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ABSTRACT

The stability theory of Alfven drift-waves shows that with increasing plasma pressure the Alfven

waves get coupled to electron drift waves. This instability can be characterised by two signifi-

cant parameters, i.e. the normalised plasma beta and the normalised collision frequency. The

resulting turbulent transport coefficient is suppressed when the normalised beta is greater than a

critical value, i.e. βn > 1 + νn
2/3 , which depend on the normalised collision frequency νn. The

transport coefficients change their dependence on plasma parameters at this threshold. The Alfven

drift-wave model predicts the scaling of the electron edge temperature at the L-H transition with

respect to the toroidal field, plasma current, density and other plasma parameters. The experi-

mental data corresponding to the L-H transition on different tokamaks exhibit a similar behav-

iour in the T0 - n0 diagram, in particular a weak dependence of T0 on the density at high densities

but a more pronounced increase at low densities.

1. INTRODUCTION.

Tokamak plasmas experience transition to higher confinement regimes ( the H-mode as discov-

ered first on ASDEX [1] ) when the heating power exceeds a threshold. The explanation of the

L-H transition as well as of the power threshold is still incomplete in spite of extensive experi-

mental and theoretical efforts. A comprehensive overview on L-H transition theories is given in

Ref. [2] (see in addition references therein), e.g. bifurcation in the electric field, fast ion orbit

loss and sheared flow stabilisation. A theoretical model, which describes the L-H transition by

the interaction between sheared plasma flow and plasma turbulence, has been discussed in Ref.

[3], while the analogous system of model equations has been presented in Ref. [4] for the SOL

region. No theory so far has been found to describe the experimental data satisfactorily.

The detailed measurement of the electron edge temperature T0e and density n0, which are

now routinely available on many devices [5-10], indicate that there is an ideal MHD beta ( the

ratio of plasma pressure to magnetic pressure) threshold for the onset of Giant Edge Localised

Modes (ELM’s) and furthermore, suggest the existence of a second beta threshold below the

ideal ballooning limit for the L-H transition. These data have let to the development of a local-

ised plasma edge physics model. This local analysis model is less involved than the conven-

tional global model for the L-H transition.

The new evidence suggests that the Alfven drift-wave instability [11 - 12] can play an

essential role in the edge plasma dynamics. For this instability, as was found many years ago

[13], the growth rate for perturbations with a wave number k⊥ρi ~ 1 decreases when the plasma

beta exceeds the threshold given by the mass ratio of electrons and ions, i.e. β > me/Mi. The

transport in the central region of the tokamak plasma is usually related to Ion Temperature

Gradient (ITG) modes. However, there is strong experimental evidence that the core plasma

instabilities change into electron drift modes near the plasma edge [14]. This makes the
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existence of an electron drift- type mode near the plasma edge very plausible; in particular, the

Alfven drift- wave instability is of this type. The linear stability theory [13] shows that with

increasing plasma pressure the Alfven waves mix with electron drift waves and suppress the

unstable long wavelength perturbations, which are dominant in the transport. However, in the

non-linear numerical simulations [11], [15 - 17] different qualitative results have been reported.

It is, therefore, necessary to proceed with an investigation of the scaling properties of the rel-

evant linear and non-linear equations. Such an analytic approach complements the numerical

calculations. It is shown that the scaling can be derived from both the linear and non-linear

equations.

Since a tokamak plasma is not expected to be stable against all linear and non-linear modes,

the averaged particle and heat flux induced by such instabilities need to be studied. In the stabil-

ity analysis we do not evaluate the growth rates and eigenfunctions of infinitesimal, linearised

perturbations but follow the evolution of finite-amplitude perturbations. Such a (well-known)

wave-packet analysis [18] yields the necessary condition for stability. Whereas linear drift waves

can be stabilised by magnetic shear, it has been demonstrated by the works of Ref. [19 - 22] that

the linearly stable modes can be destabilised nonlinearly and the entire wave-number spectrum

gives positive growth rates. Recent numerical simulations [11, 23] also show the existence of

these unstable perturbations. Consequently, the assumption for the existence of finite-amplitude

Alfven drift-wave perturbations is justified in our analysis. The drive for these finite-amplitude

perturbations can be generated by trapped particles, temperature gradients or by a microturbulence

background. The increase or decay of the amplitudes of these wave packets and the dependence

of the relevant physical parameters is derived.

In this work we combine the dimensional analysis together with the quasilinear approach

and derive an expression for the density and energy fluxes based on the Alfven drift-wave insta-

bility. The preliminary investigation shows [12] that this instability can be characterised by two

dimensional parameters: the normalised plasma beta, β
β
µ
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field, x p dp dxp0 0 0
11= − ⋅ −( / / )  characterises the pressure gradient scale length and 

λ e  the mean

free path and k|| is the parallel wave number (k|| ~ s/qR, where s is the shear of the magnetic field

s=rdq/qdr and q the safety factor). All quantities are taken near ( just inside ) the separatrix. The

analysis of the transport coefficients shows that the turbulent transport is suppressed when the

plasma beta exceeds a critical value, namely βn > 1 + νn
3/2. This yields the scaling for the edge

temperature at the L -H transition in the form T K s
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order unity and depend only weakly on the plasma parameters (the exact expression is presented

in section 4). The Alfven drift-wave model predicts the correct dependence of the electron edge

temperature on density, toroidal field and current [12], [24]. Moreover the scaling for the L - H

power threshold found in the recent JET [25] tritium experiments correlates with the mass de-

pendence predicted by our theory.

In Section 2 we derive the quasilinear density and energy fluxes for the electromagnetic

case when magnetic field perturbations are essential. Section 3 contains the solution of the dis-

persion relation and the analysis of the transport coefficient for the Alfven drift-wave instability.

In Section 4 the dimensional parameters, which define the L - H transition, are presented  and on

this basis the scaling for the edge temperature is derived. Section 5 contains the comparison of

the theoretical results with experimental evidence from different tokamaks. Section 6 gives the

summary of the results. In Appendix I the derivation of the dispersion relation is presented.

Appendix II describes the model used for the temperature profile. Finally, Appendix III contains

expressions of derived parameters in practical units.

2. THE QUASILINEAR DENSITY AND ENERGY FLUXES FOR THE ALFVEN

DRIFT - WAVE INSTABILITY.

a. The quasilinear fluxes in the electrostatic approximation.

The expressions for the quasilinear fluxes in the electrostatic approximation, where the mag-

netic perturbations are not important, are well known and are, therefore, only briefly discussed

here. The turbulent density flux can be obtained from the averaged electron density equation:

( )∂
∂t

n div n v Se e e e+ =
r

.  (2.1)

with the expression for the transverse electron velocity:

 
r r
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It is easily seen that the diamagnetic part of the velocity does not contribute to the turbu-

lent transport flux when the curvature correction in the magnetic field is not taken into account.

Thus, only the E×B part of the velocity is essential for transport. Introducing a slab model in the

narrow plasma layer near the separatrix with x as the radial co-ordinate we can write:

( )∂
∂

∂
∂t

n
x

Sx e0 + =Γ , (2.3)
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where the particle flux Γx is

Γx x
e

y k k
k

n v n
cT

eB
ik n= = − ∗∑' ' Re ~ ~

0
0

0
ϕ . (2.4)

The notations are defined in  Appendix I. One can simplify this expression by using for n’

the ion density expression (A1.2) in the limit k → 0: 
t
n ki e= ⋅ +[ / ( ( ))] ~Ω 1 η ϕ , which yields

Γx ~ ~ϕ 2 . The radial displacement ξx of the plasma element is introduced by the relation

d dt v
r
ξ / ~= ⊥ :

γξ ϕx x y
ev k

cT

eB
= = 0

0

~, (2.5)

which gives an estimate for the perturbed potential .

Only the irreversible part of the displacement is taken into account, which is proportional

to the imaginary part of the frequency γ, i.e. the growth rate instead of the full frequency ω + iγ.

From (2.5) it follows:

~ Im( )
ϕ

γ
ξ π

ρ
= =

eB

cT k k xe y
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s

p

0

0
2

0

Ω
. (2.6)

We further adapt the normalisation from Appendix I:γ = Im( ) /Ω c xs p0 , k k s= ⊥ ρ  and

suppose that the displacement can not exceed the value ξ πx xk≤ /  and k k ky x~ ~ ⊥ . Finally

we can rewrite the particle flux in the form:

Γx
p e

D
n

x
D

n

x
=

+
≡ −⊥ ⊥

0

0

0

1( )η
∂
∂

. (2.7)

Then using the definition (A1.8) the diffusion coefficient is:

D GB⊥ ⊥= ⋅χ χ , (2.8)

whereχ GB is the Gyro-Bohm normalisation coefficient:

χ ρ
ρ

GB s s
s

p
c

x
=

0
. (2.9)

The dimensionless transport coefficient in (2.8) is written in the form:

χ χ⊥ ⊥= ( ) maxML kE . (2.10)
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Here we introduce the mixing length turbulent coefficient:

χ πML
k

⊥ = 2
2

Im( )Ω
(2.10a)

together with the quasilinear factor:

E =
+

Im( )

Re( ) Im( )

Ω
Ω Ω

2

2 2
. (2.10b)

If the growth rate is large enough Im( ) Re( )Ω Ω≥ , i.e. in the strong turbulence case, the

usual mixing length estimate for the transport coefficient χ ⊥ ≈ Im( ) /Ω k 2  is obtained (here

written in dimensional form), otherwise the expression (2.10) has to be used. The quasilinear

correction to the transport essentially improves the agreement of the analytical results with the

non-linear numerical simulation [26], [27].

We can rewrite the factor (2.10b) in an equivalent but more physical form. Taking the

linearised expression of the radial velocity in the electrostatic limit:
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, (2.11)

and using the longitudinal component of the Ohm’s low (A1.4) the right hand side of (2.11) can

be expressed through the longitudinal component of the velocity or the current (j|| = -en0v||e):

v i
ck T

eB

v

vex
y e e

Te

'
'| |= 0

0

R . (2.12)

Then the longitudinal velocity is expressed through the density and potential using the

continuity equation (A1.3) and the density through the potential using the equation (A1.2). Even-

tually, the following expression for the quasilinear form factor is obtained :

M k
k e= ⋅

+ +
Im( ) Im

( / ( ( ))
Ω

Ω
Ω

2 1
R

τ η
µ

. (2.13)

For the electrostatic case the expressions (2.10b) and (2.13) coincide, but for the case with

magnetic perturbations only the last expression makes sense. From (2.13) it is seen that the

transport is defined by the dissipative effects in the plasma, i.e. the term R.

By averaging the energy MHD equation we can derive the expression for the energy flux.

The equation for the averaged energy reads:
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where Pe   is the heating power and the thermal anomalous flux qex is defined as:

q n T v n
cT

eB
ik Tex e x
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Using the expression for the perturbed temperature (in the limit k → 0)
~

[ / ( ( ))]~T ke e e= ⋅ +η η ϕΩ 1  we can rewrite the heat flux in the usual form:

q
dT

dxex e
e= − ⊥κ 0 , (2.16)

where the electron thermal conductivity is:

κ χ χe GBn⊥ ⊥=
3

2 0 . (2.17)

b. The quasilinear fluxes in the perturbed magnetic field.

The calculation of the density and energy fluxes in the presence of a perturbed magnetic field it

is not as simple as for the electrostatic case. Here we follow the qualitative arguments given in

Ref. [28]. In the electrostatic case the irreversible part of the plasma displacement is evaluated in

the spatially fixed frame. But a plasma is not held fixed in space but is frozen onto the nested

magnetic surfaces. When the magnetic field moves, the plasma does move with these surfaces

without inducing anomalous transport, which reflects the ideal frozen-in condition. Such mo-

tion takes place in the case of  ideal ballooning or kink instabilities. In order to calculate the real

transport in a slightly dissipative plasma, not the reversible displacement of the plasma elements

in space, we have to find the small irreversible difference between the plasma displacement and

the displacement of a given magnetic surface. Only this relative motion defines the anomalous

fluxes. The corresponding calculation it is not difficult for the collisionless Vlasov equation [29]

but more involved than for the MHD equations [30]. However, it is possible to proceed in the

following phenomenological way [28]. We start from the electron momentum equation (which

can be considered as the Ohm’s law):
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e e
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If we omit the terms with inertia and conductivity then we obtain:

[ ]∇ = − +




p en E

c
v Be e

r r r1
. (2.19)

which constitutes Ohm’s law for an ideal plasma with a Hall current. In this case the frozen-in

conditions are conserved and do not allow the plasma to move through the magnetic surfaces.

From the equation (2.19) the expression for the radial velocity of the plasma (2.2) follows,

which in the linearised form reads:
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This expression shows that the radial component of the velocity it is not zero in spite of the

absence of transport. The expression (2.20) is simply the reversible displacement of the plasma

in space. In order to derive the displacement of the magnetic surfaces it is sufficient to take into

account the longitudinal component of the full equation (2.18). The linearised version of it can

be written as (see Appendix I):
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In the right hand side there are the inertia and conductivity terms. If this dissipative term

vanishes  transport has to be absent. Defining the “velocity” of the magnetic surfaces as

v i
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ω ω
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then the difference between the plasma velocity (2.20) and the magnetic surface velocity (2.22)

is
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This expression vanishes  for the ideal case (R = 0) and is proportional to the dissipative

processes in a nonideal plasma (R ≠ 0). The final expression (2.23) coincides with the expres-

sion (2.12) for the electrostatic limit but in the derivation the magnetic displacement need to be

subtracted from the total displacement of the plasma.
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In conclusion, we can generalise the electrostatic expression for the transport coefficients

D⊥ and χ⊥ by means of the form factor M. (2.13). The density flux is then given by:

Γx
p e

D
n

x
D

n

x
=

+
≡ −⊥ ⊥

0

0

0

1( )η
∂
∂

, (2.24)

and the energy flux by:

q
dT

dxex e
e= − ⊥κ 0 , (2.25)

The transport coefficients assume the form:

D GB⊥ ⊥= ⋅χ χ , (2.26)

κ χ χe GBn⊥ ⊥=
3

2 0 , (2.27)

where the dimensionless transport coefficient reads:

χ χ⊥ ⊥= ⋅( ) maxML kM , (2.28)

with the form factor given by:

M k
k e= ⋅

+ +





Im( ) Im

( / ( ( ))
Ω

Ω
Ω

2 1
R

τ η
µ

. (2.29)

It is emphasised that the expression (2.29) coincides with the particular form for the elec-

trostatic transport case (2.13) , but can not be derived for the electromagnetic case without the

subtraction of the magnetic fluxes motion. Moreover, the identical form of the equations (2.29)

and (2.13) gives additional validity to this result.

3. DISPERSION RELATION AND ANALYSIS OF THE TRANSPORT

COEFFICIENTS.

a. Properties of the Dispersion Relation

The dispersion equation for the Alfven drift-wave instability is derived in Appendix I. The final

simplified form (A1.13) contains four independent parameters, namely the normalised plasma

beta
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the normalised collision frequency (or mean free path)
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where λ νe Te ev= /  is the mean free path for the electrons, the ratio of the temperature and den-

sity gradients:

η e
ed T

d n
=

ln( )

ln( )
0

0

, (3.3)

and the ratio of electron to ion temperature τ = T Te oi0 / .

Here the longitudinal wave number k|| for the drift wave can be estimated as usual [18]:

k
s

qR|| ≈ , (3.4)

The dispersion equation is a polynomial of fifth order containing four parameters. Using

the condition µ <<1 and redefining all variables as done in(A1.11) leads to a fourth order equa-

tion. This procedure is not trivial and is not equivalent to setting µ = 0 in the initial expressions

(A1.10), because the exact dispersion relation is proportional to 
µ

 itself.

The numerical analysis of the dispersion equation (A!.13) leads to the following

conclusions:

1. only one root of the four roots is unstable;

2. the unstable perturbations propagate in the diamagnetic electron direction;

3. the real and imaginary part of the unstable root are of  order unity in the dimensional

variables;

4. the growth rate has a maximum when the normalised transverse wave number is of order

unity;

5. the growth rate is strongly suppressed with increasing plasma pressure;

6. the growth rate increases with increasing temperature gradient;

7. the maximum of the growth rate and of the reciprocal wave number decreases with

increasing collision frequency inducing an increase of the transport coefficients

(see below);
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8. the dependence of the maximum growth rate and of the corresponding wave number on

the parameters ηe and τ is relatively weak.

b. Transport coefficients.

The normalised transport coefficients, which define the diffusion (2.26) and the thermal con-

duction (2.27), are now evaluated for the Alfven drift-wave instability :
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R . (3.5)

If we express the right hand side of (3.5) through the renormalised values (A1.11) then we

obtain:

χ
µ

χ β ν η τ⊥ ⊥=
1

( , , , )n n e , (3.6)

where the factor χ β ν η τ⊥ ( , , , )n n e  in (3.6)
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is a function of the parameters 
βn ,

ν n ,
η e  and τ only. If these parameters are of order unity then

the coefficient χ β ν η τ⊥ ( , , , )n n e  is also of order unity. This implies that the physical transport

coefficients are larger than the characteristic (local) Gyro - Bohm value 
χ GB  (2.9) due to the

factor 
1

µ
 in (3.6):

D GB
n n⊥ ⊥= ⋅

χ
µ

χ β ν( , )
,  κ

χ
µ

χ β νe
GB

n nn⊥ ⊥=
3

2 0 ( , ) . (3.8)

The numerical evaluation yields that the expression χ β ν η τ⊥ ( , , , )n n e  depends only weakly

on 
η e  and τ . Therefore, this dependence can be omitted. In Fig. 1 the dimensionless transport

coefficient is displayed as a function of the normalised collision frequency (or the normalised

mean free path 1 1 4
0

1 2/ ( / ) / ( )/ /ν λn e i e pm M x qR= ) and the normalised beta. The dependence

of χ β ν η τ⊥ ( , , , )n n e  as a function of 
ν n  for different beta values is shown in Fig. 2 ; in particular

the asymptotic behaviour of χ ⊥  with respect to of νn and βn is evident. For the case of small beta

and high collision frequency the heat conductivity depends on the collisionality, χ ν⊥ ~ /
n

1 3. But
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for small beta and low collisionality  χ⊥ ~ 1 , i.e. χ ⊥  does not depend on νn . For the case of high

beta the dependence of χ ⊥  is more complicated as  can be seen from Fig. 1. The different

asymptotic behaviour of χ ⊥  can be approximated by the expression:

[ ]
[ ]

χ ν
ν ν

ν ν ν
=

+

+
cr

n cr

cr n cr

1 3

2 1 2

2 4 3
1 2

1

1

/
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/
/

( / )

/ ( / )
, (3.10)

where

ν
βcr

n

=
+

1

1 2 3 2( ) / . (3.11)
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Fig.1: The surface graphics of the transport

coefficient χ.
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Fig.2: The asymptotical behaviour of the transport
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β ~ 1/ν1/3 and β ~ ν2/3 divide the different asymptotic

regions for χ.

In (3.10) and (3.11) we omit all numerical factors of order unity. This formula approxi-

mates the numerical results in all regions in the (ν βn n, ) plane as can be seen from

Fig. 2

The analysis of the turbulent transport coefficient (3.10) give the basic result that the

transport decreases when

βn > 1 + νn
2/3. (3.12)

This condition yields the scaling for the edge temperature at the L -H transition. The result

(3.12) can be obtained from the following simple consideration. In a low beta plasma  (β0 <<1  )
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the exact expression for the electron density (A1.7) can be expanded in beta:

n n

i
k v

i
k

i
k v

i
k

e

Te

Te

e e

Te

e e

e

'

||

||

( )

( )

'
=

+ ⋅ +
−
⋅

⋅





















+ ⋅ +
−
⋅

⋅





















∗
∗

⊥

∗

⊥

0

2 2

2 0

2 2

2 0

0

1

1

ω
ν

ω ω
ν

β

ω
ν

ω ω
ν

β

ϕ
. (3.13)

Here k k s⊥ ⊥= ⋅ ρ . For illustration we take here the simplest case without  temperature

perturbation and without temperature gradient. If we omit the terms proportional to β0 in (3.13)

we obtain the electrostatic case. In this limit the dispersion relation contains only one param-

eters:

Ω Ω2 0+ − =iM iM , (3.14)

where Ω = ω/ω* and M
k v

k
T

e

= ⊥

( )
/ ( )

||

*

2

2

ν
ω . In this case the solution of  (3.14) can be obtained

easily. For the imaginary and real parts of the frequency we have:

γ ω= ⋅
+*

/

/( )

M

M

1 2

1 2 31
,  ω ωr

M

M
= ⋅

+*

/

/( )

1 2

1 21
. (3.15)

We again omit here all numerical factors of order unity. From this expression it is easy to

see that the mixing length transport coefficient

χ
γ

χ⊥
⊥ ⊥

= = ⋅
+k

M

k MGB2

1 2

1 2 31

/

/( )
(3.16)

has a maximum in k⊥ for M ~ 1, i.e. for

k k
M

m
k xs

i

e
e⊥ = ≡





















ρ λ0

1 2

2
0

1 3/

||

/

. (3.17)

Consequently,  the maximum value of the heat transport in the electrostatic regime is

given by:

χ χ⊥ = GB k/ 0 . (3.18)

From the expression for the electron density (3.13) we can now estimate when the plasma

beta becomes important. This is the case when the second term in the bracket in equation (3.13)
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is approximately equal to or greater than unity, i.e. 
( )ω ω
ν

β
−
⋅

⋅∗

⊥e k 2 0 > 1. Taking into account that for

M ~ 1 the terms γ and ωr are in the order of the drift frequency ω∗ this condition can be rewritten

as:

β ν ω
λ0

2 0
2 2 3

> ⋅ ⋅ =
⋅







⊥ ∗e

i

e e

k
M

m

k x
/

||

/

. (3.19)

This result coincides with the condition (3.12) βn > νn
2/3 in the collisional limit. Using the

same considerations for the collisionless case ω > νe, we can derive the condition βn > 1, when

the electromagnetic effects begin to influence the transport

4.  EDGE TEMPERATURE SAILING FOR THE L - H TRANSITION.

The previous results make the derivation of the scaling of the electron temperature at the L - H

transition feasible. In the early phase of the discharge the plasma is in the L mode. The transport

processes inside the plasma column can be divided schematically into the core plasma transport,

which is not discussed here but is taken as an experimental fact, and the plasma edge transport,

which is dominated in the L mode by the by an electron drift-type instability, such as the Alfven

drift-wave instability. Such electron drift instabilities are dominant near the plasma boundary

because of the low temperature and high collisionality. The analysis of the previous section

shows (3.12) that the turbulence caused transport fluxes decrease when

βn > 1 + νn
2/3.

This condition yields the scaling for the edge temperature at the L -H transition. The esti-

mate of the gradient scale length inside the separatrix x0 is derived from the assumption that the

turbulent transport coefficients are continuous across the separatrix and that the convection

(collisionless plasma) or conduction (collisional plasma) model in the SOL applies ( see Appen-

dices II and III ).The energy flux from the plasma centre

q
T

a

aT
a

p

nx
E

0 0
0

~ ~ ~χ
τ

, (4.1)

has to cross the boundary. In (4.1) 
χ 0  denotes the thermal conduction of the core plasma, T  is

the average plasma temperature, a  the small radius, p is the average heating power density p= P/

V, where P is total plasma heating power and V the plasma volume.
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For the scrape-off layer plasma ( SOL ) we can use the analogous expression

q
T

x
q a

p

nx x~ ~ ~χ ⊥
0

0
0

0

. (4.2)

Here χ⊥ is the transport coefficient in the SOL, T0 the temperature at the separatrix (or at

the boundary between main plasma and the plasma in the shadow of the limiter ). Using the

expression (A2.7) for x0 and assuming continuous transport coefficients across the separatrix

we obtain:

x s0 ≡ = ⊥∆ χ τ | | (4.3)

Inserting the results from Appendix II  the length x0 can be rewritten as a function of the

temperature on the separatrix T0  . Furthermore, the temperature inside the separatrix is approxi-

mated by:

( )T a x T x x T x x( ) / /− = ⋅ + ≈ ⋅∆ ∆ ∆0 0 0 01    ; (4.4)

∆x is the distance inside the plasma from the separatrix to the magnetic surface, where the

temperature is measured. Using this expression for x0 as a function of T0 and the condition for

the threshold (4.1) the scaling of the temperature at the L - H transition at some distance away

from the separatrix T(a-∆x) with plasma parameters is derived.

In the collisional case νn > 1 the following result is obtained:

T a x A s n B I a xeV T MA M cm( ) . / / / / / /− = ⋅ ⋅− − −∆ ∆32 6 1 5 3 5
019

3 1 0
0
3 5 3 5 6 5  (theory).

This result can be compared with the experimental result from ASDEX-UPGRADE :

[ ]T a cm n B I eVe
crit

e t p( ) . . ..
.

.

.
.
.

− = − −
+

−
+

−
+

2 145 0 3 0 8 0 50 1
0 2

0 1
0 2

0 2
0 2

 (ASDEX [9]).

The theoretical dimensional scaling is found to agree well with the experimental scaling

In addition, the numerical coefficient agrees up to a factor of two with the experimental data for

∆xcm = 2cm

For the collisionless case νn < 1 the estimate holds :

T a x A sn B I a xeV T MA M cm( ) . /− = ⋅ ⋅− − −∆ ∆23 3 1 2
019

1
0

2
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The general expression for TeV for arbitrary collisionality νn can be expressed in the fol-

lowing  interpolating form:

T a x c
f A

n

s B I

a
xeV T

f

f
T MA

M

f

cm( )
.

− =
⋅ ⋅ ⋅






 ⋅

−

∆ ∆
3 0 5 1

019
2

0
2

4

, (4.5)

where f1 1 2 5 1 1 1= + ⋅ +( / ) / ( )ν ν , f 2 1 3 10 1 1 1= + ⋅ +( / ) / ( )ν ν , f 3 1 1 1 7 10 1= + + ⋅( ) / ( / )ν ν ,

f 4 1 3 5 1 1 1= + ⋅ +( / ) / ( )ν ν  and ( )ν1 019

21/10= n ncr/ , ( )n B I BIcr T MA= ⋅0

4 7
/

/
,

BI c A s a ZBI M eff= −3 7 4 7
0
8 7 2 7/ / / / . This formula contains two additional parameters cT  and cBI  .  Theory

gives the values cT=23.3 and  cBI=1.4. The fit with the ASDEX data yields cT=10 and cBI=0.7.

The constants are now fixed at the experimental values from ASDEX  and held constant in the

application to the results from all other tokamaks.  The comparison of the theoretical predictions

with the experimental findings is displayed in the  Figs. 3-7 and is described in detail in the next

section.

5. COMPARISON WITH TOKAMAK EXPERIMENTS.

We summarise here our understanding of the physical processes involved. In the core plasma the

transport scales like  Gyro-Bohm, which is in agreement with the dominance of ion temperature

gradient modes. Near the plasma edge the transport is more consistent with a Bohm-like scaling

suggesting that electron drift waves are involved. For example in the collisional case the trans-

port coefficient (3.8) (or (3.18)) scales as χ ∝
1
2 5

3 2

0
1 5

0
6 5q

T

n B
e

/

/

/ / , if we express the edge length scale

x0 through the plasma parameters. Consequently, it is assumed that electron drift waves domi-

nate the transport at the edge. The level of transport then depends on the local beta value. With

increasing plasma pressure the electron drift waves couple with Alfven waves according to

linear theory [13]. As a consequence the unstable long wavelength perturbations which are the

most important for transport at the edge are suppressed. The threshold condition on beta can be

characterised in terms of two dimensionless normalised parameters: the plasma beta

β
β
µ

π
n

i

e

e

o p

M

m

n T

B k x
= =







0

1 2

0 0
2

0

4 1
/

||

 and the collision frequency ν
ν
µ λn

i

e

p

e

M

m

x

k
= =









1 4

0
1 2

1 2

/ /

| |
/

being functions of the local plasma parameters. In a collisionless plasma the turbulent transport

coefficient starts to decrease for βn > 1. This yields a scaling for the edge temperature at the L-

H transition of the form T0edge ~ B0TIMAn0
-1. For the collisional case the turbulent transport

decreases for βn > νn
2/3. This leads to the scaling for T0  of the form T0edge ~ B0T

0.6IMA
0.6n0

-0.3.

For both limits the estimate of gradient scale length x0 is derived by assuming that the turbulent

transport coefficients are continuous across the separatrix and that the characteristic time for

parallel transport in the SOL is due to electron conduction along the open field lines. This Alfven
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drift-wave instability model predicts a close to linear dependence of the edge temperature on the

toroidal field. The edge temperature at the threshold rises strongly with density at low densities

where the edge plasma is collisionless, and has only a weak dependence at high densities where

the plasma is collisional. The experimental points corresponding to the L - H transition in differ-

ent tokamaks reveal a similar behaviour in the n T e0 0−  diagram. The temperature at the on-set of

the Alfven-drift instability is plotted against the plasma density in nboundary - Tboundary space

(see ITER memo [31] ) for different machines and compared with experimental data points (see

Fig. 3 - 7). The width of the H-mode transport barrier, x0, is assessed from the radial profiles.

The coefficients in our model has been calibrated to match the L-H transition points for ASDEX-

UP ( collisional case ) and then kept constant in the application to other tokamaks as well as in

the extrapolation to ITER. Shown in Fig. 3  is the operational space for ASDEX Upgrade in

terms of ne and Te at r = a – 2cm for constant magnetic field. The magnetic shear near the

separatrix has the value s=3. The squares correspond to L - mode data just before transition,

whereas the rhombus (◊ ) correspond to the case with type III ELM’s in H-mode [8,32]. Similar

transition points, i.e. early H- mode data just after transition, are shown for DIIID in Fig.4.

H-mode
type I ELMs

ASDEX UP; Edge operational space

ELM-free
H-mode

H-mode
type III ELMs

L–H

βe>me/mi

Radiation unstable zone
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.2
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/1
c

Fig.3: Operational space diagram (n-Te at 2 cm from

separatrix) for L-H transitions in ASDEX Up; experi-

mental points are L-mode regimes just before transition

[5,6]; above the dotted line drift-Alfven perturbation are

stabilised; shear at the separatrix s=3; dashed line cor-

responds the condition βe = me/Mi.
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0
1 2 3 4 5 6

T
e-

pe
de

st
al

, (
eV

)

npedestal, (1019 m–3)

Early H-mode
Drift-Alfven inst.

DIII–D: L–H transition

JG
97

.2
38

/4
c

Fig.4: The same as in Fig.1 for DIII-D; experimental

points are H-mode regimes just after transition ; above

the rigid line drift-Alfven perturbation is stabilised; x0

= 7cm, shear value at the separatrix s = 5, dashed line

corresponds s = 3.

The data refer to q95 = 3.9, x0 = 2cm and a shear value at the separatrix s = 3 [6,7]. In both

tokamaks the predictions from our theory are in good agreement with the experimental data, in

particular the asymptotic behaviour al high and low density. In FIG. 3 ( showing the data from

ASDEX-UP), the limit βe e im M> / , which indicates the coupling of electron drift waves with
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Alfven waves, is also indicated. This limit cor-

responds to instabilities with k^ri ~ 1 which are

in general not the most unstable perturbations.

It is evident from FIG. 3 that the Alfven drift-

wave model does fit the data better. The de-

pendence of the edge temperature on the mag-

netic field for ASDEX discharges with 1 MA

current is displayed in FIG. 5. The theoretical

scaling exhibits good agreement with the ex-

perimental data. Note that there is some varia-

tion in density. The final comparison is per-

formed with results obtained at ALCATOR C-

MOD at low field ( 5.3 T ) and at high field ( 8

T ), see figures 6 and 7. In both cases the plasma

current is the same, I = 1MA. The agreement

of the model with the data is good. Again the

limit βe e im M> /  gives an inconsistent

description. The results from JET and JT-60U
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Fig.5: Dependence of Te(r = a - 2cm) on Bt. Shown are

discharges with Ip = 1MA and ne(r = a - 2cm) = 3.0…

3.4 1019m-3. The dashed curves indicate that Tpredicted

calculated for the different edge densities (3 1019m-3 and

3.4 1019m-3) increases with increasing Bt. Texp

corresponds to the best fit to 1996 ASDEX Up data:

145 n-0.3 B0.8 I0.5 (eV, 1019m-3, T, MA).

exhibit agreement with our model, as was shown in Ref [12]. The spread in the discharge param-

eters is not sufficiently large to derive new information beyond that presented in the diagrams of

[12].
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∆exp = 0.8cm. Shear value s = 3.
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Fig.7: L - H transition for C - MOD high - B case. Points

refer to regimes just prior transition. Pedestal width

∆exp = 0.8cm. Shear value s = 3.
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6. CONCLUSIONS.

The interpretation of the H-mode physics within our model requires stabilisation of both elec-

tron and ion turbulence for establishing the transport barrier. The electron turbulence is sup-

pressed by the stabilisation of the Alfven drift-wave instability with increasing edge beta. The

ion turbulence is stabilised by poloidal rotation shear. In the L- mode plasma the rotation and the

electric field are small. Therefore, the electron turbulence due to the drift Alfven mode is ex-

pected to dominate the transport in the edge region. When the heating power is increased the

temperature at the edge increases, the electric field increases slightly, but no pronounced effect

on transport is expected. Only when the drift Alfven mode is stabilised and thus electron trans-

port is strongly reduced a sudden further increase of the edge temperature and density becomes

possible. As a result the region in which a sheared electric field exists becomes wider. This effect

enlarges, therefore, the width over which the ion turbulence is stabilised by sheared poloidal

rotation. Therefore, the drift Alfven mode acts as an important trigger mechanism, but the H-

mode transport barrier develops only in the region where both electron and ion turbulence are

stabilised and thus over the width defined by the shear in the poloidal rotation. However, the

confinement does improve in the core, too, if the critical temperature gradient for ion turbulence

is determined by the boundary condition for the temperature on top of the H-mode pedestal as

suggested in.

The comparison of the derived scaling of the electron edge temperature with experiments

shows good agreement between  theory and data. The dependence at high density ( collisional

case ) as well as at low density (collisionless case) is, in particular, reproduced by the data. In

addition the magnetic field scaling, which is well established at ASDEX and C-MOD, is well

described.

The prediction for ITER based on the drift-Alfven model shows that within typical range

of the edge density (2-8 1019m-3) the L-H transition temperature is in the range of 2 -0.8 keV. The

scaling has attractive features such as an inverse scaling with ion mass. Such a scaling with ion

mass was recently observed in the tritium experiments on JET. Another positive signature of the

scaling is the Zeff dependence at the transition. Higher Zeff’s generally increase edge tempera-

ture required to access the H-mode due the increased collision frequency.

The main results of this paper are: 1) the Alfven drift model predicts that the turbulent

transport is suppressed when the condition:βn > 1 + νn
2/3 is satisfied; 2) the transport coefficients

change their dependence on plasma parameters from χ ~ T0
3/2/n0

1/5 (for βn < νn
2/3) to χ ~ n0

4/13/

T0
20/13 (for βn > νn

2/3); 3) the Alfven drift model predicts the edge temperature scaling in agree-

ment with experimental findings.
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APPENDIX I.

Derivation of the dispersion relation.

Kinetic theory, which is appropriate for describing the ion motion in the weakly collisional case,

is used for representing the perturbed ion density:

n
e
T k v

z I z f vi
i

i
i

'

|| ||
||

' $
exp( ) ( ) ( )= − +

−
−

−










∗ϕ ω ω
ω0

0 01 , (A1.1)

where $ω∗ i  is the operator of the drift frequency

$ ( / )( / / / / )ω ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∗ = ⋅ + ⋅i i y i icT k eB n x n T x T0 0 0 0 0 0 , z k i= ⊥( )ρ 2 , ρ i ic MT e B2 2
0

2
0
2= /

and the bracket . ..  denotes the average with respect to the longitudinal part of the distribution

function. For the case, when ω∗ ≈ k cA|| , the term k v|| ||, which describes the longitudinal dy-

namic of ions, is unimportant in (A1.1) and there is solely transverse ion motion. Moreover, the

complicated Bissell function dependence can be simplified by applying the Pade approxima-

tion: exp( ) ( ) / ( )− ≈ +z I z z0 1 1 , which allows to describe perturbations with a transverse wave

length of the order of the ion Larmor radius k i⊥ ρ ~ 1.Then the perturbed ion density (A1.1) can

be rewritten in the form:

n
e

T z
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i

i' ' $
= − +

−
⋅

+




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∗ϕ ω ω
ω0

01
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1
. (A1.2)

The expression for the perturbed electron density can be derived from the electron hydro-

dynamic equations. The linearised electron density equation reads:

ω ω
ϕn

n

e

T
k ve

e
e

' '
'|| ||

0 0

− =∗ . (A1.3)

The parallel component of the electron equation of motion yields:

T

T

n

n

e

T k c
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ve

e

e

p

e

e

Te

' ' ' ' '

| |

|| ||

0 0 0 0

+ = −
−

+∗ϕ ω ω
R , (A1.4)

where the dissipative term is written in the form:

R =
+ω iv

k v
e

Te||

    , (A1.4a)

where νe is the electron collision frequency.
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Ampere’s law gives the connection between the perturbed current j en v e' '|| ||= − 0  and the

longitudinal component of the vector potential of the magnetic field B ik Ax y' '||= :

k
eA

T

cv

ve

e

Te
⊥ = −2 2

0
2δ

' '|| ||
. (A1.5)

The expression for the temperature perturbation is obtained from the energy equation:

( )
' '
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ω ν

ω ϕ−
+

− =∗
k v

i
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T
e
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k v
Te

e e
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e
e

2 2

0 0

2
3

. (A1.6)

In this expression the frequency is added in the denominator of the second term in brack-

ets, in analogy to the frequency correction for the conductivity in the last term in (A1.4).

From (A1.3) - (A1.6) the expression for the perturbed electron density is derived, which

takes into account both the drift and Alfven type perturbations:
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Here ω ∂ ∂∗ = − ⋅( / ) ln( ) /ck T eB n xy e0 0 0 , ω ∂ ∂∗ = − ⋅T y eck eB T x( / ) /0 0 ,

ω ∂ ∂∗ = − ⋅p y eck T eB p x( / ) ln( ) /0 0 0  are the electron drift frequencies for the density, tempera-

ture and pressure gradients, respectively; k|| is the longitudinal wave number, v T mTe e e= ( / ) /
0

1 2

the thermal electron velocity and δ = c/ωpe is the collisionless skin length, ~ω ω ν= + i e. In this

paper we are mainly concerned with dimensional analysis, consequently in (A1.7) numerical

factors of order unity are neglected and the effect of the thermal force is omitted.

From the quasineutrality condition n’e = n’i the dispersion relation for Alfven drift wave

instability [13] is derived. It is convenient to rewrite it in dimensional form by introducing the

following dimensionless parameter: x p xp0 0
1= − −( ln( ) / )∂ ∂ , which characterises the gradient

length for the pressure. The following relation holds between the pressure, density and the tem-

perature gradients:
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1 1 1

0 0 0x x xp n T
= + . (A1.8)

We normalise the quantities with respect to the pressure gradient and use the notation

η e n T ex x d T d n= ≡0 0 0 0/ ln( ) / ln( ) . Thereby, the dimensionless frequency is defined as

Ω = ⋅ω x cp s0 / , where c T Ms e i= ( / ) /1 2  is the sound speed; the normalised transverse wave

number as k k s= ⊥ ρ , where 
ρ s  is the ion Larmor radius for the electron temperature; the

normalised longitudinal wave number as µ = k v x cT e p s|| /0  and ν ν= e sx c0 /

as the normalised electron collision frequency. Then the normalised drift

frequencies are defined as ω ρ∗ = ≈p p s y sx c k k0 /  (here we suppose that ky ~k),

ω ρ η η∗ = + ≈ +x c k kp s y s e e0 1 1/ / ( ) / ( )  and

ω ρ η η η η∗ = + ≈ +T p s y s e e e ex c k k0 1 1/ / ( ) / ( ) ; furthermore, τ = T Te i0 0/  and

β π0 0 0 0
24= ⋅n T B M me e/ ( / )  is the normalised electron beta.

Then the perturbed ion density assumes the form:

~ / ( )

( / )
~n

k

k
i

e= − +
− +

⋅
+







τ

τ η
τ

ϕ
Ω

Ω
1 1

1 2 , (A1.9)

where ~ ' /n n ni= 0  and ~ ' /ϕ ϕ= e T e0 , and the perturbed electron density the form:
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/
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1
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η
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β µ

η
η

µ

β µ

ϕ
Ω Ω

Ω

ΩΩ

Ω
Ω Ω

ΩΩ

ΩΩ

, (A1.10)

where 
~Ω Ω= +iν .

The dispersion relation, which follows from the quasi neutrality condition ~ ~n ne i= , is an

algebraic equation of fifth order with complex coefficients containing four independent param-

eters, namelyβ ν η µ0 , , ,e . Further investigation yields that additional simplification is obtained,

if the subsequent renormalization is made by introducing new dimensional variables and param-

eters:

Ω Ωn = / µ , k kn = / µ , β β µn = 0 / , ν ν µn = / . (A1.11)

Then the transitions between the collisional and the collisionles regimes and between low

and high beta plasma occur for νn, βn, values in the order of unity. The numerical evaluation of

the dispersion relation reveals that the new growth rate and frequency depend only weakly on µ
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for experimentally relevant small values µ < 1. Consequently, it is consistent to set µ = 0 in the

subsequent calculations. This implies that the dispersion relation is reduced to fourth order with

three independent parameters:

βn , 
ν n , η e. (A1.12)

This simplifies the analysis considerably. The dispersion equation in the new variables

reads:

a a a an n e n n n e n n n e n n n e n4 3 2 14 3 2 1( , , ) ( , , ) ( , , ) ( , , )β ν η β ν η β ν η β ν ηΩ Ω Ω Ω+ + + +,

a n n e0 01 ( , , )β ν η+ = ,

where the coefficients are:

a kn n e n n4 2( , , ) ( )β ν η τ β= + ;

a k k i k k in n e n n n e n n n n n n3 1 22 2( , , ) ( ) / ( )β ν η β η ν τ τβ ν β τ= + + + − + ; (A1.13)

a i k i k k i k kn n e n n n n n n n e n n n n n2 2 13 2 2 2( , , ) ( ) / ( )β ν η ν β ν β η ν β τ τ ν τ= + − + − − − ;

a k i k kn n e n n n n n e1 12 3 2( , , ) ( ) / ( )β ν η τ ν β ν η= + − − + ;     a i kn n e n0( , , )β ν η τν= .
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APPENDIX II

Temperature profile for a simplified transport model.

The radial dependence of the temperature can be approximated by the following simple model.

It is assumed that the plasma consists of three regions: a) the central plasma, which extends over

the major part (1-∆) of the plasma radius, with transport coefficient χ0 and the power heating

density per particle p  ≠ 0; b) the plasma near the boundary but inside the separatrix of width ∆
with the drift type transport coefficient χ1 and c) the outer separatrix region having the same

transverse transport coefficient χ1 with the longitudinal loss on the characteristic time τ||; the

width of this region is ∆s as is detailed below. For simplicity all coefficients are assumed to be

constant here ( which does not change the qualitative character of the conclusions ). In this

model heat sources are absent in the regions b) and c). Then the radial temperature profile can be

expressed as:

a) T x T
p

x( ) ( )= −0
1

2 0

2

χ
,   ( )0 1≤ < −x ∆ (A2.1)

where T(0) is the central temperature

T
p

Tt( ) ( )0
1

2
1

0

2= − +
χ

∆ , (A2.2)

with

T
p

t s= − +
χ 1

1( )( )∆ ∆ ∆ ; (A2.3)

the transition temperature between region a) and b):

b) T x
p

x
p

x Ts s( ) ( )( ) ( )( )= − − + ≡ − − +
χ χ1 1

1 1 1 1∆ ∆ ∆ ,   ( )1 1− ≤ <∆ x (A2.4)

where Ts is the separatrix temperature

T
p

s s= −
χ 1

1( )∆ ∆ ; (A2.5)

and finally the temperature profile in the SOL region
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c) T x T
x

s
s

( ) exp(
( )

)= −
−1

∆
,   ( )1≤ < ∞x (A2.6)

where

∆ s = χ τ1 || (A2.7)

is the characteristic SOL width.

The temperature just inside the separatrix can be written according to (A2.4) as

T x T
x

T
x

s
s

s
s

( ) ( ) ( )= +
−

= +1
1

1
∆

∆
∆

, (A2.8)

where ∆x x= −1  is the distance from the separatrix inside to plasma. From (A2.4) it is seen that

for a distance ∆ ∆x s≤  the temperature scales as Ts and can be few times greater than Ts

T Ts∝    (∆ ∆x s≤ ) (A2.9)

and for ∆ ∆x s>  the temperature scales as Ts/∆s.

T T Ts s t∝ ≈/∆    (∆ ∆x s> ) (A2.10)

The quantity T0e  as introduced in the main text coincides with Ts and the length x0 with ∆s.
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APPENDIX III

Expressions for different plasma parameters in a practical system of units.

The expressions for important plasma parameters are expressed in practical units. The

dimensionless plasma pressure and collision frequency read:

β n
eV

T cm m

A
n T

B x k
= ⋅ −0 86 102 1 2 013 0

0
2

0

. /

||

, (A3.1)

ν n z
cm

kV m

C A
x n

T k
= ⋅3 4 102 1 4 0

1 2
013

0
2 1 2

. /
/

||
/ , (A3.2)

where the factor Cz takes into account that Zeff need not be equal to one.

The transport coefficients have the form for the Gyro-Bohm coefficient

χ GB
eV

oT cm

cm A T

B x

2
2

1 2
0
3 2

2
0

10
sec

/ /







 =  , (A3.3)

and for the transport induced by the Alfven drift-wave instability in the collisional regime for

low beta

χ χ⊥








 =

cm
C

A T n

B x k
eV

oT cm m

2
3

1 2
0
3 2

013
1 3

2
0
4 3 2 3

10
sec

/ / /

/
||

/     , (A3.4)

where the numerical factor Cχ takes into account the difference between the quasilinear esti-

mate and the true value of the transport coefficients. We introduce the additional quantities Cz,

Cχ, CkL in order to allow a sensitivity check of the final scalings on these not very well known

factors. In these expressions A is the atomic number, n013 is the density in 1013cm-3 unit, the

temperature T0eV is expressed in eV, the main toroidal magnetic field B0T is expressed in Tesla,

the characteristic gradient x0cm expressed in cm, the longitudinal wave number k||m is expressed

in “m” and reads

k C
s

qRm kL
m

|| = , (A3.5)

where “s” is the shear of the magnetic field s=(adq/qda), q is the cylindrical safety factor

q
a B

R I
m T

m M

= 5
2

0

0

, (A3.6)
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and CkL is the numerical factor which takes into account the existence of the separatrix (CkL ~

0.3). In (A3.6) am is small tokamak radius in “m”, Rm is the large radius and I0M the total current

in MA.

The longitudinal time loss for the heat conduction regime in the SOL is taken in the form:

[ ]τ ||

||
/

sec .e
z

m oeV

C
n

k T
= ⋅ −1 23 10 3 013

2 5 2 (A3.7)

and for the convection case

[ ]τ ||

||
/

sec .e

m oeVk T
= ⋅ ⋅ −0 36 5 10

15
1 2    . (A3.8)

and

[ ]λ e
z

eVcm
C

T

n
=

0 1 0
2

013

.
. (A3.9)

is the electron mean free path.
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