laws [1-3] for the confinement time τE in Tokamaks depend on dimensionless

global plasma parameters in a way which is difficult to associate with some general plasma

physics model.  It is shown that such dependencies can arise form artefacts in the database used

to derive the scaling expression.  The artefacts involve inner relationships, e.g. collinearities

between variables.  For the ITER L-mode and H-mode databases it is shown that subsets of the

scaling expressions are approximately constant.  An alternative description of L-mode, ELM-

free, small ELM and giant ELM H-mode data is given.  A simple electrostatic physics model

(plateau scaling) in which confinement is degraded by non-collisional processes, can describe

global confinement data for all four confinement regimes; this common scaling features a

multiplier C which is assigned a different value for each regime.  The complex physics associated

with MHD instabilities (ELM’s, sawteeth, outer modes) is hidden in the multiplier C and attempts

are made to uncover such physics.  In these attempts global confinement are made to scale with

physics models, electrostatic, MHD etc. rather than physics variables.

1. INTRODUCTION

Empirical scaling laws for the confinement time τΕ in Tokamaks such as Goldston or Kaye-

Goldston [1], ITER89P [2] and ITER93H [3] are based on multi-machine databases, i.e. databases

containing data from several different sized Tokamaks.  These multi-machine scaling laws like

several earlier single machine scaling laws appear to be different;  however by transformations

of the scaling laws these can be unified into scaling expressions based on physics models [4].

The differences between the scaling laws can then be accounted for by different β-scalings:

Table V of ref. [4] lists 16 scaling laws  showing different β dependencies

τE ~ βx
                    – 1.5 < x < 1.5 (1)

as apparently plausible scalings.  This dichotomy is the central subject of the present paper

which will examine experimental evidence for β-scaling from individual Tokamaks as well as

data from the ITER L-mode and H-mode databases.  Tokamak scaling laws have two principal

purposes:  extrapolations of τE can be made outside the τE range of the database;  secondly a

scaling law serves as an empirical benchmark for pulses on existing Tokamaks via the H89 or

H93 factor where

H93H = τE / τ93H (2)

H93H measures how well in a single experiment the confinement time τE compares against

the database as a whole represented by the scaling.

We use the Connor-Taylor representation [5] which links τE to a global average diffusivity

<χ>
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τE = 3
4

a2

< χ >
= 3

4
a2

χBF
= τB / F ...( ) (3)

The Bohm diffusivity is χB = <T>/B.  The dimensionless function F [3, 4, 5] is characterised

by its dependence upon a set of dimensionless parameters which characterise the plasma

configuration globally.  Which set of parameters that enter F as arguments is a matter of choice

as it depends on which transport physics model applies:  the review by Connor [5] presents a

variety of expressions for F;  ref. [6] lists a possible set of up to 18 dimensionless plasma

parameters.  In general Eq. (3) is an implicit equation for τE which appears on both the LHS and

RHS.

The H93H factor is a consequence of a linear regression on data for a set of nine variables

(confinement time τE, radius a, density n, current Iφ, power P, aspect ratio ε, elongation κ, ion

mass M, field Bφ).  The selected data is the ELM free data in the ITER H-mode database DB2

[3] and the result can be written in the form

F93H = C93H ρ
*
0.78 ν

*
0.28 β1.24 ε5.05 κ−0.15 M−1.23 q−1.03 (4)

C93H is a multiplier and the parameters in (4) represent global averages of local plasma

parameters [3, 4, 5, 6].  A recent update to (4) derived from the database DB3 [7] has produced

F97H which is similar to F93H given by (4), but the number C97H differs from C93H as do the

exponents for normalised Larmor radius ρ*, collisionality ν* , poloidal β, inverse aspect ratio ε,

elongation κ, ion mass M cylindrical safety factor q.  The empirical result (4) cannot easily be

associated with some physics model, e.g. ideal-resistive MHD, ion temperature gradient driven

turbulence, resistive fluid turbulence, collisional drift waves etc., for the following reasons

i) as β → 0 an electrostatic scaling expression should be recovered.

ii) the pronounced ε scaling should strongly favour Stellarators over Tokamaks.

iii) the M scaling is opposite to that associated with an ion gyro Bohm model.

In order to investigate the origin of the

various scalings of eq. (4) we show in Fig. 1

the distribution function f (H93H) for the ELM

free DB2 data on which H93H is based (curve

marked with circles).  As can be expected the

half-width of f (H93H) is of the order of the

r.m.s. error σ in the fittings.  Also shown in

Fig. 1 is the distribution function f (H93H) for

the ELMy data (curved marked with crosses).

The distribution of the ELMy data is similar to

that of the ELM free data, but with a mean value

of ~ 0.85; the representation FELMy = 1.40 F93H

is the one advanced by the ITER database
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Fig.1: Distribution functions for H factors in database

DB2. Circles refer to ELMfree data and crosses to ELMy

data.
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working group and determined on DIIID in [8]

(notice that the number 1.40 in FELMy

corresponds to a number 0.85 in τE because

Eqs. (3, 4) involve implicit expressions for τE).

The physics associated with the plasma energy

losses arising from small or “grassy” to large

or giant ELM’s is complex; the representation

of ELM types and how to quantify their effect

on each Tokamak constitutes a problem which

has been looked at by the ITER database expert

group [3] since its inception; a “zero order

H
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H
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Fig.2: The H factor for each single Tokamak is

proportional to β. DB2 ELMfree data.

solution” is thus the fixed reduction (factor 0.85) of τε for all Tokamaks.   Another problem is

illustrated in Fig. 2.  The DB2 ELM free data on the H93H factor (Eq. 2) is shown against

poloidal β as used in Eq. (4).  While the data as a whole shows no trend w.r.t. β, the data for each

Tokamak separately exhibits a definite proportionality; this trend is particularly pronounced for

the JET and PDX data.  The H93H and β proportionality for a given Tokamak shown by the

dashed lines in Figure 2 can be expressed as

H
93H 

≈ cβ     at fixed a and ε (5)

As much as H93H is a “goodness” factor it also represents a range of uncertainty

0.5 < H93H < 1.5.  Such a range can arise from  i) core physics effects  ii) spatial profile shapes,

iii) edge pressure pedestal; none of these effects can be described by the present global data.

The range of uncertainty is important for extrapolations made using Eq. (4).   Extrapolation from

the existing ITER databases to ITER has recently been discussed in [7, 9];  formally an

extrapolation can be made in any direction of a multi-dimensional space; standard statistical

procedures determine the uncertainty range ∆τΕ associated with a prediction τ93H.  It is however

well known that limitations on the data do not permit extrapolations to be made in certain directions

i.e. those of the “least” principal components [2, 3, 7, 9].  To overcome such limitations one can

adopt the similarity scaling approach [10].  The step in the confinement time τE for a specific

operating regime of JET to the confinement time for a similar regime in DIIID or in ITER

involve only a scaling w.r.t. normalised Larmor radius ρ
*
.  Similarity scaling experiments have

been carried out for L-mode plasmas on DIIID [11], TFTR [6], JET [12] and for H-mode plasmas

on DIIID [13] and JET [14].  These experiments have concentrated on the scaling of F with ρ
*

but attempts have also been made to determine F (ν
*
), F (β) and recently F(q) [15].

One would hope, possibly expect, that similarity experiments will supplement, as well as

confirm empirical scaling laws.  Results from ρ
*
 and ν

*
, β scans on JET [14] are presented in

section 2.  While the ρ
*
 and ν

* 
 scans agree with ITER93H, the β scans do not; this last result is

consistent with the JET β dependence.  The discrepancy is examined in section 3 in an analysis
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of the ITER L-mode and H-mode data bases.  The results of the analysis show how data artefacts

(inner relations and collinearities) can influence the scaling expression for the confinement

time τE.

Section 4 describes the consequences of removing the database artefacts:  a simple

confinement scaling emerges from both the L-mode, ELM free and ELMy H-mode data.  This

common scaling corresponds to some simple electrostatic physics model (like plateau scaling)

in which confinement is degraded by non-collisional processes.  The scaling features one multiplier

CgB rather than the eight variables of Eq. (4).  The four values of CgB required to describe

L-mode, ELM free, small ELM, giant ELM data indicates that CgB contains hidden physics.

Section 5 outlines our attempts to unravel such physics employing complex non-linear confinement

models.  The results of Sections 4 and 5 offer a common physics description of the data rather

than a set of 4 empirical scaling laws.  This is discussed in Section 6.

2. SIMILARITY SCALING EXPERIMENTS ON JET

Over a period of three years 120 pulses on JET have formed a part of experimental campaigns

aimed at establishing “ITER similarity pulses”, H-mode power threshold scans;  scans of ρ
*
, ν

*
and β.  All pulses are NBI heated steady ELMy H-modes with mostly type I ELM’s (grassy

ELM’s).  The plasma geometry is fixed and resembles both that planned for ITER as well as the

geometry used on DIIID [9] for ITER support studies.  The data from this set of pulses have

variations in F arising from variations of just one variable, either ρ
*
, ν

*  
or β.  The data set also

includes 4 “identity” pulses in which attempts have been made to match the values of the 7

arguments of F on JET to the values for pulses on DIIID and C-MOD, i.e. F = Fo for inter-

machine comparisons.  A preliminary analysis of the data has been presented in [14].

An analysis of the global parameters τE, τB, ρ
* 

 etc. has been made in which the total

energy Wdia measured by the diamagnetic loop has been corrected for the fast ion energy content

Wf.  A fit to data from calculations with the TRANSP code yields the approximate formulae

Wf = 7.5 1014 PNBI < Te > / < ne > (6)

where PNBI is the net injected beam power and the angular brackets refer to volume averages.

The results from this analysis are most easily presented graphically.  We show in Fig. 3 the H93H

versus β for the entire set of 120 pulses.  Fig. 3 encapsulates the problem addressed in this paper

just as Fig. 2 did.  For β < 1 there is an apparent linear relationship between H93H and β as

expressed by Eq. (5).  Unlike the ITER ELM free H-mode data shown in Fig. 2 and which

exhibits variations in ε, κ, M, q, the JET data represented by Fig. 3 has been selected for the

following ITER-JET  similarities

ε = 0.34,   κ = 1.7,   M = 2,   q95 = 3.2
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Fig.3: The dotted line indicates hoe the H factor is proportional to β.
JET ELMy H-mode data from ITER similarity scans.

A linear regression on this JET data set can thus be made only in the variables ρ* , ν* , β;

the result demonstrates that F ~ β°.
For the similarity studies we have selected pairs of pulses which are matched as well as

possible with respect to constant values of (ν
*
, β), (ρ

* 
, β),

 
 (ρ

*
, ν

* 
) for the scans of respectively

ρ
*
, ν

*
, β.  These selected pairs of pulses are marked with a circle, triangle, square for the scans

of ρ
*
, ν

*
, β respectively in Figure 3.  In Figures 4a, 4c and 4e we indicate how well these pulses

are matched.  For each scan we show in Figs. 4b, 4d and 4f the resulting responses in F against

the variations in respectively ρ
*
, ν

*
, β.  Fig. 4b demonstrates the experimental difficulty of

varying ρ
*
 by more than a factor 2, but the response in F for 3 of 4 pulses is in agreement with

the F ~ ρ
*
 or gyro Bohm variation of ITER93H (Eq. 4); this result has also been obtained on

DIIID [13];  In Fig. 1d we note that ν
*
 has been varied by a factor 80 and the inferred scaling F

~ ν
*
0.3 also agrees with Eq. (4);  however Fig. 4f demonstrates that the variation in β by factors

1.6 and 2 produces only a weak response in F in contrast to the predictions of ITER93H;  the

residual β scaling in H93H demonstrated by Fig. 3 for the selected β scan (marked by squares in

figure 3) cancels the predicted scaling in Eq. (4).  In other words the similarity pulses are “as

similar as possible except for their H93H values”.SKuch a discrepancy prompts an examination

into the source of the pronounced β scaling in equ.. (4).
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Fig.4a: ρ
*
scan, four pairs of pulses with matching values

of ν
*
 and β.
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Fig.4f: β dependence unlike ITER93H.

3. β, ε, M, κ, q  SCALING OF ITER93H

The linear regression techniques which have been applied to the ITER L and H-mode data [1-3]

are standard text book techniques.  The regression analyses assign a cause-effect status to each

of the eight independent variables of Eqs. (3-4) with respect to the dependent variable τΕ.  The

resulting scaling of τε with one independent variable depends not only on the data properties in

the data base of that variable, but it also depends on the data properties of the entire set of

independent variables:  the data correlation matrices which determine a scaling exponent xj and

its statistical exponent δxj for a variable j involve inner products of dependent and independent

variables.  The stability of a result x, against changes to the data in the database can be tested by

excluding or adding data, e.g. via the jack-knifing technique [16] or via comparing results from

the new DB3 database [7] with those of the previous DB2 database [3].  Such tests have been

carried out by the ITER expert database group and we quote as an example the β scaling of the

ELM free H-mode data in DB2 and in DB3 (see Eq. 4):

xβ (DB2) = 1.24,   xβ (DB3) = 0.79,   δxβ = 0.05 (7)

Thus we learn that the change ∆xβ  exceeds the statistical uncertainty δyβ by a factor 10.

Such a result has prompted us to investigate which data correlations contribute most to a given
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result such as xβ.  The investigations have involved a lengthy series of calculations on the two

data correlations matrices

Sij =
k
∑ yik yjk, Cjτ =

k
∑ yik log τEk, xi = Sij( )−1

Cjτ (8)

where yik  is e.g. log ρ*κ and κ is the observation index scanning the data base.

There is no separate method available for

deciding if the confinement time τΕ does indeed

scale with any or all of the eight dependent

variables of Eqs. (3-4.  The assumption made

is that the regression (8) will describe the extent

of the scaling, e.g. xi ≈ 0.01 or xi ≈ 1, and that

the result justifies the assumption via the data

correlation.  To verify this assertion we have

carried out calculations like (8) in which subsets

of the eight dependent variables are selected.

The technical details will not be given in this

β I
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Fig.5: There is a strong correlation between ε and β
|
 in

the DB2 ELMfree data. Symbol legend as in Figure 2.

.paper but we illustrate our findings by the following point:  The scaling of τΕ with β, i.e. xβ,

always has xβ < 0 unless the assumption τE ~ εxε  is made; if this assumption is made then xβ
changes to + 1.24.  The data correlation between ε and β in the database DB2 is shown in Fig. 5

(ELM free data); it is the dominant contribution to xβ given by (8).  There is thus an inner

relationship or collinearisity between the independent and dependent variable (β ~ τE) in the

data base.

The results of our investigation can be summarised by the following artefact in the DB2

database

h93H = β ε5/3 κ1/9 M−1/3 q−2/3 ≈ const. (9)

with an r.m.s. error of 18%.  Fig. 6 shows the

DB2 ELM free data on h93H plotted against

H93H.  The “constant” H93H  which describes

pulse to pulse and Tokamak to Tokamak

variations is as “constant” as the database

artefact h93H.  The quasi-elliptic shape of the

cloud of data points has its major axis aligned

with the h93H = H93H line;  some unquantified

part of the H93H distribution function (Fig. 1)

can therefore be explained by the data artefact

h93H.  Also it can be shown that h93H does not

1

2

0
0 21

H93H

H93H = 2.63 10–2 βI  ε1.81 κ–0.09 M–0.36 q–0.64 
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Fig.6: The database artefact h is as ‘constant’ as the H
factor with a σ=18.0% in the DB2 ELMfree data. Symbol
legend as in Figure 2.
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by itself depend on F;  thus h93H does not contain substantial variations in  confinement;  the

constancy of h93H is a consequence of the DB2 data population in β, ε, κ, M, q space, i.e. a

consequence of the operating regimes of the 6 Tokamaks contributing data to the ITER DB2

database.

4. ALTERNATIVE:  ELIMINATION OF β

The data analysis procedures described in sections 1 and 3 have used the ITER H-mode DB2

ELM free data [3].  These procedures can be repeated for the ELM free, small ELM’s, giant

ELM’s and the ITER L-mode data [2];  we reference these 4 databases by subscripts H, S, G, L,

respectively; all H + L-mode data is subscripted HL.  The result of the analysis is 5 scalings

F97H, F97S, F97G, F97L, F97HL for which the constants C97 and the exponents xρ, xν, of Eq. (4)

are listed in Table I together with the r.m.s. errors σ expressed in %.  When the H, S, G, L data is

merged into the HL-data it is necessary in a fit to this data to allow for four separate constants

C97H, C97S etc. if the same exponents xρ, xν etc. are to apply to all the HL-data.  The r.m.s. errors

σ in the five “free” fits to F as given by Eq. (4) are all less than or of the order the inferred relative

errors ∆τΕth/τEth on the confinement time.  Thus only statistical arguments, not physics arguments,

would favour the four individual scalings over the fifth and common scaling.  We  notice from

Table I that the changes ∆xρ, ∆xβ etc. to the exponents from one fit to another all exceed the

statistical uncertainties δx (row 6) by a large margin.  It seems likely, although no proof can be

given, that the differences between these five scalings result not from different physics properties,

but from the different properties of the data base population of β, ε, Μ, q space as explained in

the previous section.  A linear regression on the variables of Eq. (4) assigns the cause - effect

status to such variables via data correlations.  The changes to the scalings caused by changes to

the data, i.e. the stability of the scaling do not appear to have a physics origin and we therefore

look for an alternative representation of the confinement data.

ataD N C
39

01 2 xρ xν xβ xε xκ x
M

κ
q

σ )%(

eerfMLE 858 013 01 87.0 82.0 42.1 40.5 51.0- 32.1- 20.1- 2.21

MLEllams 543 013 4- 11.1 80.0 91.1 04.6 65.1- 91.1- 27.0- 3.41

MLEtnaig 224 01 2- 21.1 50.0 36.0 74.4 04.0- 56.0 99.0- 5.31

edom-L 5921 99 30.0- 91.0- 24.1 62.4 48.0- 7.0- 90.0- 7.61

edomL+H 0292 30.0 40.0 53.1 15.4 33.1- 70.1- 66.0- 1.81

δx 90.0 30.0 60.0 2.0 21.0 1.0 1.0

Table I. The r.m.s. errors σ from free fits to the exponents xr, xν etc. of Eq. (4) for each of the four confinement

regimes separately and for all four regimes combined; the statistical uncertainties δx are given in the last row.
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The constancy of hH (or hS, hG, hL) can eliminate some of the dependencies shown in Eq.

(4) and in Table I.  It does not however provide us with any proof of which variables in F to

eliminate.  A variety of new scalings can therefore be attempted.  A measure, δσ, of the influence

on the data fitting from a variable can be obtained by omitting such a variable and recording the

change δσ to the r.m.s. error σ;  however we emphasise that such a measure is only for guidance.

A simple set of calculation reveal that ε is by far the most “influential” variable while q, κ, ν*  are

the least “influential” variables.

A straight forward substitution of hH (Eq. 9) into F93H (Eq. 4) eliminates β and leads to the

following expression

FH = F93H / hH = CH ρ
*
0.78 ε2.81 ν

*
0.28 κ0.04 M−0.78 q−0.23( ) (10)

The bracketed term contains the less “influential” variables.  Expressions similar to (10)

are obtained when hS, hG, hL are inserted into the appropriate scalings for F.  We examine for

FH, FS, FG, FL, FLH the results from fits to the form (10) without the bracketed term i.e.

F = C ρ
*

ν
*

xν εxε (11)

Table II presents the values of xν, xε, C as well as the r.m.s. error σ.  The dependence of F

upon ν*  for L-mode data is opposite to that of the H-mode data and opposite to a classical

dependence; this difference is presently not understood.  However the combined L and H-mode

data shows no dependence upon ν*  ;  that same tendency is evident from Table I.

ataD N 01C 3- xν xε σ )%(

eerfMLE 858 2.6 23.0 20.3 7.61

MLEllams 543 1.3 43.0 42.3 3.71

MLEtnaig 224 9.8 71.0 78.2 0.51

edom-L 5921 5.8 24.0- 79.3 6.12

edomL+H 0292 30.0 30.3 7.32

Table II Results from a repeat of the exercises used for Table I but fitting to F of Eq. (11).

The alternative description of the combined ITER L-mode and H-mode data to the four

scaling expressions F97H etc. of Table I emerges from the fifth row of Table II.  It corresponds to

a very basic gyro Bohm model

FgB = C ρ
*

ε3 (12)

This simple description includes four values for the constant C applying to the ELM free,

small ELM, giant ELM and L-mode data.  By omitting the dependences of τE upon ν* , β, κ, H

and q the r.m.s. error σ will of course increase as “five degrees of freedom” are dropped;  the
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increases ∆σ range from 1% to 5%.  The

standard plot of τE vs τgB = τB/FgB is shown in

Figure 7 for all 2920 data points.  The simple

data description by Eq. (12) allows most τE data

to lie within the error range, a range which the

authors estimate to be 20-25%.  Both L and

H-mode feature the same basic gyro-Bohm

physics;  this contrasts with the difference

between ITER89P (Bohm) and ITER93H

(gyro-Bohm).

The scaling expression (12) strongly

resembles the plateau scaling proposed by

Lackner [17].

1.0

0.1

0.0.1

1.00.10.01

τfit

τ th

JG
98

.1
24

/7
c

JET TFTR JT60 DIII-D ASDEX

PDX JFT2 PBXM
TEXTOR TSUPRA T10 DIII

Fig.7: An alternative representation (Eq.12) of 2914

L & H-mode data with σ-23.6%.

5. HIDDEN PHYSICS

FgB (Eq. 12) offers a very basic physics representation of global confinement data.  It is however

unlikely that the differences between L-mode and H-mode physics as well as effects from small

and giant ELM’s can be explained simply by assigning four different values to the constant C in

Eq. (12).  In this section we discuss some of the physics which may be hidden in C.

Each of the four confinement regimes is assumed to be governed by the same “core

confinement physics model” given by Eq. (12).  A transition from one regime to another is rapid

as it usually involves an MHD instability:  sawtooth instability, localised n = 1 or n = 2 instability,

small ELM, giant ELM.  The non-linear evolution of the MHD instability lasts many Alfvén

transit times before the plasma is brought to the new regime;  however compared to a confinement

timescale (10 ms -1 sec range in the ITER L and H-mode databases) the transition times from

one confinement regime to another is extremely short.  One description such as the multi-mode

model [18] represents a multi-regime physics by the sum

< χ > = Cj
j

∑ χ j or τE
−1 = Cj

j
∑ τ j

−1
(13a)

In (13a) various physical loss processes due to ηi modes [19], resistive ballooning modes

etc. are modelled by an expression χj which is weighted by the multiplier Cj.  In another possible

description the total stored plasma energy W is separated into parts which are identified with the

four confinement regimes

W = Cj
j

∑ W j or τE = Cj
j

∑ τ j (13b)
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The energies Wj can include:  the core confinement PτgB derived from Eq. (12);  an edge

pedestal energy formed at the L → H transition; the loss of energy released during giant ELM’s;

this amount can be up to 8% of W on JET;  a complex time evolution is found to take place as

evidenced by recent data from the JET soft x-ray diagnostic [20].

We have attempted to describe the four different regimes of confinement by a variety of

combinations of scaling expressions.  Eqs. (14) below define some of the scalings for τj which

can be used in either (13a) or (13b):

 τneo = τB ρ
*
−1 ν

*
−1 ε3/2 q−2 (14a)

τNN = τB ρ
*
−1 ν

*

−1/3 ε3 (14b)

τgB = τB ρ
*
−1 ε3 (14c)

τMHD = τB ρ
*
−1 β1/2 κ1/2 ε (14d)

τRFT = τB ρ
*
−1 ν

*
−1 β1/2 (14e)

τβ = τB βN
−1 (14f)

τthr = τB ρ
*
−1 ν

*
−1 β3/4 ε1/2 κ1/4 q−1 (14g)

Eq. (14a) is the neoclassical scaling; (14b) is the “near neoclassical” scaling in the first

two rows of Table II while τgB corresponds to Eq. (12);  τMHD is the ideal MHD scaling (Alfvén

transit time) and τRFT corresponds to resistive fluid turbulence;  τβ is a representation of the

pedestal effect in which the pedestal energy is governed by MHD stability;  it is represented here

as well as in [21] by the simple form of Eq. (14f); Eq. (14g) is the result of rewriting one of the

ITER H-mode threshold scaling laws [22].  When some subset of Eqs. (14) is selected and

inserted in (13a) or (13b) we arrive at a non-linear equation for τE of the general form

G = τE − Cj
j

∑ τ j









 / τE = Gj

j
∑ τE

x j
(15)

Minima of the dimensionless number G are sought w.r.t. variations of the constants Cj.

The result from a lengthy series of calculations can be summarised as follows:  no particular

combination stands out as the most appropriate data description, say in terms of the statistical

r.m.s. error.  However, the research has demonstrated that the constant C of Eq. (12) does contain

hidden physics.  We can emphasise this point by selecting one particular combination of scalings

(14b, d, e, f) for which Eq. (15) reduces to the following 2nd order equation in τE

G = 1 − GRFT( ) τE
2 + GMHD + Gβ( ) τE + GNN (16)
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We apply this combination to ELM free, small ELM and giant ELM data each governed

by a choice for the constants CNN, CMHD, CRFT and Cβ.  The minimisation of G leads to the

values of the constants shown in Table III.  In this example there is a clear separation of small

ELM and giant ELM data:  Figures 8a, b show respectively H-mode data on Cβ τβ and on

CMHD τMHD plotted against τE.  It is surprising that, by adding three physics scalings (16d, e, f)

to the scaling given by (14b), there is hardly any change to r.m.s. error; this can be checked by

comparing the first rows of Table II with those of Table III.  The pedestal energy representing

H-mode confinement is eroded by ideal MHD and - or resistive fluid turbulence effects since

C
MHD

 and C
RFT

 are negative.  We stress once again that the data description via Eqs. (13a, b) are

complex and no clear choice has emerged.

ataD C
NN

01( 5- ) C
DHM

01( 6) Cβ C
TFR

01( 3- ) σ )%(

eerfMLE 9.6 0.2- 64.0 0.2- 8.41

MLEllams 0.4 3.0- 32.0 10.0- 6.61

MLEtnaig 6.2 0.0 23.0 40.0- 9.41

edom-L 5.0 1.0 0.2- 9.42

Table III Values of the constants for the scalings (14b, d, e, f) used in Eq. (13b) as a representation of H-mode data.

The values for σ when compared with those of the four top rows in Table II, show no dramatic reductions.

1.0
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0.01

1.00.10.01

τth

τ N
N

JG
98

.1
24

/8
ac

ELMfree Small ELMS

Giant ELMs L-mode

Fig.8a: In the data representation of a multi-mode model

(Eq.16) the electrostatic τ
NN

 scaling (Eq.14b) is similar

to that of τ
th
.
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Fig.8b: The ideal MHD scaling (Eq.14d) separates the

four confinement regimes.



13

0.1
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0.01

1.00.10.01

τth

τ β

JG
98

.1
24

/8
c

ELMfree Small ELMS

Giant ELMs L-mode

Fig.8c: The edge pedestal (Eq.14e) increases from

L-mode to small to giant ELMs and is largest for

ELMfree H-modes.
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Fig.8d:The resistive fluid turbulence scaling (Eq.14f) of

the multimode model of Eq.(16) differs in the four

confinement regimes.

6. DISCUSSION

In its dimensionally correct form (Eq. 4) the ITER93H scaling expression features 7 exponents

and 2 constants.  The values of these are the result of a linear regression analysis which assigns

a cause-effect status to each the variables in Eq. (4).  Eq. (9) for h93H applying to the ELM free

data (similar expressions apply to h93E, h93S, h93L) demonstrates how artefacts in the ITER

database can produce confinement scalings which are not observed on individual Tokamaks.  By

substituting h93 into Eq. (4) we have eliminated most of the spurious dependencies in Eq. (4).

The alternative description i.e. Eq. (12) is basic and simple.  We have stressed that although this

simple scaling gives a reasonable fit to the data it is insufficient to describe L-mode, small-giant

ELM and ELM free data:  the constant C of Eq. (13) contains hidden physics.

Our attempts to establish additional dependencies of global confinement data have lead to

non-linear scaling expressions (13).  From the numerous combinations of basic physics models

(14) that have been tested against the L and H-mode data on global confinement we have been

unable to select one single set of models as the best representation of the data.  A particular

choice (Eq. 16) of models reveals though how it is possible to separate ELM free, small ELM

and giant ELM data.  We conclude however that not only is further research required to make

advances in the data description of global confinement data but the latter needs to be supplemented

by additional parameters, e.g. via plasma edge measurements.
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