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ABSTRACT.

Linear and nonlinear models for anomalous alpha particle transport due to collective instabili-

ties are reviewed. The linear stability analysis is applied to the comparison of measured and

computed Alfvén Eigenmodes in tokamaks (“spectroscopy”). Scenarios for nonlinear wave evo-

lution and fast ion redistribution are discussed.

1. INTRODUCTION

Early in the development of plasma theory it was realised that super-thermal particles can drive

plasma waves unstable through resonant particle-wave interaction [1,2]. In D-T plasmas the

fusion born alpha particles with energies around 3.5 MeV have initially super-Alfvénic velocity

and will in the slowing-down process eventually match the Alfvén velocity vA =B/(4πρ)1/2,

where B denotes the magnetic field and ρ the mass density (e.g. ρ = ni mi). This implies that the

resonant interaction of alpha particles with Alfvén waves is an important issue. The confinement

of alpha particles in tokamaks is being studied extensively in actual experiments as well as

conceptually in the design of the fusion test reactor ITER. It is crucial for a reactor that the alpha

particle transport is either classical or moderately anomalous and therefore tolerable. So far all

tritium discharges performed at TFTR and at JET support the claim that the alpha particles are

sufficiently well confined.

The great uncertainty with respect to the extrapolation towards the break-even condition at

JET or, even further, towards an ignited tokamak plasma is the anomalous alpha particle transport

due to collective instabilities caused by the free energy in the alpha particles (or in the energetic

ions in general). For sufficiently large amplitude of the perturbed field anomalous transport of

energetic ions can occur. Such losses have been observed in DIII-D experiments at low field

with NBI power, where the injected ions match the Alfvén velocity. As shown in Fig. 2 of Ref.

[3], a large number of beam ions are expelled, (seen as a drop in the neutron emission) during

bursts of TAE observed on a magnetic pick-up coil. Similar degradation of the alpha particle

confinement in a reactor would reduce the ignition margin and cause serious damage to the first

wall. The physics issues related to the effect of Alfvén waves on the alpha confinement can be

addressed in various ways, which do not always require tritium discharges.

First, the spectrum of Alfvén waves can be analysed and the existence of weakly-damped

Alfvén Eigenmodes (AE) checked. This can be done by antenna excitation without the involve-

ment of energetic ions. At JET such external excitation of AE’s has been studied with the use of

the Saddle Coils [4-6]. The low-n wave number spectrum of AE’s has been measured and ana-

lysed in detail. These studies have confirmed the existence of weakly damped AE localised in

the plasma centre.

Second, the excitation of such AE by NBI and RF generated fast ions can be studied. In

present tokamaks up to 30 MW of heating through NBI is provided. Then, with beam energies in
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the range of 100-160 keV the Alfvén resonance is reached only for low magnetic field of 1T. The

RF heating can generate energetic ions with tail energies in excess of 0.5 MeV, which can reso-

nate with the AE. ITER will rely on 50 to 100 MW of additional heating power for reaching

ignition. Since the injected ions will have much higher energies than used presently, resonant

interaction with beam ions as well as RF tail ions needs to be studied in addition to the alpha-

particle interaction. Present tokamak experiments which demonstrate losses of energetic ions

due to collective instabilities yield a great deal of information suitable for benchmark tests of the

large-scale codes.

Finally, the alpha particle confinement can be studied in tritium discharges. The detailed

analysis should confirm the validity of the theoretical models and the key physics ideas - or

should indicate new development - which is essential for accurate predictions in performance of

tokamak-reactor plasmas.

In this paper we analyse linear stability and nonlinear evolution of Alfvén waves by com-

paring measured spectra with theoretical models. The numerical tools for such an analysis are

described. The plan of the paper is as follows:

In Section 2 the hybrid fluid-particle model is presented which takes into account the

power transfer between particles and waves in the linear phase. The numerical evolution is

performed by means of the CASTOR-K code package. The Alfvén spectrum as observed on JET

discharges is discussed in detail. Section 3 is devoted to the weak turbulence model which describes

the nonlinear evolution of the system. The algorithms employed by the codes FAC and HAGIS

are outlined. The different classes of nonlinear scenarios are discussed and compared with

experimental observations. Finally, in Sec. 4, conclusions are presented.

2. HYBRID FLUID - PARTICLE MODEL

In our simulations of collective modes in fusion plasmas, we describe the “bulk” ions and elec-

trons by macroscopic MHD equations. These yield an appropriate model for equilibrium and

stability, as well as for plasma oscillations such as Alfvén waves. Fusion born alpha particles

have super-thermal energies of about 3.5 MeV and are well described by a slowing down distri-

bution. Their pressure is a finite fraction of the bulk plasma pressure (typically 10% to 20%).

Neutral beam injection and resonant radio frequency heating may also generate super-thermal

ions with pressure comparable to the bulk ion pressure. The influence of these fast ions on the

bulk plasma is incorporated in the equilibrium profiles which are reconstructed from measure-

ments. The power transfer from the energetic ions to plasma waves is taken into account in the

δWhot functional, which yields the growth rate and the damping of the MHD wave in the linear

phase. This particle-wave interaction may also lead to a branch of plasma instabilities known as

energetic particle driven modes, or EPM. Only particles which are close to resonant regions in

phase space can exchange a considerable amount of energy with the MHD wave, and these

particles get trapped inside the potential well created by the MHD perturbation. Eventually the
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drive is reduced nonlinearly by a relaxation of

the energetic particle distribution function and

is accompanied by saturation of the wave am-

plitude. This nonlinear process is computed

using a particle simulation model for the fast

ions which will be described in Sec.3. These

numerical models have been developed for

general tokamak configurations. The family of

codes used at JET is described in Fig. 2.1. Start-

ing from the discharge equilibrium profiles, the

Linear MHD Stability Analysis

Linear stability analysis including energetic particles

Nonlinear dynamics in the presence of energetic ions

MISHKA–1 CASTOR

HAGIS FAC

CASTOR–K

JG97.475/11c

Fig. 2.1 Family of fluid-particle codes used at JET.

spectrum of ideal and resistive (kinetic) MHD normal modes is computed by the MHD codes

MISHKA-1 (ideal, incompressible) [7] and CASTOR (resistive, compressible) [8]. The linearised

MHD solution for the plasma normal modes and the gyrokinetic perturbative contribution for

the energetic particles can be combined into a dispersion relation of the form

ω2 Ek = Wmhd + δWhot(ω) , (2.1)

where the power transfer is quantified by the quadratic form δWhot(ω) and is evaluated by the

kinetic extension of the CASTOR code called CASTOR-K. The nonlinear evolution of these

normal modes is subsequently computed using the δf particle codes FAC and HAGIS — devel-

oped at JET in collaboration with IFS Texas and UKAEA. We give now a short description of

the three different levels of the plasma description.

2.1 Normal Mode Description

The plasma equilibrium obeys force balance

− ∇P + J x B = 0 , (2.2)

where P is the pressure, J the current, and B the magnetic field. For numerical solution, Eq. (2.2)

is cast into the Grad-Shafranov form. The normal-mode analysis considers small perturbations

around the equilibrium state and is performed by means of the linear spectral codes CASTOR

and MISHKA [7, 8]. The time behaviour is expressed by an eigenvalue λ in the form

ζ(r , t) = eλt ζ(r ) . (2.3)

The imaginary part of λ describes oscillatory behaviour with frequency ω = Im (λ), whereas

the real part γ = Re (λ) corresponds to exponentially growing (γ > 0) or damped (γ < 0) motion.

The linear eigenfunctions computed by CASTOR and MISHKA and reported in this paper, are

solutions of the linearised, compressible MHD equations in dimensionless form:
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Continuity:

  λδρ = −∇ ⋅ ρ0δ
r
ν( ) (2.4)

Momentum:

  λρ0 δ
r
ν = −∇ ⋅ ρ0δT + δρT0( )

  + ∇ ×
r
B0( ) × ∇ × δ

r
A( ) −

r
B0 × ∇ × ∇ × δ

r
A( )

Energy:

  λρ0 δT = −ρ0δ
r
ν ⋅ ∇T0 − Γ − 1( )ρ0∇ ⋅ δ

r
ν

  + 2η γ − 1( ) ∇ ×
r
B0( ) ⋅ ∇ × ∇ × Γ

r
A( )

Faraday’s Law:

  λδ
r
A = −

r
B0 × δ

r
ν − η∇ × ∇ × δ

r
A

Here δρ denotes the density, δv the velocity, δT the temperature and δA the vector poten-

tial such that δB = ∇ × δA. Also, η is the resistivity and Γ the ratio of specific heats. This

formulation includes both density and temperature instead of pressure.

The inclusion of resistivity in Eqs. (2.4) makes the computation of all unstable resistive

eigenmodes feasible. However, in the context of the Alfvén eigenmode physics the resistive

terms are only used to resolve the singularities of eigenmodes crossing the Alfvén continua.

These singularities are resolved by matching the outer ideal solution to the layer physics, which

includes kinetic effects in terms of Finite Larmor Radius (FLR) ρi and non-vanishing parallel

electric field [9-12]. It has been demonstrated that these nonideal effects can be taken into ac-

count in the CASTOR model by a “complex resistivity” [13] in Ohm’s law:

  δ
r
E + δ

r
ν ×

r
B = η|| δ

r
J|| , (2.5)

with η|| ~ iω ρi
2 1 − iδe( ) (2.6)

where δe arises from collisional friction between trapped electrons and passing particles and is

computed from the bounce-averaged electron kinetic equation.

2.2 Spectrum of Alfvén Waves in Tokamaks

The spectrum of Alfvén waves can be studied experimentally by antenna excitation, i.e. without

the existence of super-thermal ions. This enables an active probing of the type and structure of
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Alfvén Eigenmodes (AE) and their damping. On JET the Saddle Coils have been used as an

exciter where the frequency can be scanned between 20 and 500 kHz. By synchronous detection

the plasma response to the antenna can be measured very accurately and the damping can be

quantified. It has been successfully demonstrated that with an antenna power of less than 10 kW

plasma normal modes in the range of the Alfvén frequency AE can be excited [4-6]. When the

applied frequency matches the frequency of a plasma normal mode there occurs a sharp peak in

the absorption spectrum, and the width of this peak is proportional to the damping of this spe-

cific normal mode.

A typical result as modelled by the

CASTOR code for this antenna excitation is dis-

played in Fig. 2.2, where the coupled power is

computed as a function of the antenna fre-

quency. Regions of broad spectral response in-

dicate the presence of plasma continuum damp-

ing. In these regions, every magnetic field line

oscillates with its own local Alfvén frequency,

thereby giving rise to a continuum of normal

modes in radius. When a wave is launched into

such a region, this wave experience a “friction”

due to the very different local propagation of

the continuum modes. Consequently, the result-

ing continuum damping is proportional to the

gradients in the equilibrium profiles. Since the
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Fig. 2.2 The plasma response as a function of the an-

tenna frequency computed by CASTOR.

continuum modes are localised on a specific flux surface, a simplified version of the CASTOR

code needs to be solved only on every flux surface separately. The corresponding CSCAS code

[14], makes feasible the efficient and fast evaluation of the continuum structures of many equilibria.

If such a damping would occur uniformly in the plasma volume it would be very difficult to

excite and destabilise AE by both antenna and fast ion drive. However, there exist pronounced

gaps in the Alfvén continua due to coupling caused by finite toroidicity (toroidal gap), elongation

(elliptical gap) and other effects which break the cylindrical symmetry. This coupling leads to

“forbidden crossings” of continuum modes, i.e. gaps. Furthermore, new global Alfvén eigenmodes

exist in these gaps with zero or, in the case of several gaps at different radial positions, small

damping. In Fig. 2.2 the toroidal gap around w.(R/vA) ~ 0.5 and the elongation induced gap

around w . (R/vA) ~ 1.3 are clearly seen. In addition, toroidicity induced AE (TAE) and elongation

induced AE (EAE) exist with very small damping. For high beta an additional AE occurs at

lower frequency, the so-called beta induced AE (BAE). If the plasma is sufficiently hot kinetic

effects, which are characterised by the kinetic coupling factor [9-13]
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λk = 4ρi
m
rg

S

ε3/2
3
4

+ Te
Ti

 , (2.7)

where ρi denotes the Larmor radius, m the dominant poloidal Fourier harmonic, rg the radius of

the gap, S the magnetic shear and ε = 3.5 rg/R the local inverse aspect ratio, need to be consid-

ered. This coupling causes the continuum to break up into the kinetic Alfvén spectrum which

can be obtained from the linear resistive spectral codes CASTOR and MISHKA by matching the

complex resistivity (2.6) with the non-ideal parameter λk (2.7). On the bottom of the toroidal

gap this coupling causes a large amount of energy to be carried away radially, which is eventu-

ally absorbed in the cold plasma edge. The resulting damping, the radiative damping, is quite

large. This damping of the TAE’s whose eigenfrequencies are on the bottom of the TAE-gap is

clearly seen on Fig.2.3. in form of a broad absorbtion. On the top of the gap a new class of

kinetic TAE, called KTAE, exists which are characterised by small damping and roughly equal

spacing in frequency

ω = ωo + p ∆ω for p = 0, 1, 2, ...... (2.8)

It is noted that the different poloidal

Fourier harmonics m and m + 1 of the TAE

have equal parity which results in a ballooning

- like, poloidal mode structure, whereas the

KTAE have opposite parity resulting in an anti-

ballooning structure. The lowest KTAE for

small magnetic shear values degenerates into

the core-localised low-shear TAE and can be

usually found already in ideal MHD - as is evi-

dent from Fig. 2.2. The fine-splitting due to

kinetic effects has been clearly identified in the

antenna excitation experiments [5]. Similar

splitting is found for RF driven AE on the top

of the elongation induced gaps as will be dis-

cussed in more detail later.
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Fig. 2.3 Kinetic effects on AE’s: The plasma response as

a function of the antenna frequency computed by CAS-

TOR using complex resistivity.

2.3 Energetic Particle Driven Instabilities

The AE excitation experiments – based on antenna drive as well as on NBI and RF generated

fast ions – have confirmed that in the case of weak drive only MHD normal modes are excited.

Weak drive does not imply low heating power; rather, it refers to a small power density. The free

energy for the destablisation is actually caused by the gradient of the fast particle pressure. Thus
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the perturbative method can be applied, where the frequency ω and the eigenfunction ξ (r ) are

determined by MHD and can be obtained by the MISHKA-1 or CASTOR code.

The power transfer between the wave and the particle is given by the six dimensional

phase-space integral

δWhot = − 1
2

d3∫ x d3v L 1( )* f1. (2.9)

where L(1) is the perturbed Lagrangian of the wave-particle interaction and f1 the perturbed

distribution function, which is obtained by integrating the linearised Vlasov equation along the

particle trajectories for a given fast particle distribution Fo. The growth rate or damping factor is

extracted from the imaginary part of δWhot

γ = ωi
ωr

=
Im δWhot[ ]

2ωr
2Ek

 . (2.10)

Since only the non-adiabatic part of f1 can give an imaginary contribution to the disper-

sion function, it is only necessary to consider

δWhot = − 1
2

d3∫ xd3ν ω ∂F0
∂E

− no
∂F0
∂Pφ









 L 1( ) * L 1( )

−∞
t

∫ dτ. (2.11)

with additional integration over the time.

For Alfvén waves or marginally stable MHD modes the perturbed Lagrangian reduces to

L 1( ) = − mν||
2 − µB( )ξξ ⋅ κ + µB∇ ⋅ ξξ⊥ , (2.12)

where κ denotes the curvature of the equilibrium magnetic field and µ is the magnetic moment.

It is convenient to introduce new phase-space variables through the transformation (x, v) → (Pφ,

φ, E, τ, µ, α), where τ is the time along the orbit. The Jacobian of this transformation is a

constant:

d3xd3ν = c

Zem2




 dPφ

σ=±
∑ dE dµ dτ dφ dα (2.13)

Pφ denotes the toroidal canonical momentum, E the energy, α the gyrophase and φ the

toroidal angle. Carrying out the integration over τ, φ and α, δWhot reduces to [15]

δWhot = − 2π2

Zem2 dPφ∫
σ
∑ dEdµ

ρ̃=−∞

∞
∑ τb ω − noω*( ) ∂F

∂E

|Yρ̃|2

ω + noωD + noq + ρ̃( )ωb
 ,(2.14)
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where ωb and τb are the bounce frequency and bounce time, and ωD the toroidal precession

frequency. The perturbed Lagrangian is bounce averaged over the particle orbits and expanded

in Fourier harmonics of the periodic particle motion

L 1( ) = L̂(1)e−inoφ τ( ) , (21.15)

with no the toroidal wave number. The Fourier coefficients are defined as

Yρ̃ = dτ
τb

∫ L̃ 1( )eiρ̃ωbτ
(2.16)

This procedure allows one to decompose the periodic motion in the f-direction for both

passing and trapped particles. The denominator in the dWhot expression vanishes if

Γ E, Pφ ,µ( ) = ω + noω D + noq + ρ̃( )ωb = 0  , (2.17)

which is the wave-particle resonance condition. The singularities of the integrand have to be

taken into account in the integration over phase space. The term proportional to ω represents the

free energy due to the gradients in velocity space, giving rise to Landau damping, while the term

proportional to noω*  represents the free energy due to spatial gradients in the distribution func-

tion

ω
*

= ∂F
∂Pφ

/
∂F
∂E (2.18)

The drive is proportional to the toroidal wave number no through the combination no ω*  in

Eq. (2.17). However with increasing toroidal mode number the radial width of the eigenfunction

decreases and the mode width becomes equal to the orbit width, so that the particle-to-wave

power transfer saturates. This indicates that the fast ion orbits have to be treated in full general-

ity. This saturation in the destabilisation sets in for JET plasmas for toroidal mode numbers

between ten and fifteen, no ~ 10-15. In the evaluation of the growth rate it is only necessary to

compute the imaginary part of δWhot. Since only the poles in the particle wave response can

give an imaginary contribution to δWhot, the three dimensional integral is reduced to two dimen-

sions by an integration subject to the resonance condition Γ(E, Pφ ,µ ) = 0 In the evaluation of

the growth rate the δWhot quadratic form is reduced to

δWhot = − 2π2

Ωm2 dPφ∫ dµ
σ=±
∑

ρ̃=−∞

∞
∑ τb ω − noω*( ) ∂F

∂E

2πi|Yρ̃|2

∂Γ
∂E

(2.19)
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The CASTOR-K code [16] evaluates the dWhot functional for given plasma equilibrium,

MHD eigenfunction and fast particle distribution Fo. This calculation has to be performed in the

straight field line coordinate system s = ψ / ψs , θ, φ , where the equilibrium magnetic field is

represented by

B = ∇φ × ∇ψ + F∇φ (2.20)

together with the corresponding metric gik, being characterised by the Jacobian

JCASTOR = 2sψS
qR2

F
 . (2.21)

The scheme of the integration is summarised in Table I.

elgnaorygehT α lacitylana erudecorpegareva

elgnaladiolopehT θ laciremun mrofsnartreiruoF

elgnaladiorotehT φ lacitylana noitisopmocedreiruoF

ygreneehT Ε lacitylana selopehtrevonoitargetni

tnemomcitengamehT µ laciremun mhtiroglahcraesyranib

mutnemomlacinonacladiorotehT ρφ laciremun mhtiroglahcraesyranib

The evaluation of δWnot requires the integration of fast particle orbits in the equilibrium

fields. The trajectory of a particle can be expressed analytically as a function of the invariants of

motion and of the equilibrium quantities. This method is used for orbit classification. This is

essential for tracking all particle resonances. However, the time dependence of the particle coor-

dinates must be integrated numerically. In order to improve the integrator accuracy, the coordi-

nate system is changed into a poloidally Cartesian system when a particle gets close to the

magnetic axis.

x = scosθ
y = ssinθ (2.22)

An explicit integration procedure in terms of a fourth-order Runge-Kutta algorithm is

used.

The remaining integration over the µ, Pφ co-ordinates is performed using a bi-dimensional

adaptive scheme. The procedure works in two phases. At first a rectangular mesh is constructed

evaluating the function to be integrated at each point. Thus, a first estimate of the integral is

obtained. Secondly, a refinement criterion selects the area where accumulation points are re-

quired for improvement in the accuracy of the integration. This procedure is repeated until a

predefined accuracy of the integration is achieved. The mesh accumulation is concentrated in
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areas where the function is less well behaved

and, hence, the contribution to the overall inte-

gration is more important. The method is a two-

dimensional equivalent of Simpson’s rule [17],

where the evaluated points are fitted using cu-

bic polynomials.

The accuracy of the CASTOR-K code

has been tested by comparison with analytic

results in the large aspect ratio and small orbit

width limit and by benchmark tests with the

NOVA-K code. This comparison has been sat-

isfactory. The comparison with numerical re-

sults obtained by the non-linear codes FAC and

HAGIS is displayed in Fig. 2.4. Over a wide

range of parameters the agreement is good both

in the small and large orbit width versions of

the CASTOR-K code.

40
HAGIS code
FAC code
CASTOR-K code (large orbits)
CASTOR-K code (small orbits)

30

20

10

ω

0
2•105 4•105 6•105 8•105

γ 
/ (

ω
<β

f)

JG97.475/12c

Fig. 2.4 Benchmark test on comparison of the depend-

ence of the growth rate on the frequency.

2.4. Analysis of Experimental Observations on Jet

The results of the JET antenna excitation experiments have been described in Refs. [4-6]. Here

we analyse AE activity observed in JET discharges with additional heating. It is emphasised that

the NBI generated ions have energies around 150 KeV — which for 3T, 3MA discharges is well

below the Alfvén resonance. In order to satisfy the Alfvén resonance condition vbeam= vA, the

field has to be smaller than 1T. Such plasmas are of no relevance for the DTE1 campaign. It is

however possible to match the vA/3 resonance in JET high performance plasmas. CASTOR-K

calculations show that a destabilisation of AE can only occur for quite high toroidal mode num-

bers. For example the simulation of specific discharges has shown that AE’s with n=14 become

marginally unstable. There is no clear experimental identification of corresponding AE’s.

This leaves us with the analysis of AE’s driven unstable by the RF generated fast ions and

by α-particles. There is clear experimental evidence that AE’s are routinely observed when the

heating power exceeds 4-5 MW, depending on the plasma density. In discharge #40328 the RF

heating power is slowly ramped up from 3MW to 7MW. When PRF exceeds 5MW a set of AE is

observed, as is shown in Fig. 2.5, with toroidal mode numbers in the range 5 ≤ n ≤ 11. The AE

with larger mode numbers are excited first. This is consistent with the drive being proportional

to nω∗ in Eq. (2.19). The drive levels off for n ≥ 10, when the mode width becomes proportional

to the orbit width. The instability drive is evaluated by the CASTOR-K code for increasing tail

ion temperature in a Stix-type distribution,
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F0 ∝ e−E/T × e−
Λ−Λ0

∆Λ






2

; Λ0 ~ 1 ; ∆Λ ~ 0.01 , (2.23)
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Fig. 2.6 Modelling of the growth rate of a n = 5 TAE in

the presence of RF generated ions due to on-axis heat-

ing for a distribution F ∝ e
− E

T × e
− Λ−Λo

∆Λ( )2
 (Λo ~ 1,∆Λ

~ 0, 01 pitch angle).

(where Λ denotes the pitch angle), which represents trapped particles with a banana tip close to

the ICRH resonance layer. The resulting growth rate in dependence of the tail temperature is

displayed in Fig. 2.6. The growth rate is normalised to the TAE frequency and to the averaged

fast particle beta, as usual, since the drive is proportional to <βf>. The calculation is complicated

since particles with large and non-standard orbits are in resonance with the wave. The corre-

sponding hatched region indicates the sensitivity of the result on details of the equilibrium pro-

files. In the case of the considered TAE with n = 5 the instability sets in for Ttail > (500-600)

KeV. The reconstruction of the RF power deposition by the PION [18] and FIDO [19] codes

shows that the energetic tail ions have an energy corresponding to 700 keV when PRF ≈ 5MeV.

This agrees with the experimentally observed threshold. An independent assessment of the thresh-

old by measuring the damping of low-n TAE for increasing RF power yields also a critical power

of about 5MW [20]. The spectrogram of the frequency versus time reveals a sequence of fre-

quencies, due to the Doppler shift

f = fTAE + n frot (2.24)

observed in the laboratory frame. In Fig. 2.7 this Doppler shift is subtracted. It is evident that the

frequencies of AE with 4 ≤ n ≤ 9 nearly coincide. The solid line underneath is a prediction of the
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Fig. 2.7 AE activity on hot-ion H-mode discharge #40332: a) Spectrum: frequency versus time (The solid line

indicates the prognosticated Alfvén frequency for central gap value for safety factors). b) Continuous spectrum gap

structure.

TAE frequency for the actual electron density and the q value in the centre of the TAE gap. The

density increases with the beam fuelling whereas the safety factor profile is almost constant in

time. The agreement of the observed frequency with the theoretical frequency confirms the

Alfvénic scaling of the wave. The Alfvén continuum structure is displayed on the second dia-

gram on Fig. 2.7. At 52.8 s the observed frequency is f TAE −̃ 200 kHz and corresponds to a

location at the bottom of the TAE gap around s = 0.3 - 0.4 (note that s≈ r/a). This corresponds to

the location of the highest pressure gradient of the RF generated fast ion population. Toroidicity

leads to a strong coupling between the m and m + 1 poloidal harmonics, which are characterised

by even or odd parity with respect to the radial dependence. This leads to a pronounced balloon-

ing - type (even parity) or anti-ballooning-type (odd parity) eigenfunction. From Fig. 2.8 it is

seen that the ballooning structure of the TAE eigenfunction agrees well with the on - axis depo-

sition of the RF power generating trapped ions on the low field side. Therefore, the observed

magnetic signal is identified to be a TAE. The corresponding KTAE’s with somewhat higher

frequency and anti-ballooning eigenmode structure do not fit the observations well. These facts

also make implausible the explanation of the observed fine-splitting of this TAE frequency into

typically five sub-modes with ∆ω ≈ 1kHz by means of kinetic effects involving KTAE. An ex-

planation in terms of non-linear effects has been proposed in Sec.4.

Next we analyse the observed AE activity in optimised shear discharges, where the safety

factor is well above unity, i.e. qmin ≈ 1.7. The spectrogram of discharge #40399, Fig. 2.9, shows

in addition to the discussed TAE several modes in the elongation induced gap. Both classes of
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Fig. 2.8 Eigenfunctions of different types of AE’s.

modes follow closely the Alfvén wave scaling in time. The mode numbers are n =± 1, + 2 and

± 3. An analysis of the magnetic response in the range of the elliptic gap shows that initially

there are several signals with negative mode numbers and few with positive n. With increasing

time the modes with negative n disappear and more modes with positive n appear. Multiple

modes are observed for each n. It is emphasised that this multiplicity is different from the fine-

splitting of the TAE frequency as discussed above.

Since the drive is proportional to - nω*  a negative n should correspond to a positive pres-

sure gradient. The reconstruction of the heating deposition reveals that initially the energy den-

sity of the RF generated ions is hollow, i.e. 
d
dr

Pfast  has positive sign in the core as displayed in
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structure.

Fig. 2.10. With increasing time the magnetic

axis shifts outwards to the resonance layer and

the fast ion density profile has monotonic char-

acter. This is consistent with the experimental

evidence that EAE’s with negative wave

number become less pronounced with increas-

ing time. The eigenfunction of the EAE is char-

acterised by coupling through toroidal and

elliptic effects, i.e. a poloidal harmonic m

couples at least with the m + 1 and m + 2

harmonics. Therefore, the coupling of the EAE

with kinetic Alfvén waves in the gap region

produces kinetic EAE’s with both ballooning

and anti-ballooning components. The global

KTAE with p = 0 radial nodes in the elliptic

gap region is plotted in Fig. 2.8. These KEAE’s

(with p = 0,1,2,3 .....) are characterised by

regular spacing ∆ω. The damping is only

weakly increasing with increasing radial mode

number in the gap. Consequently, such a
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sequence of KEAEs is a good candidate for the observed multiplicity of AE’s. Details of the

spectrum in the elliptic gap, with frequencies between 350 kHz and 420 kHz for the time slice of

35 ms following 46.5 seconds in the discharge is shown in Fig. 2.11. The modes with negative

mode numbers n = - 1, - 3 have quite small amplitudes. We therefore concentrate on the AE’s

with n = + 1, + 2. A multiplicity of four is observed for both n values. The spacing of the modes
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code with complex resistivity Im (η) = - 1.16 × 10-6; Re (η) = 4.8 × 10-8.

relative to each other is almost constant. Inserting the discharge equilibrium profiles for density,

safety factor and Ti and Te profiles yields the value of the complex resistivity factor used in the

MISHKA code of

Ιm (η) = - 1.16 × 10-6, Re (η) = 4.8 × 10-8 (2.25)

The code produces indeed a sequence of Kinetic Eliptical Alfvén Eigenmodes with almost

constant frequency spacing for n = + 1 and + 2 with slightly increasing radiative damping as

displayed in Table II. Completely equal spacing in frequency and damping can occur only for a

single gap. Due to a more complicated radial structure some deviation has to arise.

These eigenfrequencies ω lie within 5% of the measured frequency when the Doppler

shift correction is performed. However, the frequency spacing ∆ω differs from the measured one

by a factor of approximately 1.5 due to the uncertainty in the non-ideal parameter (2.7). It is

noted that one observed mode with n = 2 does not have a clear structure; rather, it appears to be

a mixture of n = 1 and n = 2. The corresponding frequency is marked by a question mark on

Fig. 2.11. This indicates that the identification of the observed spectrum of AE’s with
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n p ω -γ
d

n p ω -γ
d

1 0 146.0 1000.0 2 0 646.0 27000.0

1 356.0 35000.0 1 566.0 49000.0

2 266.0 64000.0 2 186.0 29000.0

3 176.0 77000.0 3 796.0 4100.0

4 086.0 87000.0 4 527.0 3100.0

frequencies in the elliptic gap agrees within the accuracy of the plasma parameters with the

computed KEAE’s.

The destabilisation of AE’s by alpha particles in D-T plasmas is currently under investiga-

tion in the JET DTE1 experiments. Two types of discharges have the potential of achieving high

fusion power in excess of 10MW fusion power, namely the hot-ion H-mode and the optimised

shear scenario characterised by an internal transport barrier. From relevant D-D plasmas the

alpha-particle profiles are computed by the TRANSP code. The stability analyis has been per-

formed by the CASTOR-K code. The corresponding results are presented in Fig. 12a). A typical

Hot-ion H-mode is characterised by a value of q on axis around q0 ≈ 0.8. Consequently, the

global AE which is first destabilised is a n = 5 KTAE due to its small radiative damping. The

eigenfunction is localised in the plasma core. A slightly different q-profile or alpha particle

pressure will interact preferably with similar modes, such as n = 6 KTAE. In Fig. 12a, the stabil-

ity boundary is plotted in the plane of alpha particle beta and electron density (the ratio of the

α-birth velocity to the Alfvén speed is Vα / VA ∝ ne ). It is evident that the first D-T dis-

charge on JET, shot 26148 (see Ref. [21]) is found to be stable due to the small βα in the case of

Pfus ≈ 2 MW. No activity has been observed in this discharge. The high performance D-D dis-

charge #26087, treated now as a fictitious D-T discharge, has sufficiently high alpha pressure for

instability. But, due to the significant ion Landau damping in this high density plasma, the unstable

domain is not reached. For an n = 5 core localised KTAE in a D-T plasmas the alphas provide a

drive of γ/ωA = 1%, whereas the damping is 0.25% on thermal tritium, and 0.5% on thermal

deuterium. The radiative damping is found to be 0.1%. Thus, the resulting instability has a

growth rate of γ/ωA = 0.15%. It is noted, however, that low-density discharges, such as the

equivalent of D-D shot #38093, should produce an instability drive sufficient to overcome the

damping. Thus, it is conjectured that on JET D-T plasmas alpha particles can drive specific

KTAE unstable. The damping can be further reduced by switching-off the neutral beam heating

whereas the drive is maintained during the slowing-down of the alphas for more than 0.5 sec-

onds. This scenario has successfully been demonstrated on TFTR [22].

The stability boundaries for optimised shear plasmas are shown in Fig. 12b. These dis-

charges are characterised by q profiles which well-exceed unity everywhere, i.e. qmin ≈ 1.5 - 2,

but not fully reversed. Due to the more peaked alpha pressure profile AE of low-n can be driven

unstable and the AE of interest is a TAE/KTAE with n = 2. It is seen that for small plasma



17

STABLE

δB / B = 10–5

δB / B = 10–4

0.0010

0.0001

1.0

n = 5 KTAE JET JET Hot Ion H-mode

2.0

vα / vA

2.5 3.0
JG

97
.2

63
/1

3c

<β
α>

Pulse No: 26148

Pulse No:
38093 DT

Pulse No: 26087 DT

STABLE

UNSTABLE

0.0010

0.0001

1.0

n = 2 TAE JET OPTIMIZED SHEAR

2.0

vα / vA

2.5 3.0

JG
97

.2
63

/1
2c

<β
α>

Ti=25keV
Ti=20keV

Ti=15keV

Fig. 2.12 Stability diagram of typical JET DTE1 discharges a) n = 5 KTAE in hot-ion H-mode. b) n = 2 TAE in

optimised shear.

densities, instabilities occur for βα ≥ 0.02% – a value significantly lower than in the hot-ion

H-mode plasmas. Again it is found that α’s can destabilise these TAE’s. A heating power switch-

off will reduce the damping significantly. These discharges have, in addition, RF heating in the

range of PRF ≈ 4-6 MW. Thus, AE’s should definitely be observed for combined drive in this

class of JET discharges.

3. WEAK TURBULENCE MODEL

It has been established that in the case of a weak drive only normal modes of the bulk plasma can

be excited by resonant interaction with energetic ions. In terms of the normalisation used in

CASTOR-K, the growth rate γ/ωA (with ωA the Alfvén frequency on axis) and the damping rate

γd/ωΑ typically have magnitudes on the order of a few times 10-3 . The dominant damping

mechanisms are normally radiative (continuum) and ion Landau damping. In the context of

alpha particle-wave interaction, the drive provided by the pressure gradient, dβ fast / dr , must

overcome the indicated background damping for instability. It has been further established ex-

perimentally on JET that AE with such small damping persist in JET plasmas. This indicates

that the perturbative approach is suitable for the description of the nonlinear evolution of the fast

ion distribution and wave amplitude. Therefore, in this modelling, the radial wave structure will

be maintained, but the amplitude and the phase of the wave will change:

ξ (r ,t) → A (t) ξ (r ) eiC(t) (3.1)
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3.1 Wave Evolution

A Lagrangian formalism for wave particle interaction has been applied to the time evolution of

the Alfvén waves [23]. Starting from the Lagrangian for charged particles in an electromagnetic

field

L =
particles

∑ mv2

2
+ e

c
Av( ) − eφe








(3.2)

+ 1
8π

E2 − B2( )∫ dV  ,

where A and φe denote the vector and scalar potentials and E the electric field, the Lagrangian

can be decomposed when the growth develops on a time scale asymptotically longer than the

equilibrium

L = L o( ) ωo( ) + L 1( ) . (3.3)

Variation of L(o) yields the fluid waves, whereas variation of L(1) gives the time evolution

of the mode. This decomposition of the times scales coincides with the application of the

perturbative method already applied in the evolution of the power transfer between energetic

particles and waves

∂
∂t

~ γ << ωo and ∆ω << ω0  . (3.4)

Here, ωo represents the frequency of an AE and ∆ω is the change in frequency. However,

by incorporating the results of the linear phase a wave Lagrangian can be derived for the com-

bined response of the background plasma and the electromagnetic field which only depends on

the amplitudes and phases of the linear waves as introduced in equation (3.1). Following Ref.

[23] L(1) can be expressed as a sum over the number of waves nw;

Lw
(1) =

k
∑ Ek

ωk
Ak

2 Ċk[ ] (3.5)

with Ek denoting the energy of the Alfvén wave per unit amplitude.

It is noted that in the case of a strong drive non-normal modes of the system can be driven

unstable, by overcoming the underlying continuum damping. This gives rise to the so-called

Energetic Particle Mode (EPM), which has been studied extensively in the literature [24]. Ex-

perimental evidence of such EPM’s has been obtained for fishbones [25]. In JET plasmas,
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however, the power density seems to be below the threshold to drive EPMs. Furthermore, the

isotropic α-particle generation in JET DTE1 and in ITER plasma is spread over half the plasma

radius. These considerations indicate that the perturbative approach is suitable for JET and ITER

plasmas. We describe now in detail the algorithm for the nonlinear interaction of fast ions with

Alfvén waves in toroidal plasmas.

The complex phase factor in the wave Eq. (3.1) is decomposed into real and imaginary

parts

Xk = Re Ake
iCk{ } = Ak cos Ck (3.6a)

Yk = Im Ake
iCk{ } = Ak sin Ck (3.6b)

It has proven useful to introduce more generalised coordinates ψ, θ, ξ where the general-

ised toroidal angle is defined as ξ = φ - ν (θ, s), together with a choice of the Jacobian such that

JB2 is a flux function (see Ref. [26]).

Further the perturbed field is expressed in the following restricted form being valid for

Alfvén waves in low beta plasmas

δB = ∇ × (ξ × B) → ∇ × (b δA ||) = ∇ x (αB) (3.7)

where the function α(r ) is constructed from the MHD normal mode δB. Eventually the per-

turbed potential as seen by a specific particle (index j) is given by a sum of nw waves

α j = 1
Bj k=1

nw

∑
m=mk

−

mk
+

∑ k||m
ωk

Xk t( )cosθ jkm + Yk t( )sinθ jkm[ ]φkm ψ j( ) (3.8)

where

θjkm = nk ξj - mk θj - ωkt (3.9)

k||m = (nq - m)/JB (3.10)

The summation over m refers to the Fourier decomposition and φkm(ψj) to the

corresponding radial eigenfunction as computed by the MHD codes MISHKA-1 and CASTOR.

Variation of the perturbed Lagrangian then yields the equations.

d
dt

Xk = 1
2Ek j=1

np

∑ δn j
m=mk

−

mk
+

∑ ωk − k||mν|| j( ) sin θ jkm φkm ψ j( ) − γ d Xk (3.11a)

d
dt

Yk = 1
2Ek j=1

np

∑ δn j
m=mk

−

mk
+

∑ ωk − k||ν|| j( ) cos θ jkm φkm ψ j( ) − γ d Yk (3.11b)
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where we have added a linear background wave damping γd. The energy of the kth wave is given

by

Ek = 1
2

dv

νA
2∫ ∇⊥φk

2
 . (3.12)

3.2 δf method

The fast ion distribution is represented in the form

f = Fo (ε, P0φ, µ) + δfa (r, v, t) + δfna (r, v, t) (3.13)

where Fo is the equilibrium distribution, δfa the fluid-like contribution to the fast-ion response

and δfna the non-adiabatic response. Only the non-adiabatic response needs to be evaluated to

obtain the particle-to-wave power transfer. The time evolution equation reads

d

dt
(δf na ) j = −Ṗφ

∂F0

∂P0φ j

− Ḣ
∂F0

∂ε j
(3.14)

The fact that only the deviation from the initial distribution is evaluated leads, in particular

in the linear phase, to substantial noise reduction and gain in numerical accuracy as well as in

CPU time.

3.3 Fast Particle motion

A Guiding Centre Hamiltonian method (see Ref. [26]) is applied for following the particle mo-

tion. Based on the coordinate system and choice of representation introduced in Sec. 3.1, the

Hamilton’s equations are

Ṗζj = ν|| jBjj

∂α j

∂ζ
∂Φ j

∂ζ j
(3.15a)

Ṗθj = ν|| jBj
∂α j

∂θ j
−

∂Φ j

∂θ j
− ν||

2
j + µ jBj( ) 1

Bj

∂Bj

∂θ j
(3.15b)

ζ̇ j =
ν|| jBj

Dj
q j + ρj

∂I j

∂ψ j









 +

I j

Dj
Λ j (3.15c)

θ̇ j =
ν|| jBj

Dj
1 − ρj

∂gj

∂ψ j









 −

gj

Dj
Λ j (3.15d)
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with

Λ j ≡ ν|| jBj
∂α j

∂ψ j
−

∂Φ j

∂ψ j
− ν||

2
j + µ jBj( ) 1

Bj

∂Bj

∂ψ j
(3.16a)

Dj ≡ ρj g j
∂I j

∂ψ j
− I j

∂gj

∂ψ j









 + I j + q jgj (3.16b)

In practice, it is more convenient to integrate ψj forward in time and then evaluate Pθj

explicitly using Eq. (3.13b) rather than evolve Pθj forward and attempt to invert Eq. (3.13a) for

ψj. In terms of differential quantities, the equation for ψ̇ j is

ψ̇ j =
gj

Dj
Ṗθj −

I j

Dj
Ṗψj (3.17)

The nonlinear numerical model is a (5 × np + 2 × nw) - dimensional system of ordinary

differential equations for the particle variables Pψj, ψj, φj, θj, δfj together with the wave ampli-

tudes Xk, Yk. This algorithm has been given the name FAC, for Fast particle Alfvén wave inter-

action Code [27].

A similar numerical algorithm is employed in the HAGIS code [28]. In comparison with

the FAC code it allows treatment of more general equilibria, in particular JET discharges; but at

the expense of significantly larger CPU time requests. The three codes CASTOR-K, FAC and

HAGIS have been developed over an extensive period simultaneously at JET and Culham set-

ting off many cross-checks of the algorithms and numerical schemes. The results shown in Fig.

2.4 demonstrate the good agreement of the different methods in the linear regime.

The simplest illustration of the nonlinear saturation of the mode comes from the solution

of the initial value problem, without any background damping of the wave and without particle

sources. The mode then grows until all the particle free energy is transformed into the wave

energy and the distribution function flattens near the resonance. The corresponding saturation

level is determined by the condition ωb = γ, where ωb is the nonlinear bounce-frequency of the

resonant particle in the wave, and γ is the linear instability growth rate. The bounce frequency is

proportional to the square root of the amplitude, which leads to the analytic estimate

δB

B
= cb

γ
ω







2

 . (3.18)

This scaling constitutes a good test for the nonlinear code. In particular for parameters

which are of relevance for a high performance JET hot-ion discharge, which could produce

fusion power in excess of 10 MW in the JET DTE1 campaign, KTAE with toroidal mode num-

bers of n = 5 to n = 8 are found to be most unstable as discussed in Sec. 2.4. Such KTAE’s should
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be preferably destabilised. By varying the alpha particle pressure in the simulation the initial

linear growth rate γ/ωA is varied. The result concerning the saturation amplitude for both inde-

pendent and interacting KTAE’s is displayed in Fig. 3.1. The result clearly shows a quadratic

dependence of δB/B on γ/ωA with the proportionality factor cb ≈ 1. This dependence has also

been confirmed for ITER simulations, where a set of high-n KTAE’s is considered, as displayed

in Fig. 3.1.
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Fig. 3.1 Nonlinear evolution of AE amplitudes computed by the FAC code in the absence of sources and damping.

a) for n = 5 to 8 KTAE at JET. b) for high-n AE’s at ITER. The saturated amplitude scales as

δB
B

∝ Cb
γ
ω







2
with Cb −̃ 0.5

The second important result for these specific cases neglecting sources and damping is

that the onset of orbit stochasticity sets a threshold in the perturbed field of about 10-3,

stochasticity threshold:
δB
B





 cr

> 0.5 − 1( ) ×10−3 . (3.19)

Such levels in the perturbed field are not expected to be reached by the α-particle drive in

DTE1 tritium plasmas.

We can analyse the particle redistribution in more detail. An effective reduction of the

instability drive is achieved by pushing the fast resonating ions out of resonance by a radial

displacement. In the case of a barely passing particle the orbit can be changed into a trapped

orbit. For a large banana width near the plasma edge the particle is lost by one such impact. Such

losses are called prompt losses, and the TAE induced prompt losses are similar to ripple induced

losses. In both cases the loss rate is proportional to the magnetic field perturbation. In tokamaks,

which are designed for good alpha-particle confinement and are characterised by a very small
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gyro-radius relative to the minor radius and a

small ripple, the fast particles are displaced

mostly radially but remain in the plasma. This

is indicated in Fig. 3.2. Resonance overlap is

required to obtain TAE induced diffuse losses.

The loss rate scales quadratically with the per-

turbed field.

In TFTR the losses due to NBI driven

TAE and AFM (Alfvén Frequency Modes) have

been examined by Darrow et al [29]. The losses

in the plasma centre are measured by neutron

emission and the fast ion losses to the wall dur-

ing bursts of AE activity by detectors. It was

found that the change in the neutron rate scales

linearly with the perturbed amplitude during
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Fig. 3.2 Stochastic radial diffusion caused by a single

AE computed by HAGIS.

bursts, i.e. like prompt losses. The losses detected outside the plasma scale quadratically with

the amplitude during bursts, i.e. like diffusive losses.

If weak background damping is present (with the damping rate γd << γL), the saturated

state can only last on the time scale shorter than the damping time, 1/γd, i.e. the wave energy

damps after saturation, whereas the distribution function remains flat at the resonance. The over-

all evolution of the amplitude in this case looks like an isolated burst (wave build-up from the

instability and wave damping after the distribution flattens).

If there is a relaxation mechanism that re-

stores the resonant particle distribution after the

burst, subsequent bursts will appear, resulting

in a continuous pulsation scenario. The time in-

terval between the pulses is determined by the

distribution function reconstitution time near the

resonance. An example of these nonlinear bursts

is shown in Fig. 3.3.

If the particle source is strong enough to

reconstitute the distribution near the resonance

within the wave damping time, the bursts merge

together and a driven steady state establishes.

In this saturated state, the background dissipa-

tion is balanced by the constant power supplied

by the particle source. The steady state distri-

bution function near the resonance results from
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Fig. 3.3 Pulsating non-linear regime for an isolated TAE

mode. The normalised background damping and parti-

cle relaxation rate for this run are, respectively, γd/γL =

0.15 and νa/γL = 0.03.
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a balance between flattening by the wave and reconstitution from the source. The corresponding

saturation level of the mode has been found in Ref. [31] and it is given by

ωb
2 ≅ νeff

2 γ L
γ d







2/3

1 − γ d
γ L







1/2

(3.20)

where νeff denotes the effective pitch angle scattering frequency.

In most experiments the energetic particle pressure that determines γL builds up slowly

compared to the characteristic growth time of the instability. Therefore the system typically

spends a long time near the instability threshold, where γL equals or slightly overcomes the

damping rate. The near-threshold regimes have been studied in Ref. [30]. although these near-

threshold regimes allow both the steady-state and the pulsation scenarios, the scaling laws for

the saturation level and pulsations are now governed by the small parameter

ε = (γL – γd) / γd << 1 (3.21)

The transition from the steady state to pulsations is determined by the ratio of the collisional

relaxation rate of resonant particles, νeff, to the linear instability growth rate, γ = γL – γd. Note

that νeff is typically much greater than the particle 90° pitch-angle scattering rate ν (either clas-

sical or anomalous); νeff scales roughly as (νω2)1/3, where ω is the mode eigenfrequency [32].

The system always evolves to the steady state when νeff >>γ. As γ increases to the values com-

parable to the νeff, this steady state becomes unstable. A bifurcation occurs at γ of the order of

νeff, giving rise to a periodic limit cycle behaviour. At even larger values of gamma additional

bifurcations occur, which break the periodicity of the first cycle, and eventually lead to an explo-

sive evolution of the mode [30]. It is plausible that the transition from the steady state saturation

to the limit cycle can explain the “pitchfork” in the TAE spectrum shown in Figs. 3.4. This

pitchfork-type splitting in the TAE spectrum occurs, when the RF heating power well exceeds

the threshold for TAE excitation, as discussed in detail on Fig. 2.5 in Sec. 2.4. We conjecture that

the modes first exhibit a steady state near-threshold saturation, that evolves slowly due to RF

heating. At the point when the growth rate reaches the stability limit for this nonlinear steady

state, the mode bifurcates and develops a limit cycle. The moment of bifurcation for each spec-

tral line on Fig. 3.4 can be identified as the moment of line splitting.

Another interesting phenomenon observed in JET and other tokamaks [33-35], which is

likely to have a nonlinear nature, are the modes with time-dependent frequencies (“chirping”

modes) see Fig. 3.5. In Fig. 3.5, RF driven chirping modes on JET are shown. Unlike the TAE

modes, whose frequency cannot change fast since it is determined by the equilibrium plasma

parameters (the gap location, plasma density etc.), these modes exhibit very fast chirping at the

time scale of ~10 msec. These modes don’t seem to be background plasma eigenmodes. It is

more likely that they are Bernstein-Greene-Kruskal type nonlinear waves, whose existence
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Fig. 3.4 Detail of spectrogram of RF driven AE’s show-

ing “pitch fork”-type fine splitting of TAE frequency.

500
20* (12 + Log(|δB|)) versus (t,f) in Pulse No: 40847

400

300

200

100

0

F
re

qu
en

cy
 (

kH
z)

5.81

20 40 60 80 100 120 140 160 180 200

5.82 5.83 5.84

Time (s)

5.85 5.86 5.87

JG
97

.3
66

/1
8c

Fig. 3.5 RF driven “chirping” modes.

requires strong local perturbations of the phase-space distribution of energetic particles. These

modes may result from the nonlinear evolution of the linearly unstable Energetic Particle Modes

(EPM) [24], although this may not be the only mechanism. The EPMs are non-perturbative

kinetic modes that generally exhibit fast chirping in the nonlinear regime [24, 37]. Also the

BGK-type modes can chirp when there is a background dissipation in the system [36]. A more

detailed analysis is needed to check whether the experimentally observed chirping can indeed be

explained by one of the mechanisms mentioned above.

Both the experimental data and the theoretical analysis indicate that isolated modes are

not likely to cause any macroscopic re-distribution of energetic particles under reactor condi-

tions. Such a redistribution generally requires multiple modes with overlapping resonances in

accordance with the Chirikov criterion [38]. In some cases the resonance overlap can lead to an

avalanche type response when the overlap of a few neighbouring resonance triggers an overlap

in a broad area of phase space (so-called domino effect). Single mode studies allow us to quan-

tify the condition of resonances overlap for different saturation regimes. Once the resonance

overlap is achieved, the particles experience macroscopic stochastic diffusion like in the case

shown in Fig. 3.2. The stochastic area in Fig. 3.2 is limited to a band where the “active” resonances

are localised. If these resonances extend all the way to the edge of the plasma, particle loss can

occur. Otherwise the particles will be redistributed internally, which may even be beneficial.

4. CONCLUSIONS

During recent years the physics of Alfvén Eigenmodes has been established as a fundamental

branch of magnetic fusion physics. Both experimental and theoretical tools have advanced to the

state where detailed discharge analysis is now feasible and is being performed routinely on the
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major tokamak experiments. The interfacing of measured spectra with computed AE spectra is

applied to the verification of the accuracy of measured plasma profiles.

In this paper a linear model for the evaluation of the power transfer between energetic ions

and waves is described in conjunction with details of the numerical solution applied in the

CASTOR-K code. Citation to methods from other groups is included. The application of the

CASTOR-K code to specific antenna, RF, and α-particle driven excitation of AE is discussed

(“spectroscopy”). The Alfvén-type scaling of the experimentally observed spectra has been veri-

fied. The threshold in RF power for TAE excitation in the range of 5MW is consistent with

modelling. Kinetic effects give rise to a weakly damped spectrum of kinetic EAE’s. In addition,

scenarios for the existence of alpha particle driven AE in JET D-T discharges, in particular, for

low-density plasmas, are discussed. The perturbative approach, where the radial eigenmode

structure is established by linear theory, but variation of amplitude and phase introduced, can be

extended into a self-consistent weak turbulence model. The codes FAC and HAGIS being used

at JET, as well as corresponding codes at other laboratories, allow a quantitative analysis of the

fast ion loss/redistribution due to collective effects. A comprehensive discussion of the different

types of nonlinear solutions is presented, i.e. the conditions for steady-state saturation, bursts

and chirping modes are outlined. The applications of the JET codes to the problem of mode

saturation are discussed. Therefore the nonlinear wave evolution and particle redistribution can

be very complex, in particular for ignited plasmas.

In JET DTE1, it is expected that alpha particle driven AE’s should be observed when the

damping is kept small, such as by low-density or by switching-off the neutral beams.

REFERENCES

[1] Rosenbluth, M.N., and Rutherford, P.H., Phys. Rev. Lett. 34, 1428 (1975).

[2] Mikhailovskii, A.B., Sov. Phys. JETP 41, 890 (1975).

[3] Duong, H.H., et al., Nuclear Fusion 33, 749 (1993).

[4] Fasoli, A., et al., Phys. Rev. Lett. 75, 645 (1995).

[5] Fasoli, A., et al., Phys. Rev. Lett. 76, 1067 (1996).

[6] Fasoli, A., et al., Nuclear Fusion 35, 1485 (1995).

[7] Mikhailovskii, A.B., Huysmans, G.T.A., Kerner, W.O.K., and Sharapov, S.E., Plasma Phys.

Rep., 23, 844 (1997).

[8] Kerner, W., et al., JET-P(97) 04 to appear in Journ. Comp. Phys.

[9] Mett, R.R., and Mahajan, S.M., Phys. Fluids B4, 2885 (1992).

[10] Berk, H.L., Mett, R.R., and Linberg, D.M., Phys. Fluids B5, 3969 (1993).

[11] Candy, J., and Rosenbluth, M.N., Phys. Plasmas 1, 356 (1994).

[12] Breizman, B.N., and Sharapov, S.E., Plasma Phys. Contr. Fusion 37, 1057 (1995).

[13] Connor, J.W., et al., Proceed. XXI EPS Conference on Contr. Fusion Plasma Phys. 18B,

Part III, 616 (1994).



27

[14] Poedts, S., Schwarz, E., Journ. Comp. Phys. 105, 165 (1993).

[15] Porcelli, F., Berk, H.L., Stankiewicz, R., and Kerner, W., Phys. Plasmas 1, 470 (1994).

[16] Borba, D., Candy, J., Kerner, W., Sharapov, S., JET-P(96)35.

[17] Abramowitz, M., and Stegun, I.A., Handbook of Math. Functions, Dover Publications,

New York (1970).

[18] Eriksson, L.-G., Hellsten, T., and Willén, V., Nucl. Fusion 33 (1993) 1037.

[19] Carlsson, J., Hellsten, T., and Eriksson, L.-G., Fido, a code for computing the resonant-ion

distribution function during ICRH. Royal Institute of Technology Report ALF-1996-104,

Stockholm (1996).

[20] Fasoli, A., et al., invited paper at 24th EPS to be published in Plasma Phys. Control. Fu-

sion.

[21] The JET Team, Nucl. Fusion 32, 197 (1992).

[22] Nazikian, R., et al., Alpha Particle Driven Toroidal Alfvén Eigenmodes in TFTR, JAERI-

memo 09-124 (1997).

[23] Berk, H.L., Breizman, B.N., and Pekker, M.S., Nuclear Fusion 35, 1713 (1995).

[24] Chen, L., Phys. Plasmas 1, 1519 (1994).

[25] Mc.Guire, et al., Phys. Rev. Lett. 50, 891 (1983)

[26] White, R.B. and Chance, M.S., Phys. Fluids 27, 455 (1984).

[27] Candy, J., Borba, D., Berk, H.L., Huysmans, G.T.A., and Kerner, W., Phys. Plasmas 4,

2597 (1997).

[28] Pinches, S.P., et al., to appear in Comput. Phys. Commun..

[29] Darrow, D.S., et al., Nucl. Fusion 7, 939 (1997).

[30] Berk, H.L., Breizman, B.N., and Pekker, M.S., Phys. Rev. Letters 76, 1256 (1996).

[31] Berk, H.L., Breizman, B.N., Phys. Fluids B2, 2226, 2235, 2246 (1990).

[32] Wong, K.L., et al., Phys. Plasmas 4, 393 (1997).

[33] Heidbrink, W.W., Plasmas Phys. Contr. Fusion 37, 937 (1995).

[34] Kusama, Y., et al., Confinement of ICRH-driven energetic protons and TAE-modes in

JT-60U negative shear plasmas, JAERI-memo 09-124 (1997).

[35] Gryaznevich, et al., M.P., Proceed. 5-th IAEA Meeting on Alpha-particles in Fusion Re-

search, 8-11 September 1997 (to be published).

[36] Berk, H.L., Breizman, B.N., and Petviashvili, N.V., Phys. Lett. A (to be published).

[37] Breizman, B.N., Berk, H.L., Pekker, M.S., Porcelli, F., Stupakov, G.V., Wong, K.L., Phys.

Plasmas 4, 1559 (1997).

[38] Chirikov, Phys. Reports 52, 263 (1979).

.


