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ABSTRACT

The stability theory of Alfven drift-waves shows that with increasing plasma pressure the Alfven
waves get coupled to electron drift waves. This instability can be characterised by two signifi-
cant parameters, i.e. the normalised plasma betaéhandormalised collision frequency. The
resulting turbulent transport coefficient is suppressed when the normalised beta is greater than a
critical value, i.ef3, > 1 +v,2%  which depend on the normalised collision frequencyl he
transport coefficients change their dependence on plasma parameters at this threshold. The Alfven
drift-wave model predicts the scaling of the electron edge temperature at the L-H transition with
respect to the toroidal field, plasma current, density and other plasma parameters. The experi-
mental data corresponding to the L-H transition on different tokamaks exhibit a similar behav-
iour in the T - np diagram, in particular a weak dependenceyafiTthe density at high densities

but a more pronounced increase at low densities.

1. INTRODUCTION.

Tokamak plasmas experience transition to higher confinement regimes ( the H-mode as discov-
ered first on ASDEX [1] ) when the heating power exceeds a threshold. The explanation of the
L-H transition as well as of the power threshold is still incomplete in spite of extensive experi-
mental and theoretical efforts. A comprehensive overview on L-H transition theories is given in
Ref. [2] (see in addition references therein), e.g. bifurcation in the electric field, fast ion orbit
loss and sheared flow stabilisation. A theoretical model, which describes the L-H transition by
the interaction between sheared plasma flow and plasma turbulence, has been discussed in Ref.
[3], while the analogous system of model equations has been presented in Ref. [4] for the SOL
region. No theory so far has been found to describe the experimental data satisfactorily.

The detailed measurement of the electron edge temperataedidensity § which are
now routinely available on many devices [5-10], indicate that there is an ideal MHD beta ( the
ratio of plasma pressure to magnetic pressure) threshold for the onset of Giant Edge Localised
Modes (ELM’s) and furthermore, suggest the existence of a second beta threshold below the
ideal ballooning limit for the L-H transition. These data have let to the development of a local-
ised plasma edge physics model. This local analysis model is less involved than the conven-
tional global model for the L-H transition.

The new evidence suggests that the Alfven drift-wave instability [11 - 12] can play an
essential role in the edge plasma dynamics. For this instability, as was found many years ago
[13], the growth rate for perturbations with a wave numipgy; k 1 decreases when the plasma
beta exceeds the threshold given by the mass ratio of electrons and ighs, imgM;. The
transport in the central region of the tokamak plasma is usually related to lon Temperature
Gradient (ITG) modes. However, there is strong experimental evidence that the core plasma
instabilities change into electron drift modes near the plasma edge [14]. This makes the



existence of an electron drift- type mode near the plasma edge very plausible; in particular, the
Alfven drift- wave instability is of this type. The linear stability theory [13] shows that with
increasing plasma pressure the Alfven waves mix with electron drift waves and suppress the
unstable long wavelength perturbations, which are dominant in the transport. However, in the
non-linear numerical simulations [11], [15 - 17] different qualitative results have been reported.
It is, therefore, necessary to proceed with an investigation of the scaling properties of the rel-
evant linear and non-linear equations. Such an analytic approach complements the numerical
calculations. It is shown that the scaling can be derived from both the linear and non-linear
equations.

Since atokamak plasma is not expected to be stable against all linear and non-linear modes,
the averaged particle and heat flux induced by such instabilities need to be studied. In the stabil-
ity analysis we do not evaluate the growth rates and eigenfunctions of infinitesimal, linearised
perturbations but follow the evolution of finite-amplitude perturbations. Such a (well-known)
wave-packet analysis [18] yields the necessary condition for stability. Whereas linear drift waves
can be stabilised by magnetic shear, it has been demonstrated by the works of Ref. [19 - 22] that
the linearly stable modes can be destabilised nonlinearly and the entire wave-number spectrum
gives positive growth rates. Recent numerical simulations [11, 23] also show the existence of
these unstable perturbations. Consequently, the assumption for the existence of finite-amplitude
Alfven drift-wave perturbations is justified in our analysis. The drive for these finite-amplitude
perturbations can be generated by trapped particles, temperature gradients or by a microturbulence
background. The increase or decay of the amplitudes of these wave packets and the dependence
of the relevant physical parameters is derived.

In this work we combine the dimensional analysis together with the quasilinear approach
and derive an expression for the density and energy fluxes based on the Alfven drift-wave insta-
bility. The preliminary investigation shows [12] that this instability can be characterised by two
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field, x,, = =(1/ p, tlp,/ dy* characterises the pressure gradient scale lengfhatite mean

free path and ks the parallel wave numberks/qR, where s is the shear of the magnetic field
s=rdg/qdr and q the safety factor). All quantities are taken near ( just inside ) the separatrix. The
analysis of the transport coefficients shows that the turbulent transport is suppressed when the

plasma beta exceeds a critical value, narfighy 1 +v,. 22 This yields the scaling for the edge
3 |a|
temperature at the L -H transition in the fofgg, = K.S* AO\aA r%“" where all exponents are of



order unity and depend only weakly on the plasma parameters (the exact expression is presented
in section 4). The Alfven drift-wave model predicts the correct dependence of the electron edge
temperature on density, toroidal field and current [12], [24]. Moreover the scaling for the L - H
power threshold found in the recent JET [25] tritium experiments correlates with the mass de-
pendence predicted by our theory.

In Section 2 we derive the quasilinear density and energy fluxes for the electromagnetic
case when magnetic field perturbations are essential. Section 3 contains the solution of the dis-
persion relation and the analysis of the transport coefficient for the Alfven drift-wave instability.

In Section 4 the dimensional parameters, which define the L - H transition, are presented and on
this basis the scaling for the edge temperature is derived. Section 5 contains the comparison of
the theoretical results with experimental evidence from different tokamaks. Section 6 gives the
summary of the results. In Appendix | the derivation of the dispersion relation is presented.
Appendix Il describes the model used for the temperature profile. Finally, Appendix Il contains
expressions of derived parameters in practical units.

2. THE QUASILINEAR DENSITY AND ENERGY FLUXES FOR THE ALFVEN
DRIFT - WAVE INSTABILITY.

a. The quasilinear fluxes in the electrostatic approximation.

The expressions for the quasilinear fluxes in the electrostatic approximation, where the mag-
netic perturbations are not important, are well known and are, therefore, only briefly discussed
here. The turbulent density flux can be obtained from the averaged electron density equation:

%(ne>+ div(n,Vv))= s, 2.1)

with the expression for the transverse electron velocity:

% (2.2)

It is easily seen that the diamagnetic part of the velocity does not contribute to the turbu-
lent transport flux when the curvature correction in the magnetic field is not taken into account.
Thus, only the KB part of the velocity is essential for transport. Introducing a slab model in the
narrow plasma layer near the separatrix with x as the radial co-ordinate we can write:
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where the particle fluk, is

M= (M1Vy) = -1 %g Refik, LB k). (2.4)

The notations are defined in Appendix I. One can simplify this expression by using for n’
the ion density expression (Al1.2) in the limitk O: ﬁi =[k/(Q[@1+n,))]¢ , which yields

My ~ |<'ﬁ|2. The radial displacemeid, of the plasma element is introduced by the relation

dE / dt=7
cT,
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which gives an estimate for the perturbed potential .

Only the irreversible part of the displacement is taken into account, which is proportional
to the imaginary part of the frequengy.e. the growth rate instead of the full frequeacy iy.
From (2.5) it follows:
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(2.6)

We further adapt the normalisation from Appendix #Im(Q)cs/xgp, k = kgps and

suppose that the displacement can not exceed thedsalaer/ ky, andky ~ ky ~ k3. Finally
we can rewrite the particle flux in the form:

Do G &0
Then using the definition (A1.8) the diffusion coefficient is:
Do = Xes D6 (2.8)
whereX GB is the Gyro-Bohm normalisation coefficient:
XGB = CsP s)g—z_ (2.9)
The dimensionless transport coefficient in (2.8) is written in the form:
Xo =X mo E) max- (2.10)



Here we introduce the mixing length turbulent coefficient:
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together with the quasilinear factor:

Im(Q) 2

= = = (2.10b)
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If the growth rate is large enougi(Q) = Re@ ), i.e. in the strong turbulence case, the

usual mixing length estimate for the transport coefficent= Im(Q)/k2 is obtained (here
written in dimensional form), otherwise the expression (2.10) has to be used. The quasilinear
correction to the transport essentially improves the agreement of the analytical results with the
non-linear numerical simulation [26], [27].

We can rewrite the factor (2.10b) in an equivalent but more physical form. Taking the
linearised expression of the radial velocity in the electrostatic limit:

ck, T - '
L e T4 (2.11)
eBO Oe No TQED

and using the longitudinal component of the Ohm'’s low (A1.4) the right hand side of (2.11) can
be expressed through the longitudinal component of the velocity or the cyrrergrfyo:

Y eRp_le (2.12)

Then the longitudinal velocity is expressed through the density and potential using the
continuity equation (A1.3) and the density through the potential using the equation (Al.2). Even-
tually, the following expression for the quasilinear form factor is obtained :

(Q+k/(@T@+n.))

M = Im(Q) Om(k R :
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(2.13)

For the electrostatic case the expressions (2.10b) and (2.13) coincide, but for the case with
magnetic perturbations only the last expression makes sense. From (2.13) it is seen that the
transport is defined by the dissipative effects in the plasma, i.e. the term R.

By averaging the energy MHD equation we can derive the expression for the energy flux.
The equation for the averaged energy reads:
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whereP, is the heating power and the thermal anomalous fluis glefined as:

CToe

Gox = gnO(Te' V,)=- Z Re<|k TOF k) (2.15)

Using the expression for the perturbed temperature (in the limit 10)

fe =[kne/(QM1+n )¢ we can rewrite the heat flux in the usual form:

dT,
Gex =K @1~ = (216)
where the electron thermal conductivity is:
3 -
Ked =5 NoX GBXD - (2.17)
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b. The quasilinear fluxes in the perturbed magnetic field.

The calculation of the density and energy fluxes in the presence of a perturbed magnetic field it
is not as simple as for the electrostatic case. Here we follow the qualitative arguments given in
Ref. [28]. In the electrostatic case the irreversible part of the plasma displacement is evaluated in
the spatially fixed frame. But a plasma is not held fixed in space but is frozen onto the nested
magnetic surfaces. When the magnetic field moves, the plasma does move with these surfaces
without inducing anomalous transport, which reflects the ideal frozen-in condition. Such mo-
tion takes place in the case of ideal ballooning or kink instabilities. In order to calculate the real
transport in a slightly dissipative plasma, not the reversible displacement of the plasma elements
in space, we have to find the small irreversible difference between the plasma displacement and
the displacement of a given magnetic surface. Only this relative motion defines the anomalous
fluxes. The corresponding calculation it is not difficult for the collisionless Vlasov equation [29]
but more involved than for the MHD equations [30]. However, it is possible to proceed in the
following phenomenological way [28]. We start from the electron momentum equation (which
can be considered as the Ohm'’s law):

dI r r@., J
= - er@& v.5| en. (2.18)




If we omit the terms with inertia and conductivity then we obtain:

r lpr I
Opz= - erﬁ& EveB]ﬁ. (2.19)

which constitutes Ohm'’s law for an ideal plasma with a Hall current. In this case the frozen-in
conditions are conserved and do not allow the plasma to move through the magnetic surfaces.
From the equation (2.19) the expression for the radial velocity of the plasma (2.2) follows,
which in the linearised form reads:

Ve = i e o (2.20)

This expression shows that the radial component of the velocity it is not zero in spite of the
absence of transport. The expression (2.20) is simply the reversible displacement of the plasma
in space. In order to derive the displacement of the magnetic surfaces it is sufficient to take into
account the longitudinal component of the full equation (2.18). The linearised version of it can
be written as (see Appendix I):

o n. T _w-dy epﬁ'éz RVE (2.21)
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In the right hand side there are the inertia and conductivity terms. If this dissipative term
vanishes transport has to be absent. Defining the “velocity” of the magnetic surfaces as

Visix= ek e Too ; (2.22)

then the difference between the plasma velocity (2.20) and the magnetic surface velocity (2.22)
is

__iCky-lz)e N T w-wy eAMD_iCkyT)eRVue
o e% TOe IﬂlO TOe k1|C TQe Q eB) VTe

vdx: Vlex_\, (223)

This expression vanishes for the ideal case (R = 0) and is proportional to the dissipative
processes in a nonideal plasmaAR). The final expression (2.23) coincides with the expres-
sion (2.12) for the electrostatic limit but in the derivation the magnetic displacement need to be
subtracted from the total displacement of the plasma.



In conclusion, we can generalise the electrostatic expression for the transport coefficients
D andx by means of the form factor M. (2.13). The density flux is then given by:

dng

No
Ny =Dg————=-D : (2.24)
T xop(L+ne) o
and the energy flux by:
dToe
=- : 2.25
Oex & gy ( )
The transport coefficients assume the form:
Do = X 06 - (2.26)
_3 =
Ken =5 NoX GBXD - (2.27)
where the dimensionless transport coefficient reads:
7D = (XMIEI DVI) maxk 1 (228)
with the form factor given by:
Q+k/(t@@+ O
M = Im(Q) Dm@éR( ;Q( ne)H (2.29)

It is emphasised that the expression (2.29) coincides with the particular form for the elec-
trostatic transport case (2.13) , but can not be derived for the electromagnetic case without the
subtraction of the magnetic fluxes motion. Moreover, the identical form of the equations (2.29)
and (2.13) gives additional validity to this result.

3. DISPERSION RELATION AND ANALYSIS OF THE TRANSPORT
COEFFICIENTS.

a. Properties of the Dispersion Relation

The dispersion equation for the Alfven drift-wave instability is derived in Appendix I. The final
simplified form (A1.13) contains four independent parameters, namely the normalised plasma
beta
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whereA, =v. /v . is the mean free path for the electrons, the ratio of the temperature and den-
sity gradients:

_ dIn(T,)

Ne () (3.3)

and the ratio of electron to ion temperatare T, / T,
Here the longitudinal wave numbeyfkr the drift wave can be estimated as usual [18]:

| == (3.4)

The dispersion equation is a polynomial of fifth order containing four parameters. Using
the conditionu <<1 and redefining all variables as done in(A1.11) leads to a fourth order equa-
tion. This procedure is not trivial and is not equivalent to settiad in the initial expressions
(A1.10), because the exact dispersion relation is proportiofaitself.

The numerical analysis of the dispersion equation (A!.13) leads to the following
conclusions:

1. only one root of the four roots is unstable;

2. the unstable perturbations propagate in the diamagnetic electron direction;

3. the real and imaginary part of the unstable root are of order unity in the dimensional
variables;

4. the growth rate has a maximum when the normalised transverse wave number is of order
unity;

5. the growth rate is strongly suppressed with increasing plasma pressure;

6. the growth rate increases with increasing temperature gradient;

7. the maximum of the growth rate and of the reciprocal wave number decreases with
increasing collision frequency inducing an increase of the transport coefficients

(see below);



8. the dependence of the maximum growth rate and of the corresponding wave number on
the parameteng, andt is relatively weak.

b. Transport coefficients.

The normalised transport coefficients, which define the diffusion (2.26) and the thermal con-
duction (2.27), are now evaluated for the Alfven drift-wave instability :

v (v _4d 2 (Q+k/(t(1+n,))
Xo=(Xo ) maxk = %m(ﬂ) [m o) %ﬁk (3.5)

If we express the right hand side of (3.5) through the renormalised values (A1.11) then we
obtain:

Xc :TE Ville T), (3.6)

where the factoky (B, Vasfle.T) in (3.6)

s (Qn K, [(r(1+n,))

. %M, (3.7)

is a function of the parameté8,” ' andt only. If these parameters are of order unity then

XD(ﬁn’ n’rle’T)z(X—Ek)maxk Dm(Q )2

the coefficientXs (B, :Va.1..T) is also of order unity. This implies that the physical transport
coefficients are larger than the characteristic (local) Gyro - Bohm ¢e88¢2.9) due to the

1
factor— in (3.6):
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The numerical evaluation yields that the expresfhiﬁn WViil1e,T) depends only weakly
on'’e andt . Therefore, this dependence can be omitted. In Fig. 1 the dimensionless transport
coefficient is displayed as a function of the normalised collision frequency (or the normalised

mean free patti/v = (m,/ M )" I(Xop gRY?) and the normalised beta. The dependence
of X0 (B Vnile:T) as a function of  for different beta values is shown in Fig. 2 ; in particular
the asymptotic behaviour &t with respect to 0¥, andp,is evident. For the case of small beta

and high collision frequency the heat conductivity depends on the collisiofalityy.,"*. But

10



for small beta and low collisionalitfu ~1, i.e.7g does not depend ory. For the case of high
beta the dependence %f] is more complicated as can be seen from Fig. 1. The different

asymptotic behaviour x o can be approximated by the expression:

_ 1+(v,lv)?]"”
X=Ve [ ] (3.10)
v+, iv,)*
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1
(3.11)
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Fig.1: The surface graphics of the transportFig.2: The asymptotical behaviour of the transport
coefficienty. coefficient in the plane (In), In(3,). The lines
B ~ 1M"® and B ~ v*° divide the different asymptotic
regions fory.

In (3.10) and (3.11) we omit all numerical factors of order unity. This formula approxi-
mates the numerical results in all regions in the,3,) plane as can be seen from
Fig. 2

The analysis of the turbulent transport coefficient (3.10) give the basic result that the
transport decreases when

B, > 1 +v, 22 (3.12)

This condition yields the scaling for the edge temperature at the L -H transition. The result
(3.12) can be obtained from the following simple consideration. In a low beta pl@sral()

11



the exact expression for the electron density (A1.7) can be expanded in beta:

E . 2V‘I?e D . - EE
i e
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Herek, = k [p,. For illustration we take here the simplest case without temperature
perturbation and without temperature gradient. If we omit the terms proportigdaht(3.13)
we obtain the electrostatic case. In this limit the dispersion relation contains only one param-
eters:

Q2 +iMQ -iM =0, (3.14)

k||VT)2

whereQ = w/w* andM = / (k2e.) . In this case the solution of (3.14) can be obtained

e

easily. For the imaginary and real parts of the frequency we have:

1/2 Ml/2
y=atmemms @ Yy (3.15)

We again omit here all numerical factors of order unity. From this expression it is easy to
see that the mixing length transport coefficient

y M1/2
Xo :E=XGB E'W (3.16)
has a maximum infkfor M ~ 1, i.e. for
3
_ mmg?, O
kDps = kO = %E k" Aexoé . (317)

Consequently, the maximum value of the heat transport in the electrostatic regime is
given by:

Xo = Xes 1 Ko (3.18)

From the expression for the electron density (3.13) we can now estimate when the plasma
beta becomes important. This is the case when the second term in the bracket in equation (3.13)

12



Is approximately equal to or greater than unltyﬁn-en(—azb) [B, > 1. Taking into account that for

M ~ 1 the termg andw, are in the order of the drift frequen@yjthis condition can be rewritten
as:

LM

B> (10 =

This result coincides with the condition (3.1)> v»2° in the collisional limit. Using the
same considerations for the collisionless easev,, we can derive the conditidy > 1, when
the electromagnetic effects begin to influence the transport

e’
E (3.19)

4. EDGE TEMPERATURE SAILING FOR THE L - H TRANSITION.

The previous results make the derivation of the scaling of the electron temperature at the L - H
transition feasible. In the early phase of the discharge the plasma is in the L mode. The transport
processes inside the plasma column can be divided schematically into the core plasma transport,
which is not discussed here but is taken as an experimental fact, and the plasma edge transport,
which is dominated in the L mode by the by an electron drift-type instability, such as the Alfven
drift-wave instability. Such electron drift instabilities are dominant near the plasma boundary
because of the low temperature and high collisionality. The analysis of the previous section
shows (3.12) that the turbulence caused transport fluxes decrease when

213
Bn>1+vy

This condition yields the scaling for the edge temperature at the L -H transition. The esti-
mate of the gradient scale length inside the separais)derived from the assumption that the
turbulent transport coefficients are continuous across the separatrix and that the convection
(collisionless plasma) or conduction (collisional plasma) model in the SOL applies ( see Appen-
dices Il and 111 ).The energy flux from the plasma centre

Al P (4.1)

has to cross the boundary. In (4') denotes the thermal conduction of the core pla3fia,
the average plasma temperature, a the small radius, p is the average heating power density p= P/
V, where P is total plasma heating power and V the plasma volume.

13



For the scrape-off layer plasma ( SOL ) we can use the analogous expression

-
® ~Qyy ~a£. 4.2)

Xo Mo

qx~XEI

Herex [ is the transport coefficient in the SOl the temperature at the separatrix (or at
the boundary between main plasma and the plasma in the shadow of the limiter ). Using the
expression (A2.7) forxand assuming continuous transport coefficients across the separatrix
we obtain:

Xy =4, ZWIXDT” (4.3)

Inserting the results from Appendix Il the lengthcan be rewritten as a function of the
temperature on the separatrix.TFurthermore, the temperature inside the separatrix is approxi-
mated by

T(a-AY =T A+AX %)= TAX % ; (4.4)

Ax is the distance inside the plasma from the separatrix to the magnetic surface, where the
temperature is measured. Using this expressionyfas & function of Jand the condition for
the threshold (4.1) the scaling of the temperature at the L - H transition at some distance away
from the separatrix T(Ax) with plasma parameters is derived.

In the collisional case, > 1 the following result is obtained:

T (a-D% =3260K7°S° 10 BS £287°D X, (theory).
This result can be compared with the experimental result from ASDEX-UPGRADE :
T (a-20m = 1450°% B ([ eY (AsDEX [9)).

The theoretical dimensional scaling is found to agree well with the experimental scaling
In addition, the numerical coefficient agrees up to a factor of two with the experimental data for
AXem = 2CM

For the collisionless casg < 1 the estimate holds :

Ty (=A%) =2330A"sng By by 8 1 X,

14



The general expression fogyIfor arbitrary collisionalityv,, can be expressed in the fol-
lowing interpolating form:

4

f
_ f30AOS[s[B,, O, [
Tev(a_A)O =G nf2 % aiﬂ E mXcm, (45)

019

wheref1=(1+2/ 5w 3/ (1+v ), f2=(1+ 3/ 10w )/ ( +v X, f3=(1+v]D/(1+ 7/ 10 },

f4=(1+3/503/(1+v ] and V1= (ng/n, )", Ny =(Byr Oya/ BD",

Bl =c, A¥"s¥7 %7 Z2. This formula contains two additional parameterandc,, . Theory
gives the values;623.3 and g=1.4. The fit with the ASDEX data yields=10 and g,=0.7.
The constants are now fixed at the experimental values from ASDEX and held constant in the
application to the results from all other tokamaks. The comparison of the theoretical predictions

with the experimental findings is displayed in the Figs. 3-7 and is described in detail in the next
section.

)21/10

5. COMPARISON WITH TOKAMAK EXPERIMENTS.

We summarise here our understanding of the physical processes involved. In the core plasma the
transport scales like Gyro-Bohm, which is in agreement with the dominance of ion temperature
gradient modes. Near the plasma edge the transport is more consistent with a Bohm-like scaling

suggesting that electron drift waves are involved. For example in the collisional case the trans-
32

port coefficient (3.8) (or (3.18)) scales)asl Wnyf—% if we express the edge length scale
0

Xo through the plasma parameters. Consequently, it is assumed that electron drift waves domi-
nate the transport at the edge. The level of transport then depends on the local beta value. With
increasing plasma pressure the electron drift waves couple with Alfven waves according to
linear theory [13]. As a consequence the unstable long wavelength perturbations which are the
most important for transport at the edge are suppressed. The threshold condition on beta can be
characterised in terms of two dimensionless normalised parameters: the plasma beta

V2 1/4 1/2
i _Bo _ M. 4nn02T0€ 1 _ and the collision frequency,, = — =AM Zor

pooOmO B kg, Juo Om O Ak
being functions of the local plasma parameters. In a collisionless plasma the turbulent transport
coefficient starts to decrease fr> 1. This yields a scaling for the edge temperature at the L-
H transition of the form §edge ~Borl waho *. For the collisional case the turbulent transport
decreases fdd, > v,”°. This leads to the scaling fdj of the form Dedge Bor Tua® o>,
For both limits the estimate of gradient scale lengilk ”erived by assuming that the turbulent
transport coefficients are continuous across the separatrix and that the characteristic time for

parallel transport in the SOL is due to electron conduction along the open field lines. This Alfven

15



drift-wave instability model predicts a close to linear dependence of the edge temperature on the
toroidal field. The edge temperature at the threshold rises strongly with density at low densities
where the edge plasma is collisionless, and has only a weak dependence at high densities where
the plasma is collisional. The experimental points corresponding to the L - H transition in differ-
ent tokamaks reveal a similar behaviour inrthe T,, diagram. The temperature at the on-set of

the Alfven-drift instability is plotted against the plasma densityyigumdary Tboundaryspace

(see ITER memo [31] ) for different machines and compared with experimental data points (see
Fig. 3 - 7). The width of the H-mode transport barrigrixassessed from the radial profiles.

The coefficients in our model has been calibrated to match the L-H transition points for ASDEX-
UP ( collisional case ) and then kept constant in the application to other tokamaks as well as in
the extrapolation to ITER. Shown in Fig. 3 is the operational space for ASDEX Upgrade in
terms of @ and Te at r = a — 2cm for constant magnetic field. The magnetic shear near the
separatrix has the value s=3. The squares correspond to L - mode data just before transition,
whereas the rhombué€ () correspond to the case with type IIl ELM’s in H-mode [8,32]. Similar
transition points, i.e. early H- mode data just after transition, are shown for DIIID in Fig.4.

0 ASDEX UP; Edge operational space

H-mode
type | ELMsﬂJ
500 ELM-free 600 DIII-D: L-H transition
H-mode fa v Early H-mode
400 typz-mOSI?Ms — — Drift-Alfven inst.
3 o
2 300 Vi 608 \ v
H ..o S 4001\
L-H  ~.oH 2 \
200+ N gocn 5 \\ v vy
D 17]
Be>Me/mi O D\\':'mg B o § Ty v
100/ o _odf+®on o =i S Y M
R g - 200 AN v
o Radiation unstable zone ~ ~|3 S~ vy VY
0 I | ! I ~—_Y VY YV v,V
0 2 4 6 8 10 v o~ M
n (1012 m-3) lowd=0.1 v %
high 5= 0.1 5
0 | | | | 8
7 L-H 4 ball. atT, & Type | 1 2 3 4 5 6
v ball. at low & = Compound oT.,/L—H .
4 ball. at high & i ° Mpedesta, (10°2 M)

e ball. at Ag,p <o Type llI

Fig.3: Operational space diagram (n-Te at 2 cm fronfrig.4: The same as in Fig.1 for DIII-D; experimental
separatrix) for L-H transitions in ASDEX Up; experi-points are H-mode regimes just after transition ; above
mental points are L-mode regimes just before transitiae rigid line drift-Alfven perturbation is stabilised; x
[5,6]; above the dotted line drift-Alfven perturbation are= 7cm, shear value at the separatrix s = 5, dashed line
stabilised; shear at the separatrix s=3; dashed line corcorresponds s = 3.

responds the conditiofl, = mJ/M;.

The data refer togg= 3.9, % = 2cm and a shear value at the separatrix s = 3 [6,7]. In both
tokamaks the predictions from our theory are in good agreement with the experimental data, in
particular the asymptotic behaviour al high and low density. In FIG. 3 ( showing the data from
ASDEX-UP), the limitB, > m,/ M,, which indicates the coupling of electron drift waves with
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Alfven waves, is also indicated. This limit cor- 30— = Upgrade .
responds to instabilities withik~ 1 which are 2;? O(a;zf%lg -
in general not the most unstable perturbations. I, = IMA

It is evident from FIG. 3 that the Alfven drift- § *°°[

wave model does fit the data better. The dé
pendence of the edge temperature on the maTQ-

netic field for ASDEX discharges with 1 MA "~ % !

O L-mode
current is displayed in FIG. 5. The theoretical ¢ H-mode

— Tpred. (n= 3.4 101 m™)
---- Tpred. (n = 3.0 10 m™3)
| 1

1.0 15 2.0 2.5
B: (M

scaling exhibits good agreement with the ex-
perimental data. Note that there is some varia-
tion in density. The final comparison is per-

. . Fig.5: Dependence off = a - 2cm) on B Shown are
formed with results obtained at ALCATOR C-

discharges with |= 1MA and p(r = a - 2cm) = 3.0...
MOD at low field (5.3 T') and at high field (83 4 13°m® The dashed curves indicate thafedeted
T), see figures 6 and 7. In both cases the plasnaéulated for the different edge densities (3110 and
current is the same, | = IMA. The agreemeft4 10°m?) increases with increasing BTey,
of the model with the data is good. Again thgorreipsorﬂsotf the beSt_ fit to 1996 ASDEX Up data:
o _ _ _ 145 2 B*%12° (eV, 16°m*®, T, MA).
limit B, >m,/ M, gives an inconsistent
description. The results from JET and JT-60U
exhibit agreement with our model, as was shown in Ref [12]. The spread in the discharge param-
eters is not sufficiently large to derive new information beyond that presented in the diagrams of

[12].

'o JG98.26/1c

w

500
B;=3.5T ® L-mode prior to transition B;=8T ® L-mode prior to transition
Ip = IMA — Alfven drift Ip = 1IMA . — Alfven drift
400 s
o Be > me/my; "

S
2
= 200
e o ‘. ___________________ =
r C-MOD: L—H Transition § C-MOD: L—H Transition §
0 L ! s 0 | | S
5 10 15 20 0 10 20 30
n (10%° m-3) n (10%° m-3)

Fig.6: L - H transition for C - MOD low - B case. PointsFig.7: L - H transition for C - MOD high - B case. Points
refer to regimes just prior transition. Pedestal widthrefer to regimes just prior transition. Pedestal width
Ay = 0.8cm. Shear value s = 3. Ay, = 0.8cm. Shear value s = 3.
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6. CONCLUSIONS.

The interpretation of the H-mode physics within our model requires stabilisation of both elec-
tron and ion turbulence for establishing the transport barrier. The electron turbulence is sup-
pressed by the stabilisation of the Alfven drift-wave instability with increasing edge beta. The
ion turbulence is stabilised by poloidal rotation shear. In the L- mode plasma the rotation and the
electric field are smallTherefore the electron turbulence due to the drift Alfven mode is ex-
pected to dominate the transport in the edge region. When the heating power is increased the
temperature at the edge increases, the electric field increases slightly, but no pronounced effect
on transport is expected. Only when the drift Alfven mode is stabilised and thus electron trans-
port is strongly reduced a sudden further increase of the edge temperature and density becomes
possible. As a result the region in which a sheared electric field exists becomes wider. This effect
enlarges, therefore, the width over which the ion turbulence is stabilised by sheared poloidal
rotation. Therefore, the drift Alfven mode acts as an important trigger mechanism, but the H-
mode transport barrier develops only in the region where both electron and ion turbulence are
stabilised and thus over the width defined by the shear in the poloidal rotation. However, the
confinement does improve in the core, too, if the critical temperature gradient for ion turbulence
is determined by the boundary condition for the temperature on top of the H-mode pedestal as
suggested in.

The comparison of the derived scaling of the electron edge temperature with experiments
shows good agreement between theory and data. The dependence at high density ( collisional
case ) as well as at low density (collisionless case) is, in particular, reproduced by the data. In
addition the magnetic field scaling, which is well established at ASDEX and C-MOD, is well
described.

The prediction for ITER based on the drift-Alfven model shows that within typical range
of the edge density (2-8 19&1'3) the L-H transition temperature is in the range of 2 -0.8 keV. The
scaling has attractive features such as an inverse scaling with ion mass. Such a scaling with ion
mass was recently observed in the tritium experiments on JET. Another positive signature of the
scaling is the Zeff dependence at the transition. Higher Zeff’s generally increase edge tempera-
ture required to access the H-mode due the increased collision frequency.

The main results of this paper afg:the Alfven drift model predicts that the turbulent
transport is suppressed when the condiien:1 +v,23is satisfied 2) the transport coefficients
change their dependence on plasma parametersgfroy> 7ng> (for Bn < Vi2) to X ~ ny*
T2 (for B, > vnm); 3) the Alfven drift model predicts the edge temperature scaling in agree-
ment with experimental findings.
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APPENDIX I.
Derivation of the dispersion relation.

Kinetic theory, which is appropriate for describing the ion motion in the weakly collisional case,
Is used for representing the perturbed ion density:

0
<%—1+ kv exp(-z)l, (z)%fGi (y )>, (A1.1)

where o is the operator of the drift frequency

@&, = (cTy k, / eB)(dn/ OXDI dn+d T1d %1 3 J), z=(kop;)?, pf =c’MTy /&€ B

and the bracke(t ) denotes the average with respect to the longitudinal part of the distribution
function. For the case, wheby = k|ca, the termkv), which describes the longitudinal dy-
namic of ions, is unimportant in (A1.1) and there is solely transverse ion motion. Moreover, the
complicated Bissell function dependence can be simplified by applying the Pade approxima-
tion: exp-2z)l, (z)=1/ @+ 2), which allows to describe perturbations with a transverse wave

length of the order of the ion Larmor radkisp; ~ 1. Then the perturbed ion density (A1.1) can
be rewritten in the form:

e¢'[] w-& 10

n = 1+ . Al.2
YOT, w EI1+_zH]0 ( )

Oi

The expression for the perturbed electron density can be derived from the electron hydro-
dynamic equations. The linearised electron density equation reads:
r1Ie wl

&)E—%i:k"\/lp. (A13)

The parallel component of the electron equation of motion yields:

n A Vv
T Mo 80 W= @y Ve (AL.4)
TOe r']0 T K| TOe VTe

where the dissipative term is written in the form:

w +iv,
K,V

[YTe

R= , (Al.4a)

wherev, is the electron collision frequency.
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Ampere’s law gives the connection between the perturbed cyirenten, v, and the

longitudinal component of the vector potential of the magnetic Bglek ik A'y:

eA cV'
k22 —L=-—F. Al.5
- TOe V12'e ( )

The expression for the temperature perturbation is obtained from the energy equation:

VTe T )
(w- " —or _I:izgkllvllp (A1.6)

In this expression the frequency is added in the denominator of the second term in brack-
ets, in analogy to the frequency correction for the conductivity in the last term in (Al1.4).

From (A1.3) - (A1.6) the expression for the perturbed electron density is derived, which
takes into account both the drift and Alfven type perturbations:

O 2.2 252 0
a (Kj vTe k30 ) L2 (wD (3/2)(@)
E} > >
H [w W + wlk 82] wWw k|| vTe ed'
Ne = Ny = 2 T (A1.7)
E(U (k" VTekD ) E% 2 w o Oe
E‘) Wrp + wﬂlz 8] 3 ww - || VTe
Here wp = —(cky Toe/ eBy) BIN( )/ I % wrr = —(cky / eBy) D pe/ 9%

wrp = —(cky Toe/ eB) [FIN( py)/ J xare the electron drift frequencies for the density, tempera-

ture and pressure gradients, respectivglis the longitudinal wave numbete = (Tge/ me)ll2
the thermal electron velocity aldd= ciwye is the collisionless skin lengtt) = w+i ve. In this
paper we are mainly concerned with dimensional analysis, consequently in (A1.7) numerical
factors of order unity are neglected and the effect of the thermal force is omitted.

From the quasineutrality conditionsi# n’; the dispersion relation for Alfven drift wave
instability [13] is derived. It is convenient to rewrite it in dimensional form by introducing the

following dimensionless parameteg, = —(dln(po)/o"'x)‘l, which characterises the gradient

length for the pressure. The following relation holds between the pressure, density and the tem-
perature gradients:
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1 1 1
= + . (A1.8)
Xop Xon Xor

We normalise the quantities with respect to the pressure gradient and use the notation
Ne =Xgn!/XoT = dIn( Ty / dIn( ry) . Thereby, the dimensionless frequency is defined as
Q=wlXgp/ Cs: wherec, = (T,/ M,)"? is the sound speed; the normalised transverse wave
number ak = kpg, where”s is the ion Larmor radius for the electron temperature; the
normalised longitudinal wave number ag=KkV X,/ ¢ and v=veXg/cCg
as the normalised electron collision frequency. Then the normalised drift
frequencies are defined a®.X,,/c,=k,p =k (here we suppose tha ~k),
WXop/ Cs = Kyp s/ 1+ngd =k (1+n 4 and
wrrXop/ Cs=kKypdl d X+n g=ky d(1+n ) furthermore, 7=Tp /Ty  and
Bo=4mgTe/ B% [{ M/ my) is the normalised electron beta.

Then the perturbed ion density assumes the form:

0. Qr-k/@+ 1
qo= o e2rokidrng 1 @ (A1.9)
0 (1+K° /1)

Q

wheref = n'j/ny andg = eg' My, and the perturbed electron density the form:

k 22 U2 k O-32n,0

—_ /’l _ Zm_'__ _ 5 ZD 2’76!]]

- _I+ne (Q-KBp+Qk? B 30Q-p%keD 1+ne [H
° 12K?2 02 o5 O
Q- — M+ ———]
(Q-K)Bo +Qk* B 3QQ-u°k*H

#,  (A1.10)

whereQ = Q +iv.

The dispersion relation, which follows from the quasi neutrality condiijon i;, is an
algebraic equation of fifth order with complex coefficients containing four independent param-
eters, namel§q ,v,ne .M . Further investigation yields that additional simplification is obtained,
if the subsequent renormalization is made by introducing new dimensional variables and param-
eters:

Q, =Q/Ju k=Kl JU,B. =By, v, =vIJ1t. (A1.11)

Then the transitions between the collisional and the collisionles regimes and between low
and high beta plasma occur fgf 3, values in the order of unity. The numerical evaluation of
the dispersion relation reveals that the new growth rate and frequency depend only wgakly on
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for experimentally relevant small valugs< 1. Consequently, it is consistent to|set O in the

subsequent calculations. This implies that the dispersion relation is reduced to fourth order with
three independent parameters:

Pn Vo e, (A1.12)

This simplifies the analysis considerably. The dispersion equation in the new variables
reads:

a4(Bn1Vn’rIe)Qn4 +a3(B n’vn’r’ e)Q n3+a2(ﬂ n’v n’rl QQ §+a]-@ n’V f{? p lnll

" +a0(B,,v,1.) =0,

where the coefficients are:
a4(B,, Vo) =T B ,+K,);
a3(B,Vaif1e) = Ka(B o+ k) /(40 ) +2 KT 1B Kk +V BT, (AL13)
2B voNe)= (v Bk +2v k7 -kIB )/ (A+n ) -iv B kf Tk [ T;

al(B,,V,.n.) =Tk, +(-iv B kS =k )1+ );  a0(B,.v, n.)=iv k.
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APPENDIX II
Temperature profile for a simplified transport model.

The radial dependence of the temperature can be approximated by the following simple model.
It is assumed that the plasma consists of three regions: a) the central plasma, which extends over
the major part (1) of the plasma radius, with transport coefficigptand the power heating

density per particlp # 0; b) the plasma near the boundary but inside the separatrix ofAwidth

with the drift type transport coefficie and c) the outer separatrix region having the same
transverse transport coefficiext with the longitudinal loss on the characteristic timjethe

width of this region id\s as is detailed below. For simplicity all coefficients are assumed to be
constant here ( which does not change the qualitative character of the conclusions ). In this
model heat sources are absent in the regions b) and c). Then the radial temperature profile can be
expressed as:

a) T =TO) -~ P x* (0gx<1-A) (A2.1)
2 X,
where T(0) is the central temperature
1p
T0)=>—@1-2)* +T, A2.2
> : (A2.2)
with
N .
T, = X—(l A)A +A,); (A2.3)
1

the transition temperature between region a) and b):

b) T(%) :Xﬁ(l—A)(l—x A)) EX£(1—A)(1—x) AT, (I-D<x<])  (A2.4)

1 1

where T is the separatrix temperature
_ P :
T, =—(1-0A)Ag (A2.5)

1

and finally the temperature profile in the SOL region
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(x-
A

S

1)

C) T(x) =T, exp(- ), (<X <) (A2.6)

where

A, = X1, (A2.7)
is the characteristic SOL width.
The temperature just inside the separatrix can be written according to (A2.4) as

1-x AX
T(X)=T.(1+ =T.(1+
(X) = T( x ) =T( A

S S

) (A2.8)

whereAx =1- x is the distance from the separatrix inside to plasma. From (A2.4) it is seen that
for a distancé\x < A the temperature scales asahd can be few times greater than T

TOT, (Ax<A)) (A2.9)
and forAx > A the temperature scales agAL
TOTJA= T, x>A,) (A2.10)

The quantity Fe as introduced in the main text coincides witlafid the lengthpwith As.
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APPENDIX Il
Expressions for different plasma parameters in a practical system of units.

The expressions for important plasma parameters are expressed in practical units. The
dimensionless plasma pressure and collision frequency read:

.
B, = 0860107 A¥2 _Juzev (A3.1)
B0T XOch|m
12
n
v, = 3400 C,AY4 Zenlois (A3.2)
TOkV kﬂm

where the factor (takes into account thatgneed not be equal to one.
The transport coefficients have the form for the Gyro-Bohm coefficient

TP, AR

, A3.3
Hsec B+ Xoom #39)

and for the transport induced by the Alfven drift-wave instability in the collisional regime for
low beta

[tn.? D A1/2T3/2 n(ZI)JB
=10°C — %V i3 A3.4
X Bsec " OB .

where the numerical factoryGakes into account the difference between the quasilinear esti-
mate and the true value of the transport coefficients. We introduce the additional quantities C
Cyx, G in order to allow a sensitivity check of the final scalings on these not very well known
factors. In these expressions A is the atomic numieyjsthe density in I8cm™ unit, the
temperature Jev is expressed in eV, the main toroidal magnetic figlgi8expressed in Tesla,

the characteristic gradiengay expressed in cm, the longitudinal wave numbgikexpressed

in “m” and reads

S

= TR,

=C (A3.5)

fim

where “s” is the shear of the magnetic field s=(adqg/qda), q is the cylindrical safety factor

q=5-m0T (A3.6)
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and G, is the numerical factor which takes into account the existence of the separatrix (C
0.3). In (A3.6) @ is small tokamak radius in “m”,JRs the large radius angi4 the total current
in MA.

The longitudinal time loss for the heat conduction regime in the SOL is taken in the form:

re[sed=123m0°C, o2t (A3.7)
|m "oeVv
and for the convection case
e — 5 1
17 [sed =036B10° —5 . (A3.8)
Im "oeVv
and
Acfem = 01T, (A3.9)
° Cz n013 - .

is the electron mean free path.
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