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ABSTRACT

The CASTOR ComplexAlfvén Spectrum of TORoidal plasmas) code computes the entire
spectrum of normal-modes in resistive MHD for general tokamak configurations. The applied
Galerkin method, in conjunction with a Fourier finite-element discretisation, leads to a large
scale eigenvalue problefix = ABx, whereA is an non-self adjoint matrix.

l. INTRODUCTION

The gross macroscopic properties of a fusion oriented device, such as JET, concerning equilibrium,
stability and transport are of special interest. The magnetohydrodynamic theory (MHD)
combining fluid equations and Maxwell’s equations describes this macroscopic behaviour. The
role of ideal MHD in magnetic fusion is in its first place to discover magnetic geometries with
favourable equilibrium and stability properties. Fast global ideal instabilities have to be avoided.
Non-ideal effects allow development of slower and weaker instabilities leading to enhanced
transport and violent disruptions. Since MHD characteristics are observed in most experimental
phenomena, a detailed knowledge about the stable and unstable MHD solutions is required not
solely stability limits. The theory of equilibria and linearised motion around an equilibrium
configuration has, therefore, been in the centre of theoretical investigations over the years. The
most complete picture is obtained by means of a normal-mode analysis, which yields the various
temporal and spatial scales inherent in the specific MHD model used. The MHD spectrum,
especially the Alfvén continuum, has played an important role in the understanding of instabilities
and wave heating via resonant absorption.

In this paper we adopt the picture of a tokamak equilibrium given by ideal MHD, i.e. by
Jx B =[p, and subjected to dissipative perturbations. This viewpoint is justified by a hierarchy
of time scales. Since finite conductivity causes the plasma to break away from the magnetic
field and prompts unfavourable changes of the magnetic topology, with large and small islands
leading to ergodic fields, the resistive perturbations have to be studied even for large but finite
conductivity. The approach incorporates a flux coordinate system based on the specific
equilibrium, in order to model the Alfvén branch accurately. Clearly, the Alfvén branch of the
spectrum is the most relevant part for magnetic confinement. The name “CASTOESm@ex
Alfvén Spectrum ofTORoidal plasmas, given to the new normal-mode code reflects this
viewpoint.

The finite-element method provides a flexible and highly accurate numerical approximation.
It leads to a linear eigenvalue problem. In dissipative MHD this prompts a non-variational form
with general non-Hermitian matrices and complex eigenvalues. The discretisation has then to
be chosen carefully in order to avoid spurious non-physical oscillatory solutions. A “pollution-
free” approximation has been established. Powerful algorithms exist for the solution of the
linear eigenvalue problem. The specific difficulty for us is given by the large dimensions of the



system, which indicates that iterative methods, such as vector iteration, preserving the sparseness
of the matrices are preferable. Such a scheme can be extended to a shifted Lanczos algorithm
for mapping out specific parts of the spectrum. The storage of large-scale matrices with (1-10)

x 10° non-zero elements can easily be arranged if external storage is addressed. The linear
algebra algorithms involved in the eigen-problem can be tailored to reach peak performance by
fully utilising vectorisation and parallelism as discussed in Refs. [1] and [2].

The paper is organised as follows: The physical model appropriate to simulating the
dissipative plasma behaviour is presented in Section Il. The tokamak equilibria considered are
described by ideal MHD and define specific non-orthogonal flux coordinates. Section Il contains
the numerical method. The dissipative MHD equations are solved in their weak form by applying
the finite-element method. This leads to a large-scale complex eigenvalue problem. The derivation
of the corresponding matrix elements is outlined in Section IV. Applications displaying the
accuracy and efficiency of the numerical scheme are presented in Section V. Finally, Section VI
contains the discussion and conclusion. The matrix elements are listed in Appendix A and the
equilibrium quantities in Appendix B.

II.  PHYSICAL MODEL

The single-fluid MHD equations in normalised, dimensionless form read:

continuity:
%, O(pv) =0, (2.1)
ot
momentum:
0o 0,
mp_—+VvIIVv=-Op+JxB-01IM, 2.2
P ¥ My =-Op+JxB-00 (2:2)
energy:
o 2
—+ve=pdy -0+ M:0v+nj°, 2.3
pDat_gep_E_J=_ru (2.3)

and Ohm’s Law (in simplified form):
E+vxB=nj, (2.4)

whereg denotes the heat flux ands the resistivity. This model relates the dengjtyelocity
v, scalar pressure p, pressure teridointernal energy e, the magnetic (electric) fig{&) and
the currentj. In addition we have



Maxwell:

—; =-0xE, (2.5)
J=0UxB, (2.6)
OmB=0, (2.7)
ideal gas law:
p=pT, (2.8)

where T is the temperature.

The basic uncertainties in this model with respect to modelling plasmas in a fusion reactor
are given by the omission of kinetic effects in the pressure téhsord by the neglect of the
electron response in Ohm’s Law. Here we refer to the approxim@te6(or 0 = pAv).

The standard model applied to equilibrium and stability begins with a §tei©),),
steady-stated(ot = 0) equilibrium which reduces to

(UxB)xB="0p,
(2.9)
UmB=0.
The condition that the magnetic field be divergence-free is incorporated in the representation
B =Oex Oy + F(Y) e, (2.10)

where) denotes the poloidal flux and F the poloidal current profile. Cylindrical coordinates R,
@, z are used and axisymmetry implies that the equilibrium quantities do not depgnéarne
balance leads to the Grad-Shafranov equationpfatefining a nested set of closed magnetic
surfaces. The plasma behaviour is quite anisotropic with respect to the directions parallel and
perpendicular t. Therefore it is essential to utilisgg as a radial coordinate. Such a flux
coordinate systends, 6, @ is characterised by its Jacobian

J =0y x0eme, (2.11)

wheref denotes an angle in the poloidal direction e.g. a polar angle. A straight field line coordinate
systemy, X, @is characterised by a constant ratio

B®/BX=q(y) (2.12)



where q denotes the safety factor. Then the opeBAirhas the representation

il
JB = —+— 2.13
B0 =[a(u) 5 + 5 O i(na(w) + m) (213)
with n and m denoting the toroidal and poloidal wave numbers. Consequently, thep
coordinate system is uniquely defined by the following choice

- Rlaw) (2.14)
F(p)

For some applications such as divertor configurations, a more general coordinate system
is advantageous.

The theory of linearised perturbations adopts an expansion around such an equilibrium
and linearises the equations. This is then the place where dissipation is taken into account. The
justification for this procedure is given by estimating the time scales of interest. In the limit of
small dissipation d the equilibrium flow is proportional to the dissipation, whereas the
perturbations grow on a faster time scale of the order of

t0dY2 oreven tOdYs. (2.15)

For stable motion and waves the argument clearly gets more involved. For the time being
we are content with the standard model.
All quantities are expanded around the equilibrium in the form

f(r,t) = fo(r) + My (r). (2.16)

Here,A is the eigenvalue. The imaginary pari\aforresponds to oscillatory behaviour,
while a negative real part yields damping and a positive real part an exponentially growing
instability.

As it will become apparent that the correct treatment of the magnetic field perturbation
under the influence of finite resistivity is essential, we will focus on the extension of the scheme
to fully two-dimensional equilibria with only resistivity taken into account. No perturbation of
the resisitivity is included here.

With resistivityn, the equations for the perturbed quantigies, T andb read

Ap=-UUpyu), (2.17a)
ApoU ==0(poT +Top) + (L xBy) xb+(Uxb)xB, (2.17b)
APT = —poUtT o = (Y = Dpo Tl i+ (y = D[2nDxB, D x b], (2.17¢)



Ab=0x (uxB, ~nolxb). (2.17d)

The dissipated energy in (2.17c¢) can be neglected, as is done usually.
The conditiond [b = 0 is satisfied ifB, is divergence-free. In this case a vector potential
can be introduced by

b=0Oxa and E=-Aa-0=z= (2.18)

The freedom in the gauge can be used to set the potemtiad specific component af
e.g.ay, equal to zero.
The boundary conditions at a perfectly conducting wall are

nW=0, nb=0, nxE=0, (2.19)

wheren is the outward pointing normal vector.
When a plasma-vacuum-wall system is considered, the perturbed vacuum field can be
expressed by a potential

b, =Og, . (2.20)
Maxwell equations (2.6), (2.7) then imply
0%, = 0. (2.21)

The boundary conditions indicate that the normal magnetic field and the total pressure
p+1/ 252 are continuous at the perturbed plasma-vacuum interface dQd= 0 at the wall.
In the case where the equilibrium magnetic field is continuous across the plasma boundary the
pressure pfalls to zero at the boundary. Then the boundary conditions assume the form

bth=b, [h (2.22)
m= p1+50|:b:50v EH_)V (2.23)

For finite resistivity at the boundary surface currents are no longer allowed in the plasma
perturbations and, therefore, all three components of the perturbed magnetic field are continuous.
This gives rise to two additional resistive boundary conditi®rs = B,, x n,which for equilibria
with zero surface currents implies

o

nxb=nxb. (2.24)

At the magnetic axis the boundary conditions are given by the regularity condition on
axis.



. NUMERICAL METHOD

The method adopted for numerical solution is subjected to two different requirements. Firstly, it
should apply to general configurations in solar and stellar plasmas as well as to fusion relevant
tokamak configurations. Secondly, it should be easily extended to include various forms of
dissipation. Such requirements exclude elimination of specific components of the perturbation
and prompt a general solution of the system (2.17). Hence we are prepared to solve large-scale
systems. Thereby, full use can be made of the theory and of the algorithms available in linear
algebra for solving the eigenvalue problem, see Kerner [1]. It has been shown previously that
the corresponding systems can be solved for efficiently and accurately in plasmas with cylindrical
symmetry [3].

It is recalled that the ideal MHD spectrum typically splits into three branches, namely the
fast magneto-acoustic waves, the Alfvén waves and in the small pressure limit the sound waves.
The ratio of the largest to smallest eigenvalue is very large:

A = max|A|/min|A| - oo.

This indicates that special care is necessary to ensure correct and accurate numerical
representation of the entire spectrum.

The framework for numerical solution of the dissipative MHD equations is given by the
finite-element method.

1. Discretisation

For tokamak systems it is advantageous to apply a Fourier finite-element discretisation in the
flux coordinate systers X, @, adopted to the specific axisymmetric equilibrium considered with:

s= W/ g, O<s<1 (3.1)
and
_dy _
f(9)= S =25, (3.2)

with g the flux on the boundary.
The Jacobian is

J=1()R%q(s) / F(s) (3.3)



The perturbations expressed by a state vectare represented by the ansatz

m=oo
w(r) = exp(ing) ¥ wp(s)exp(imx). (3.4)
m=-—oo
The radial dependence wfis expressed by a linear combination of local expansion or
shape functions.

NI’
Win(S) = 3 Xmlvhy(9) (3.5)

v=1l

The normal-mode problem exhibits very different spatial and temporal scales, as manifested
in the different branches of the spectrum and in the very localised, almost singular, resistive
instabilities. Special care is therefore required in choosing the appropriate numerical
approximation for the components of the state vecfotj w 1,2,...8. Optimal numerical
approximation of the entire computed spectrum to the true spectrum is obtained if the discretisation
is chosen to satisfy the following two constraints in every point:

Omw=0 (3.6a)
O =0. (3.6b)

When unphysical coupling between the fast magnetosonic and the Alfvén waves occurs
the Alfvén spectrum is highly distorted numerically. In toroidal systems the fast modes are
suppressed in leading order in inverse aspect ratio if the perturbation satisfies

Oug/R?) =0 (3.7)

This implies that pure Alfvén waves are represented correctly only if the discretisation
satisfies condition 3.7 exactly independent of the mesh size.

Inideal MHD the linearised system can be cast into a variational problem for the energy in
the Lagrangian displacement x, which througfo¢/dt corresponds to the velocity. This approach
was followed in the development of the ideal MHD toroidal stability codes ERATO [4] and
PEST [5]. Uniform convergence of the entire computed spectrum towards the correct spectrum,
I.e. good convergence for every eigenvalue, is achieved when the discretisation satisfies constraint
(3.7). Otherwise, “pollution” is found where a specific eigenvalue converges by increased
resolution, but at the same time new incorrect (“polluted”) eigenvalues are introduced.

Free functions in the components wfcan be chosen to simplify the perpendicular
divergence, namely to put it into the form

1[pu 0O

2) - 100Uy
DE@D/R )_JD L+ muy (3.8)



Thus the constraint (3.7) implies that the basic functions,focalled H, are one order
higher in s than those of and y, called h:

OH /s =h. (3.9)

This corresponds to a “staggered” mesh used in finite differences. It is sufficienthat H
C°, i.e. the derivatives need not be continuous.

The y component is still free to satisfy the divergence condition (3.6a) exactly when
required. It is emphasised that the conditions (3.6a) and (3.7) constitute constraints for the
numerical scheme. The plasma is treated as a compressible medium.

Dissipative MHD yields a non-variational problem. In order to obtain an equally good
numerical approximation higher-order elements H are required,foitbs found that these
functions have to be in'0.e. have to have continuous derivatives. Cubic Hermite elements are
thus used for H and quadratic elements for h.

In each case two orthogonal functions define a complete set. The cubic Hermitian elements
are defined [6]

O DS S]—l D2 DS Sj—l |j’.3

EiT R

% sJ+ s[? Dsj+1 sD3
H;() mﬁ Sj < S<Sj4, (3.10a)

%1 sU[sj-1Sj+1l,

i

H

D )DS_Sj_ll:F coc

S-S : S_1<S<S;,

g j Er_ _Sj—la j j
- @ Ds—sj+1 DZ
Hj(s) = S—Sj)&?ﬁ ; Sj = S=Sj41, (3.10b)

j+1 75
sU[sj-1,5j+1l,

o O L0



and the quadratic elements

Sj +S]—1D (s—sj-1)

gr 5 Sj_lSSS Sj,
(Sj —§j-1)
Siv1 +S; S—S
hl(S) = gf i+1 75 ( ]+1)2 Sj <s< Sj+1 (3.10c¢)
2 (Sj+l SJ)

S D[Sj —1!Sj +1]!

1 A B Y N

0, (5=Sj-1)(sj —9)

" 5 Sj—l <s< Sj ,
hj9=0 (5~S-1) (3.10d)
%), sU[sj-1.5il,
These elements are plotted in Fig. 1.
@)
J \\\\_\/\\'l’/l”
Sica —Si S

JG96.626/10c

Fig. 1: Finite elements. (a) Cubic Hermite and (b) quadratic expansion functions. The solid curves represent the
elements associated with the pointarsl the dashed curves the neighbouring elements.

No “spurious” eigenvalues then occur andb = 0 is satisfied numerically up to the
machine accuracy. This constraint is, of course, a physical condition. Let us discuss several
options in detail:

2.  Approximation of b:

An obvious choice for enforcing the conditi@ith = 0 is to eliminate one component. In Ref.
[3] it was shown that eliminating thg bomponent



by = -9 (1) +ikp, "

for m#0 3.11
im LUr or U ( )

yields a pollution-free numerical approximation to the entire spectrum as demonstrated in Fig. 2
of Ref. [3]. In the toroidal system the different Fourier components in the expansion (3.5)
couple, including the m = 0 component, making the elimination (3.11) impossible.

Since @ is still an ignorable coordinate we may wish to eliminate thedmponent.
Unfortunately, this leads to a numerically unstable eigenproblem - even in the limit of one Fourier
harmonic in the cylindrical system. The code then often produces meaningless frequencies and
eigenfunctions. It is recalled that the unstable modes emerge from the Alfvén branch. For
Alfvén modes, however, in large aspect ratio systems the component pailkestoall, i.e.
= 0, and thus a very small component of the field is replaced by two large ones which almost
cancel each other. This leads to numerical difficulties and should therefore not be done!

To avoid having different schemes far# 0 and m = 0, all three components of the
perturbed magnetic field have to be retained. As pointed out earlier, it holds that

DE%-?zAD[bz—DDDxE:o. (3.12)

In principle, this idea works but there is a subtlety involved. Obviously, the state vector,
which characterises the perturbed quantities in Eq. 2.17, now has eight components

w' = (P1,Uq,Up,u3,Tq,bq,bo,b3). (3.13)
This leads to systems with total dimension
N =M B2N, =16MN,, (3.14)

where M denotes the number of Fourier harmonics andeNnumber of radial points. What
happens to the additional 2Modes which appear whegib not eliminated? Naively, we may

hope that these degrees of freedom are somehow added to the three branches. But this is impossible
since these modes are already approximated by the shape functions up to the limit of the
discretisation based on M Fourier components gnchdlal points. These modes, therefore,
occur as additional “spurious” modes in the numerically approximated spectrum. Among well-
approximated eigen-solutions we find in addition spurious modes, which are due to non-zero
values of [b. Although O0b vanishes analytically, this is not guaranteed numerically for
finite resistivity. The cubic Hermite shape functions have continuous derivatives across different
elementsH OCY, but the quadratic ones do nofj&°. Finite resistivity in the induction equation

leads to radial derivatives of &nd k in the weak form. The jump in these terms yields spurious
eigenvalues, which are consequently linked to jumpEli, i.e. (0b# 0 across different
elements. We have not found a simple way to eliminate these jumps. A remedy is found by

10



expanding all three componentshoih cubic elementsd Oct. ThenO (b =0 is satisfied also
numerically. However, in the limit af - 0 this scheme does not match well the discretisation
used for the ideal system € 0). Therefore, a different approach is chosen where the perturbed
magnetic field is expressed by a vector potential already introduced in Eq. (2.18). The proper
discretisation satisfying the constraints on the numerical method, Egs. (3.6a), (3.6b) and (3.7),
yields an expansion in cubic elements fgraand a, i.e. u, &, & oct and y,U; anday OC°.

Note that the potentiat is set to zero. The induction equation now reads

Aa=uxB-nglixlxa (3.15)

and the weak form yields radial derivatives jnaad g only, but not on a The divergence
equation (3.12) yields

AOb=0, (3.16a)

with the consequence that for non-zero eigenvallids is zero up to the machine accuracy i.e.

IOb|<10712 onaCRAY. (3.16b)

The additional spurious modes now lie on the origin of the complex plane
I\(spurious)| < 10712, (3.16¢)

This has indeed been verified by many numerical runs.
It should be added that the induction equation (3.15) yields in the ideahca$® (

aB, =0. (3.17)

Thus, an additional fraction of eigenmodes is again shifted to the origin. The problem of
diagonalising the entire matrix by means of QR or QZ can be stabilised by introdyciagB,,
as a variable.

Again the inverse iteration algorithm does solve the system accurately for all physical
eigenvalues and eigenfunctions witredher kept or eliminated. Since dissipative systems are
to be examined in the first place this point is not essential.

This discretisation produces a very accurate and numerically stable procedure as is
demonstrated by the applications.

With the state vector for the perturbed quantities now definad as (p, uT, g) the linear
operators in egs. (2.17a)-(2.17d) are represented by m&rasedS where ir§ only the diagonal
elements are non-zero aRcdcontains differential operators and equilibrium quantities. The set
of linearised equations then reads

ASW = Rw. (3.18)

11



3. Variables and Projections

In the curvilinear flux coordinatesy, @ the following Ansatz is made for the perturbed velocity

D2 2

u= szlﬂxxD(p—% v,0exOg — ifB VB, , (3.19)

with f given by (3.2). Thenyrepresents basically the sound modes arahd s correspond to
the contravariant velocity components. This leads to

N

0 (3.20)

Ofu, /R?) = J‘lé% +mv,

for every Fourier harmonic allowing to make the fast wave contribution sufficiently small for
unstable modes and for Alfvén modes. The divergence is brought to its required value by adjusting
the componenty The perturbed vector potential is represented as

a=—(i /)y 0y +ayx + azlo. (3.21)
This leads to a simple form for the magnetic field
b' =37 %9,a, (3.22)
Furthermore, we redefine the perturbed density and temperature
PL=5P1 (3.23)
T, =sT; (3.24)
Then the state vector comprises the following eight variables
wT =(py,ve,V2,v3, T1,81,80,83). (3.24)
4. Eigenvalue Problem

The system (2.17), summarised in matrix notation in Eq. (3.18) is solved in its weak form in the
weighted residual formulation. Let

(zw) = [dt z* W (3.25)

denote an inner product in the appropriate Hilbert space. The exact solution is approximated by
trial functions and mapped into the space of weighting functions; both function classes have to
be sufficiently regular. We proceed by taking the inner product of the system (3.18) with the
weighting functiore by integrating over the volume

12



A(z,3v) = (z,Rw) (3.26)

Integration by parts reduces the order of derivatives. The error introduced in the differential
equations through the approximationnoby a set of discrete expansion functions is orthogonal
to every weighting function. In the standard Galerkin procedure adopted here the space of the
weighting functions is chosen to coincide with that of the trial functions. This leads to the
matrix eigenvalue problem

AXx =ABX, (3.27)

wherex denotes the vector of the expansion coefficients and the mariaed B contain
equilibrium quantities and derivatives and are bilinear in the trial functions. Obviously, the
normB is self-adjoint and positive definite, biis always non-symmetric even fqr= 0.

The Hermitian eigenproblem has all the properties needed to ensure successful numerical
evaluation, since a Hermitian matrix cannot be defective and since a small perturbation in the
matrix causes only a small perturbation in the eigenvalues. The general non-Hermitian system
defines, therefore, a much harder problem, where small perturbations in the matrix can lead to a
finite change of all eigenvalue (as discussed in the context of the pseudo spectrum [7]).

Two different classes of solvers are applied to the system, namely QR (QZ), and inverse
iteration. The diagonalisation by means of QR or QZ yields all eigenvalues but destroys the
initial sparseness éfandB. Therefore, at present itis used only up to a dimension of N = 2000.
Nevertheless it yields valuable insight into the spectrum, especially when new branches with
unknown properties are discovered. In conjunction with an out-of-core solver inverse iteration
allows treatment of large systems, at present routinely up to N =50,000 on a CRAY supercomputer
and up to N = 20,000 on a typical workstation with 256Mb memory and fast access to a disk.
The features of these algorithms have been extensively discussed in Ref. [1].

V. EVALUATION OF MATRIX ELEMENTS
We collect the contribution for the matrix elements for both the norm and the “potential”.

1. Mass conservation

Ao f R? 0
MIIB* B dsdxdg=-fff 2 (up + pol] ) disdyde (4.1)
wherep* denotes the complex conjugatepofAfter theg-integration we arrive at the following

integrands

2
KO =p*p % (4.2)

f
&

13



1
wi = E{Rzpo[asvl +1/; 0y (vo +v3) + an3]

+ Rz[vlaspo +(vp +vg)l/; axpo] (4.3)

+ po[vlast + (V2 + V3)1/i GXRZ]}

-9
0P

contributions to thé andB matrices still require thg x integrations, e.gB(l) = [[dsdy K@,
Making use of the general state veataind inserting the finite-element basis vectors, i.e. cubic

whered, = i,a
as °

and 0, = % Typically py = po(s) and the term®, p, vanish. The

elements H forvq,a, and ag and quadratic element fqir,vz,vg,f' and & the contributions
are labelled as

A 2. .
B(LD) = fdse ™hy(9) 5 €™ h (9 (4.4)

This expression describes the interaction of the weighting funh@@)e‘imx and the
trial expansion functiorh,, (s)e'™ and is symbolically abbreviated as

2
B(L1) = é%h (4.5)

In this fashion the right hand side of the mass conservation yields for the interaction of
ﬁ* and Uq:

2
A(1,2) = -hH' % —hH é(Rzasp0 +podsR?), (4.6)

whereH' =dH. In the same fashion the expressions A(1, 3) and A(1, 4), i.e. for the interaction
of p with v, and v, are obtained.

2. Momentum Balance
The momentum equation is cast into the form

Apou=-0m +H, 4.7)
where 1y denotes the total pressure

T =p+Byb (4.8)

14



with

P
By b= | L‘;' é—l(”al ~ 0533) —g(mag - naz)é

R (4.9)
+£1£(asa2 - mal)
R2 f q
where
Dy DDX (4.10)
IDllJ &

For the evaluation of the matrix elements of the eigenvalue problem a vector is projected
upon three orthogonal directions, i.e.

A= KL]JDLIJ +KDD([JX|:|L|J +K(p|:|(p,

where the evaluation of the corresponding projections is straight forward.
The vectorH has the corresponding components

(4.11a)

Hy fa(a +ing)by + Jgby (4.11b)

0
F oo, I9Y L e 5 1/ R2E
" anw? 5O R? X
N (4.11c)

—  f .\« o dF 2
H(p—j(ax +|nq)b(p+@|DqJ| by,

Here the three orthogonal projections of the magnetic field are defined as

b Oyag —inay (4.12a)
0= g% e

bg = l(nal - asa3) + g(iaxa3 + naz) (4.12b)

—h

15



= _F .
By = ﬁ(asa2 +idyay) (4.12¢)
The weak form of the momentum balance equation is given by

wdy = v [0y +H]
=[O V* Ty - [dSIV* T (4.13)
+jdr{vij,ﬁq,|mq;|2 +V] HlOWP IR? +VgH, / R2}

and is integrated by parts with

v* @S = v R2dxdg (4.14)

Itis noted that no second-order radial derivative on the expansion function occurs. Second
order x -derivatives, which occur in the expressicﬂg(?._)w,axﬁg and OXB(p are also integrated
by parts.

3. Energy Equation
The energy equation is treated in the same manner as the continuity equation.
4. Induction Equation
The weak form leads to
[dta* [VxB - noOxCxa)

= [dra* WxB + [nea* x(Oxa) (@S (4.15)
—[dtOx(nea*) Mxa

Again second derivatives on the expansion functions are avoided by partial integration.
The matrix elements in completeness are listed in Appendix A. The required equilibrium quantities
are given in Appendix B.

5. Implementation of the Boundary Conditions
The boundary conditions at the magnetic axis imply
Vllaxis = O ; azlaxis = O ; aSlaxis: 0 (416)

In the case of a perfectly conducting wall at the plasma boundary, it holds that

16



Vibat =0 5 &l =0 &l =0. (4.17)

The boundary conditions (4.16) and (4.17) are essential boundary conditions. These must
be applied to both the variables and test functions. In the CASTOR code the conditions at the
plasma-vacuum interface are implemented by removing the rows and columns of the
corresponding matrix elements on axis and at the boundary. Note that in this case the surface
contributions in (4.13) and (4.15) are zero.

We have developed a formulation where both the ideal and the resistive boundary conditions
at the plasma-vacuum interface are implemented as natural boundary conditions, i.e. they are
automatically satisfied when solving the weak form.

Using the pressure balance relation (2.23) and the absence of equilibrium surface currents
(i.e. By = Byy) the surface contribution (4.13) becomes

W, =-fv @SB, b,). (4.18)

If we now perturb the vacuum with a unit field perturbation at the bounBany, = b,, [h,,
the response of the vacuum in terms of the parallel magnetic perturligjidn,, at the plasma
boundary can be obtained. Thereby, the response of each independent Fourier harmonic
perturbation k is function of the poloidal angle

(BoMby), = S dy (IbMs), (4.19)
k

where all the information of the vacuum solution is now described by the vacuum response
matrix d. Rewritten in Fourier components (4.18) reads

S

W, =-J(v}) e™™ Zak' e'*(J0"), R?dx. (4.20)

The same procedure is followed for the resistive boundary condition, i.e. in the case of
finite resistivity at the plasma boundary. Thereby the expression (4.18) for the ideal surface
term is unchanged. This term in now used to implement the continuBy df,. The resistive
surface term (4.15) is utilised to implement the continuity of the remaining tangential component
of the perturbed magnetic field.

WR = [no(abyg ~ as'byo Jdxde . (4.21)

Again the vacuum response is defined by

(bys), = ZBH (‘]Dl)

: (4.22)
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The matricesy, @ and y are related through

F
B, (b, = q?(bvz +qby3) (4.23)

The condition

ob,, _ob,,

JOxb)MMs=0 impli .
(O x b)Ms implies = 5

(4.24)

So for the implementation of the boundary conditions only one of the three response matrices
need to be computed. The final form of the resistive surface term is

W = [n, ™ g[(a;)mfskl - (), v Je"*(30%),x (4.25)

In this fashion the resistive boundary conditions are implemented as natural boundary
conditions and the ideal boundary conditions are retrieved by setting the resistivity to zero. The
response matrif& is the only information required from the vacuum solution and can be calculated
independently from the plasma normal-mode problem.

V. APPLICATIONS

A basic element in the development of the computer code is the testing of the numerical scheme,
in particular its accuracy and its convergence properties. Test cases in the cylindrical limit,
which are available analytically and numerically as described in detail in Refs [3, 8], were
successfully reproduced but are not reported here. The first validation in toroidal geometry is
based on the comparison with results from ideal MHD stability for a simple and easily reproducible
tokamak equilibrium. These test cases were performed by different codes and published in Ref
[9], 1978, and were further utilised later on, e.g. by the NOVA code [10], 1987, and by the
SPECTOR code [11], 1996.

In the CASTOR code the eigenvalue is normalised to the Alfvén time

< _ Jo(OR(O)

51
Bo(0) G-

The case of a constant pressure gradé%ntand a constant current profiﬁéj%w has an

analytic solution as given by Solovev. This class of tokamak equilibria allows for finite inverse
aspect ratie = a/R, for elongation E and for variatlg (herepy, is set identically to unity). A
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JET-type cross-section is given by 1/3 and E = 2. The results computed by CASTOR are
presented in table | together with the previous results from the other codesA\ H&g, / a

denotes the ratio of wall radius to plasma radivs; 1 corresponds to a perfectly conducting

wall placed at the plasma boundary ald c to a wall at infinity. The values of the safety
factor on axis q(0) and on the boundary are also given. In this table the eigenvalues are normalised
to the poloidal Alfvén time and thus the growth rates are multiplied by the value of the safety
factor at the plasma surface, i.e.

; P(O)R(0)a(2)

yzanzxv 5.(0) (5.1b)

It is evident from this table that the results obtained from the different codes agree quite
well. Inthe case &f * = 3, E = 2,A =1 and q(0) = 0.7 for example the maximum deviation in
the results is just 3 in 120 (2.5%). Similar agreement is obtained also in the other cases. It has
to be reminded that the first table in Ref [9] was compiled in 1978 when the computing power
was much less than today. In conclusion the results computed by the CASTOR code agree
within typically 1 - 3% with those from other codes.

Table 1: Comparison of the Eigenvalyésor specific Solovev Equilibria from different Ideal
MHD spectral codes.

€ E|A| g | g1) | n |CASTOR|KERNER PEST-1 ERATO| Degtyarev | NOVA |Spector

6| 1| 21791 20 | 1| 0216 | 0202 | 0.204 K - 0211 0208, -

6| 1] 22239 25 |1 0513 | 0504 0506, - 0511 0508, -

V32| 1] 0.3 10522 2| 0429 | 0413 | 0427|0431 | 0.430 |0.430| 0.432

V3, 2|1 0.7 1219 2| 012 0.118 | 0.119| 0.120 | 0.121 |0.119| 0.118

V3 2| 12 2090 1| 0.74 - 0.75 | 0.78 - 0.748) -
V3| 2o | 20 /3483 1 066 - 0.68 | 0.75 - 0.656| -
V3| 2| x| 06 |1.045 2| 1338 - 131 | 1.40 132 | 135, -
V3| 2 || 10 1741 2| 103 - 103 | 1.07 106 |1.038 -

Next the convergence properties are discussed. It is noted that from now on the
normalisation as introduced in (5.1) is used. Since the eigenfunctions of the results from table |
are smooth a high order convergence with the number of radial finite elements as well as with
the number of Fourier harmonics is expected. In figure 2 the eigenvalue is plotted versus the
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0.59 number of radial grid points N for different
M= 11 numbers of Fourier harmonics M. The
M dependence on the number of radial grid points
.—././_/-/" is inversely quartic and hence the convergence
8T e is fast. For this elliptical cross-section there is
| kk”/‘/k/‘ a strong coupling due to ellipticity withm =
= 2 and a weak toroidal coupling witkm = 1.
0531 The overall convergence with respect to the
number of Fourier harmonics is therefore slow
M=5 and requires more than twenty harmonics for a
/ \ good approximation to the final result. The
050, 00000 00002 00003 00004 convergence gets increasingly better with
1N+ increasing M as is evident from Fig. 3. This

(13)(11) 9 (8) ™M (N) _ $
Fig 2: Convergence study with respect to the number E‘?Su“ is expressed by means of the (18dgle

Fourier harmonics M and radial grid points N for theOf Fig. 4 in comparison to the 1/M scale of
casee=1/3,E=2,A=w,q(0)=1andn=2inTable Fig. 3. Both curves confirm that the

I. The dependence on the number of radial grid po‘”t?onvergence is asymptotically faster than a
's inversely quartic. polynomial dependence in 1/M.

0.59 n g  0.5820 8
25 g g
® 0o 15 E 8
21 S 25 =
18 1 ?013 22
0.57+— 0.5815+ ®
19
17
0.55— 0.5810— [ ]
< < 18
0.53— 0.5805—
0.5800— °
0.51+ 6@ 16
Y 15
®
0.5795 | | | |
0.49 | | | 0 2 4 6 8 (10-8)
0.020 0.070 0.120 0.170 1
/M Mmé

Fig. 3: Convergence study with respect to the number Big. 4: Convergence study with respect to the number of
Fourier harmonics M for fixed N (N = 15) for the sameFourier harmonics M for fixed N (N=15) for the same
case as in Fig. 2. The convergence gets increasingigse as in Fig. 2. The convergence is very fast as
better with increasing M, i.e. asymptotically faster thaindicated by the 1/f1scale, i.e. asymptotically faster

a polynominal dependence in 1/M.
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A severe test for the validation of a MHD stability code is given by the internal kink mode,
which has different stability properties for cylindrical and toroidal symmetry. Consequently, the
stability is determined by fine details of the tokamak configuration where terms up to second
order in inverse aspect ratio need to be retained and analytical treatment needs to be carried
through order” in 3W. A toroidal equilibrium with circular cross-section and aspect ratio
¢ =10 is analysed. The choice of the pressure and current profile allows a comparison with
analytical work by Bussac et al. [12] and Mikhailovskii [13] for a parabolic current profile.

p=po(1-1), (5.2a)
(i) =lo(1-1), (5.2b)
i(r) = jo(t =121 2%) (5.20)

In Fig. 5 the stability limit in terms @p, defined according to Refs [12, 13] as follows

[pdA / [dS—p(w1)

Pp=2 2 (5.3)
Bp(Wi)
0.3
q(0)=0.99 0.700
0.2
o 0.900 0.850
[<aX
0.1+
0 | | | | 5
0 0.2 0.4 0.6 0.8 1.0
V¥ (q=1)
. o | fpda / fds- p(u,) |
Fig 5: Stability limit for the internal kink mode in terms&é =2 5 versus the radius of the
Bl W
(1)

q = 1 surface for a circular cross-section large aspect ragid= 10, equilibrium with profiles given by 5.2a - b
(parabolic-type current profile).

where dA = Jdsgland B(W,)is the flux averaged poloidal field, is displayed as a function of the
radius of the g = 1 surface. FQLp(q = 1) close to the magnetic axis the agreement between the
computed and the analytical limits is excellent. The limit for g (0) = 1.0 is givBp=b9.3. For
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a small radius of the q = 1 surface, i.e. s (g=1) < 0.25, our results coincide with the analytical
results. For a larger radius of the q =1 surface, i.e. s (q=1) > 0.25, the deviation from the
parabolic profile (5.2c) - although small - gets pronounced thus placing the computed stability
limits between the analytical results derived Jot jo(l— rz/ az) and forjo(l— r’/ az)z. The
minimum 3, value is defined by the configuration where q (1) = 2.0 i.e. yielding a cigtjcal
slightly below the value 0.2. When the q = 2 surface is no longer inside the plasma the predicted
stabilising effect becomes dominant as is evident from the part of the diagram s with s (q=1) >
0.55. Each point on this figure is obtained by extrapoldijig its value whera is zero as
demonstrated in Fig. 6. It is emphasised that growth rates in the ordek eflBé to 10° are

still evaluated with good accuracy. Three Fourier components m =0, 1 and 2 need to be included.
The numerical calculations are thus performed with five harmonics ranging from —1 to 3. Near
marginal stability, where the eigenvalue approaches the Alfvén continuum, the eigenfunction
develops a singular behaviour in radius. Therefore, a high resolution with respect to the number
of radial grid points is necessary. The case of N = 1000 constitutes the accurate sglution

Fig. 7 the deviation of from this asymptotic solution is plotted versus 1/N in a double logarithmic
scale. The maximum deviation defines a straight line which scales approximately.as 1/N

1.0 10-3p
(10-3) q(0) = 0.900 -
08
50 40
—4
q(0) = 0.850 104F
0.6 -
=
<
r |
A =<
L 0) = 0.950
0.4 %0 q(0) = 0.975
| 10-5 - 55
o2k q(0) = 0.990 e
0 | | | 3 10-6 I | I I
0 0.1 0.2 03 0.4 05 0.01 0.05
By? 1N

Fig. 6: The extrapolation to marginal stability of theFig 7: Deviation of the growth rate from the converged

internal kink mode for different values of q (0) displaye@rowth rateA,, (defined by N=1000) obtained with five

in Fig. 5. harmonics -I<xM <3 for q (0) = 0.9 ang3,=0.4in a
double logarithmic scale. The maximum deviation
defines a straight line scaling as /N

Next we consider non-zero resistivity. In the case that the ideal internal kink mode is
stable there exist unstable resistive internal kink modes. This is shown in Fig. 8. In a slightly
different tokamak equilibrium with circular cross section, aspect gt 10 and the profiles
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P=PolL Li) (5.4)
(i) =io(1-W)

with g,= 0.9 and3, = 0.1, the growth rate is plotted in dependence of the resistivity. The two

branches of the resistive n = 1 perturbation are displayed, namely the tearing mode scaling as

r]3’5 and the resistive interchange scaling]é@. For very small values of the resistivity the

pressure driven instability becomes dominant (in this casg, ferl0*4. Itis emphasised that

N, values as small as TOneed to be treated in order to obtain the correct asymptotic scaling.

The necessary accuracy in the numerical calculation is achieved by including up 1600

radial points in conjunction with mesh accumulation around the q = 1 and 2 surfaces. The

growth rates being as low as 1Bave been obtained by convergence studies as discussed above.

101
3/5

T T T TTTI
=

1/3

10-2

A
10-3

104

JG96.626/1c

105 AN T SN T 1 AN O 1T B U111 S 111 NI W11 MR AIT
10-14 10-12 10-10 10-8 106
n

Fig. 8: Growth rate of the resistive internal kink for the equilibrium with circular cross-secibr10 and the
profiles given in 5.4; q (0) = 0.9 an8} = 0.1. Two branches scaling g&° andn'”, respectively, exist in the limit
of small resistivity.

In the final application the stable part of the resistive Alfvén spectrum is examined. Again
a tokamak with circular cross section is considered. The toroidal coupling introduces gaps in
the ideal Alfvén continua and global modes exist with a frequency inside the gap, see Ref. [14].
The aspect ratio and magnetic shear are chosen such that there is a single, pronounced gap; this
is achieved by a tight aspect ratics 0.3, and small shear with the safety factor ranging from
0, = 1.25 on axis togr 1.75 on the boundary. For a toroidal wave number n = 1 there is a gap
inthe m =1 and 2 spectrum around thg g 1.5 surface which occurs near half radie<0s5.
In Fig. 9a the complex Alfvén spectrum is displayed for two Fourier harmonics m =1 and 2 and
a resisitivity of, = 10°. The Alfvén modes are now heavily damped yielding two curves in the
complexA-plane. These curves are actually independent of the value of resistivity. But the

point density scales aqs'”z' The resistive branch joins the ideal continua only at the end points
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of the two continua, as is known from many analytical and numerical studies (see Refs. [3, 7,
8]). The gap in the two ideal continua ranging from &2&(A) < 0.46 is clearly visible. There

is a global TAE with a frequency of Ix)= 0.34. The entire resistive Alfvén spectrum is well
resolved. It is noted that the slow modes have much smaller frequency and lie in this scale
basically on the reak-axis. In Fig. 9b the frequency, i®=1m {A}, is plotted as a function of

the radial coordinate s. The ideal continua are indiated by the thick lines. For finite resistivity
the continuum is replaced by the discrete set shown in Fig. 9a. FoasnataR the eigenfunction

has basically only one Fourier component, namely a m = 1 for small s and a m = 2 for large s.

0.6 o
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Jeeoee N ()
0.4 o’ *
. . o(2)
. ot” 3
0.2 ° ..00 .
[}
[}
E ° °
- O® o0 o © 00 © © © © OENOCCOCINNNNNNNN0NNNNNNNNNNNY F 4
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° o. £ 0.4: ]
[}
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‘. e T —
° . ]
—04r “eel e
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Re A S

Fig. 9: a) The complex resistive spectrum of &ig. 9: b) The ideal Alfvén frequencies (m = 1, 2

configuration with a tight aspect ratio case~ 0.3, continua)w=Im (A) are presented as a function of radius

circular cross-section and a weak shear profilg £g (thick lines). Three eigenfunctions of the resistive
1.25, g = 1.75) forn = 10°. For the toroidal wave spectrum are displayed at the position of their frequency.
number n = 1 a single pronounced gap in the Alfvén

spectrum occurs atgF 1.5 with a TAE inside this gap.

Accordingly, forw ~ 0.6 the m =2 component is dominant at small s and the m = 1 at large s.
Near the lower and upper end of the gap both harmonics have equal weight. The eigen functions
of three normal modes are displayed as a function of radius at their corresponding frequency
value. The solution with a frequency inside the gap, case 2 in Fig. 9, is the TAE and has even
parity in the m = 1, 2 components. The mode with a frequency at the top of the gap, case 1 in
Fig. 9, corresponds to the first kinetic toroidal Alfvén Eigenmode (KTAE) and has odd parity.
Both types of Alfvén Eigenmodes play a pronounced role in the discussion of Alfvén Eigenmode
induced anomalous—particle transport in deuterium-tritium plasmas, see Ref. [16].
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VI. CONCLUSION

The resistive MHD normal-mode spectrum in tokamaks, i.e. the linear motion around a general
axisymmetric equilibrium, is solved numerically by the CASTOR code. The numerical scheme
is based on a specific flux-coordinate system and on an appropriate choice for the projection of
the perturbed velocity and the magnetic field in form of the vector potential. A Fourier finite-
element discretisation is applied to the perturbation leading to a large-scale Non-Hermitian
eigenvalue problem. Itis shown that both the ideal MHD as well as the resistive MHD spectrum
is approximated with high accuracy. The challenge for the numerical method consists of resolving
the limit of asymptotically small resistivity well.

The benchmark tests yield good agreement (typically within 1%)with other MHD codes.
The studies of the internal kink instability (both the ideal and resistive mode) demonstrate that
the code evaluates small growth rates with high accuracy and for finite resistivity the correct
scaling for asymptotically small resistivity.

In Fourier space the convergence of the eigenvalue is asymptotically faster than a polynomial
dependence in 1/M. The convergence with respect to the number of radial finite elements yields
typically a inversely quartic dependence, P\% —)\N| 01/ N*.

The CASTOR code is used routinely for the modelling of JET discharges. The emphasis
has been on the beta limits, kink-type instabilities and on stable Alfvén eigenmodes. The numerical
method provides a general tool for the evaluation of the spectrum of dissipative MHD systems.
Consequently, a generalisation of the method to the analysis of Kinetic Alfvén eigenmodes and
of thermal instabilities has been successfully performed.

In conclusion, the method and the CASTOR code constitute a progress in the field of
MHD spectroscopy, where computed frequencies and normal-modes are interfaced with
measurements.
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APPENDIX A
MATRIX ELEMENTS

The matrix elements are bilinear expressions in the expansion functions and are labelled B(i,))
and A(ij), respectively with i,j = 1,...8. The Fourier exponents &8 and €™ for

1M O[M min,Mmax]- The radial expansion function i, (s), i=1....8, and v = 1...Nand

either quadratic (labelled h) or cubic elements (labelled H) are employed. The equilibrium
guantities are in generxl— dependent and are Fourier-Spline interpolated.

eq(sx) = Ize“ Xeq, (9) (A.1)

Thus a typical matrix element reads

B(i.j) = dgdxds e ™hi,(s) eq(sx) hi(s)™ (A2)

The @ and -integrations are then performed analytically and the remaining s-integration
is done numerically by 4-point Gaussian quadratures. In the following only the intregrand is
listed, e.qg.

B(ij)) - h'eq(s x)h,
where hi,hj =h or H.

The matrix elements are

fq R?
B(1,1) = hh
(. 1) SF
FFR2 1 fqr? (0w )20
B(22) = HHpop ,+ TR (OB IX)
O q |0y F ooy O
4
B(2,3) = +H hp, i%(mm Mx)
B(2,4 = B(23)
B(3,2) = -B(273)
_ gR* 2
B33 = hhp, |0y
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B (3, 4)
B (4, 2)

B (4, 3)

B (4, 4)

B (5, 5)

B (6, 6)

B (6,7)

B (7, 6)

B(7,7)

B (8, 8)

A(1,2)

A(1,3)

A(1,4)

A (2, 1)

A (2, 5)

2 27
DfFD 1, faR* (O M)

H HG— 0
da ow? F o jowf o

H R
F

2 O 20
—hH’ pOR _hHE- ZapO +p0 oR
S S s 0s E

~hhPom R2
S

2
—hh—polj (M +nq)

2 2
HhTo 0R 1 | ToR
S 0s S

2 2
HhPo IR 1y PoRT
s 0s S
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A(2,6) = IDllJI F g
(.0 = Hhg fq "
) F?n 9 Ug?
H'h [n [(2m - m+nq) Oy x) + Tfa_s | L|J| 9
F? .
A, 7 = H'H'G+H’H m(DLIJ DDX)
nF2 O ¢ fq? mymxH D

HH[—-
+ [q (1 +nq) R2|Dw| YEZE oy ED

+  infOymy DEG:EDFQ

A(2,8)

_HrHrfl|DqJ|2 ~H'H im(Dy my)

o F2 9 Og? o0
+ HH [|(2m—m+nq)(DL|J DDX)+m_26_sEF_2|DLp| H

Foo 0 f  fe?y mx O
—HH[M—(M+n O
I ) e P B ow 03

+mi (O D]]x)% aasgga

2
AGB 1) = hh mToR
S
2
A(3,5 = hh mpgR
A(3,6) = -hh rﬁF—2+n2qEID¢|
’ B 5"
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A(3,7)

A (3, 8)

A4, 7)

A (4, 8)

A (5, 2)

A (5, 3)

A(5,4)

A (6, 2)

A (6, 3)

A (6, 6)

A (6, 7)

A (6, 8)

A(7,2)

2
= hH’ %+hH[ i n(m-m+ng)0y Dy + nfiaig% U] S

= hH'n BE|DL|J|2

VI _F aDq 2
hH[im(m =M+ nq) Oy O _qua_ EDLW S

_ s Fo 20, F
= hH' ——(m-m) + hHN[(h - m)iOy Oy + fqa | s T GC;—S]

_ 0. F 00,20, FdFD
= hHmH(m m)DqJDDx+qu|a—SDF|DlIJ| 0 ch(;_sH

2 2 2
=~y RPeTo thOTaR . RE0ToH

S S E os vy-1 GSE
- RRoTog
s
Rsz N
= - hh%(m+nq)

= -h[H0Og (Og X)

_ hh%RZE]DlMZ
H) q 2 > FU
= hh — | - —
ST B s

= hH’nomElfFa—hH in20y [0y nog

= hH'I’]On%|DQJ|2+h Hin mr]O%Dlp My
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A(7,3) = ~-Hhi q (Oyoy)

F 0
A(7,6) = th0£m+Hh§ N“nNo quJD]]x (;];H
fq
U (Dw [I]])()ZD
A(7,7) = —HH Ny~ -HH nd— Sl
_yny F 9o
fq ds
2
Ff 0 1 q? (Ow myx)“ 0
A(7,8) = —HH inngd (DLpDDx)+HH”%I o P o
A(8,6) = Hhn nomf%E]DqJ|2—Hh[i %nonmmm [y
enciL gy (2109
. fF
AB,7) = H'H in n—lcz’quJD]jx+HH[r]on m[%
R S Z(D‘“DDX) +0 nd {0 ) B‘L”O]
RowE P2 owP O
A@®,8) = -HH HO%EIDQJ|2+HH'[%r]Oﬁ1(DlJJ )

0
| llJIZ no

“H'H inem Dg Oy mx)

U 2 20
q° (Oy )
—HH[nym md—Di+——D
o RAowf P [owf O
—imﬂ(DljJD]]x)an—o]
F 0s
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The ideal boundary conditions yield the contribution at s = 1 to the matrix elements

A2, 7) = iEF(rh+nq)[§mm
AR®) = ST (na)E,(for n#0)

For finite resistivity the corresponding contributions are

A(7,7) =  =innB..

A(7,8) = in,mB..,

A7) = inSB,.

A(8,8) = —ir]om—r:nfimm(for n#0)
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APPENDIX B
EQUILIBRIUM QUANTITIES

In the curvilinear flux coordinate system the line element is givettsiydse, + dxe, + dges,
whereg; = JIx x U etc. The distance along a magnetic field line with ds = 0 is represented by
its projections

dl y =+/gzade (for dx =0) with gs3 =R

— (B.1)
dl p = /gxdx (for dp=0).
The ratio is determined by the magnetic components
d B
— @ _ Rde =_? (B.2)
dp, dy B
which implies
dl
dy = F(s) dp (B.3a)
q(s) RIOW|

Thus integrating along a flux contour s = ct. and evaluatingin a local coordiante
systeny is determined

_F(e [ dp
X_MﬁJ.HDM' (B.3b)

The equilibrium code HELENA solves the Grad-Shafranov equation for the poloidal
flux g

s %W Py 1 aw:_a+wydq¢y¢gwﬂw)

BRSRP¥: dy? 1+ex Ox dw) 2 d(w)’ (B.4)

where x = (R - R/a, y = Z/a are the normalised coordinates in the poloidal plare(aralR,)
is the inverse aspect ratio. Eq. (B.4) has to be solved inside a region with an arbitrary but given
plasma boundary where the boundary condition statesptrapg.

The Grad-Shafranov equation is solved by applying the Galerkin procedure using bicubic
isoparametric finite elements, which yields highly accurate solutions withyp@hd Cl
continuous across element boundaries.
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The Grad-Shafranov equation can now be solved with the Galerkin method.This leads to
a system of linear equations for each step of the non linear iteration:

KWn+1 =bp (B.5)

K denotes the stiffness matrix aimdhe force vector given by
Ki :J-J’%DHi(E,t)DDHj(E,t)JdZdt
11 '
b = I I Hi(E,t)ﬁQp'(qJ)+§E(F2(lp)) E]dldt,

where J is the Jacobizﬂﬁx,y) / a(E,t) and H are the interpolating functions. The integration is
done numerically using a 4 by 4 point Gaussian quadrative. Details of the iteration of Eq.(B.5)
are given in [15].

The interpolating functions of the bicubic Hermite element are given by:

(B.6)

1
16

Hlo(x,y) = _%Xo(x + XO)Z(XXO _1)(y + yo)z(YYO - 2)

Hoo(X,y) = 7 (x + XO)Z(XXO -2)(y+ VO)Z(WO -2)

) B.7)
Ho(xy) = = (x+ xo) (%% = 2)yo(y +Yo) (vyo —2)

1
H,(x,y) = Exo(x + xo)z(xx0 -1y,(y + yo)z(yy0 -1),

with X, and y the coordinates of the four corners of a unit element (-1,-1), (-1,1), (1,1) and (1,-
1). Afunction f(x,y) inside the element is then approximated by:

f(x.y) = Z Hoo(%.Y)f(x0.Y0) + HlO(X1Y)Z—I((XO1YO)

x0¥o (B.8)
2

of o-f
+H01(X,Y)a—y(xo,>’o) + H11(X,y)ay7(xo,yo),

where the summation is over the four corners of the element. However, with the elements

directly defined in (x,y) coordinates it is impossible to approximate the shape of the plasma
boundary accurately or even continuously.
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Isoparametric mapping provides a one-to-one correspondence between t(ieﬂ))aatl
the global (x,y) coordinates. The coordinate transformation between the bi-unit square and the
curvilinear element is given by

(Z t) %‘l H aXZO t0 H 6XZO t0 H 62XZ0 t0 B
X(Gt)= 3 HooXz  +Hig —tHyp——t+tH1——
tatoH ot o at ot o
, (B.9)
0 ay ay 0%y g
(ot (ot Lot
Y({Gt)= 3 MHooyz 1, +Hio—-> +Hio—2~% + Hyy —22=0)
€y toio g ot o ot ot

where(,,t, are the coordinates of the four corners of a unit element. The same interpolation
functionsHj; (i,j =0,1) are used to approximate the flux within the elements.
The given radius of the plasma boundary is represented by a Fourier series

ag(6) = Z ame'™m®

m

whereb is, e.g., the polar angle. A global coordinate system is constructed by:
(B10)

where the radial coordinateis an arbitrary function ranging from 0 in the centre to 1 on the
boundary. By identifying the locglcoordinate with the global f(r) coordinate, f,e= ¢ (f) and

t with 0, the values obx/0(, o0x/dt and azx/az 0t can be calculated. By this construction x
and y are continuously known in the poloidal plane.

A big advantage of the isoparametric mapping is that during the iteration of the non-linear
equation (B.4) the grid of finite elements can be adjusted to the non-converged solution obtained
so far. Adjusting positions of the elements, such that in the converged solution the nodal points
coincide with flux surfaces, features the mapping from the cylindrieggZ Bystem into flux
coordiantes g,¢. From Eq. (B3.b) it is straight forward to evaluate R = R @nd Z = Z(sx).

In this fashion we construct numerically from (Eq.B3b) using a 4-point Gaussian quadrature
integration along each element boundary the corresponding derivatiygs.é&or

2
X aXZo,to aXZo,to 0 XZo,to
57 T 6t T agat
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The determinant of the transformation is given by

_0xdy _dyox (B.11)
o¢ ot aC ot
Then the derivatives yield
Pyo Oy _oyOopyn
O D Oot a7 gz O
ax 1 [QENYT¢ (B.12)

-0
DwE In ox axpowh
Ooy O ot o¢lpt U

T
and correspondingly fo%?la—x,a—xg . Note that the converged solution satisfies along a flux
X oy
contour%—liJ =0. Then we get
oy Cf G EBYDZ 2
ow = 57 %Zt 0 oo § (8.13)
where J is given by (B.11).

Thus

gt =1/f20yf? (B.14)

Eventually the quantitydy [0x is given by

_ LBy ax xf E@yDZD
SVEX= U5 o oo Toatn B

(B.15)
_ 0y 0x [Bx ox ay ayED/J
o7 ot oL ot - oL athE
and furthermore
g =1/ f0y My, (B.16)
033 =1/g* =R? (B.17)
1 2
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All quantities which depend only on the radial coordinate s are represented by cubic splines.
This allows accurate evaluation at all points required in the s integration based on 4-point Gaussian

guadratures.

Functions which depend both on the radius and on the poloidg angle

represented by a Fourier - cubic spline interpolation as introduced in (A.1). This interpolation is
applied to the following sixteen equilibrium quantities.

R2

0 2

. —R . R4
0s
& 0
ow? P P
2
o RIE SR
Oyl
Oy My . R0y My . RA0Y My
LOpmy)? | LR(Opmyx)® | R0y mx)?
oef T joyf T

s
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