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ABSTRACT

An explanation for the L-H transition through the electromagnetic mechanism: suppression of

drift wave turbulence by the skin effect, is offered. In dimensional space, the bifurcation is

attributed to the involvement of two parameters in the L-H transition physics: ρ∗ and β ν ρ/ ∗ ∗2

(the latter scales as aT2 in physical parameters). Maximum of the diffusion coefficient, corre-

sponding to the L-H transition, is reached when the collisional skin-depth ∆coll skin c. /= 2 8σν
( ν - drift frequency) equals the characteristic radial displacement ∆  of the drift turbulence. The

same criterion can also be presented as: D c⊥ ≡ =∆2 2 8ν σ/  - the condition for equal rates of the

plasma diffusion into the magnetic field and the diffusion of the magnetic field into the plasma.

The analysis yields the combination T T T B qRe e i
13 8 3 8 1 4/ / /( ) / ( )+  (scales as β ρv* *2 3 3 4[ ]  in

dimensionless parameters) as a critical parameter for the L-H transition, for the case of the

k consts⊥ =ρ  scaling for the wave vector of the drift turbulence. This threshold parameter should

be applied near the separatrix position. A requirement that the collisionless skin-depth must be

smaller than the radial displacement of the drift fluctuations in the L-mode, which is necessary

for turbulence suppression, determines the threshold β  for the L-H transition.

The proposed mechanism for the L-H transition clarifies the R-dependence of the H-mode

power threshold: P Rthres ~ .1 75  scaling is predicted, with Pthres<70 MW for n me = × −5 1019 3

in ITER. The critical parameter for the L-H transition, together with dimensionless parameters

characterising pressure gradient and resistivity, create the set of similarity parameters describing

ELM behaviour. The scaling for the separatrix density normalised to the Greenwald density

limit n ne sep GW, /  with the machine size and toroidal field which ensures “similar” ELM behav-

iour can thus be obtained. For the fixed similarity parameters, the analysis yields weak (~ /R1 4)

but favourable dependence of n ne sep GW, /  on the major radius. In recent experiments on JET

and other machines, the degradation in the edge confinement associated with increased ELM

frequency was found to be responsible for the density limit in high power H-modes. Owing to

the approximately R1 4/  dependence, an excess over the Greenwald limit, n ne GW/ , by about

30% higher in ITER compared to JET for “similar” conditions (q , n ne sep e, / , separatrix zeff  and

the T Te i/  ratio, wall conditions, the use of pellets etc.) in ELMy H-modes is predicted. This is

with the provision that a limit on the central density, related to mechanisms in the plasma core,

is not encountered.

1. INTRODUCTION

It is widely accepted [1,2] that with the neglect of atomic processes and Debye scale events, the

important dimensionless parameters of the tokamak discharge are:
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ν∗ ~
nqR

T2  ,  ρ∗ ~
T

qRB
 ,  β ~

nT

B2  . (1.1)

Fixing them ensures similar behaviour of the plasma in different conditions, irrespective

of the machine size. These parameters are used for similarity studies in the main plasma. In the

scrape-off layer (SOL), temperature and density are small, and, as was suggested by Lackner

[3], β  can be dropped as a similarity parameter. Instead, temperature must be fixed to correctly

describe atomic processes, and the set of similarity parameters becomes:

ν∗ ~
nqR

T2  ,  ρ∗ ~
T

qRB
 ,  T .  (1.2)

The neglect of pressure effects related to β , as was pointed out in [3], may limit similarity

of conditions in the two different machines: “since, perhaps not the physics in the scrape-off

layer per se, but the form in which energy is ultimately fed into it might depend on β . This

would clearly be the case in, for example, giant ELMs...” [3]. Following the work of Lackner, a

discussion on the relative importance of similarity parameters in the SOL was carried out, nota-

bly by Hutchinson and Vlases [4], who proposed to pay attention to all of them, and by Catto et

al. [5], who considered various specific models for physics in the divertor.

The present work is devoted to the analysis of physical mechanisms lying behind each of

the similarity parameters. A dimensional approach can not only be applied to overall perform-

ance of the plasma but also to individual mechanisms (see e.g. Ref. [6] by Connor and Taylor).

Attempts to apply the above mentioned parameters to describe intrinsic SOL processes, how-

ever, are complicated by the fact that the scrape-off layer has its own internal geometrical pa-

rameter. Even without neutrals, interaction with the target forces the width of the SOL to scale

differently from the size of the machine: ∆sol sD qR c~ ( / ) /
⊥

1 2 . Unless the diffusion coefficient

is specifically fitted to yield ∆sol qR~ , the width of the scrape-off layer will not be proportional

to qR. Therefore, physical mechanisms in the SOL are unlikely to be expressed through the

above similarity parameters and some other combinations will have to be used.

Another difficulty in applying these parameters to the scrape-off layer originates from

strong variation of plasma parameters across the SOL, often leaving its different parts in com-

pletely different situation with respect to the effectiveness of individual mechanisms in contrib-

uting to perpendicular transport. “Effective” mechanisms are those which, by their impact on

either growth or suppression of the most important instabilities, determine the final state of

strong turbulence with its characteristic frequencies and radial displacements. It appears to be

that in the scrape-off layer there exist a number of very distinct conditions defined by corre-

sponding domains of both plasma parameters and geometrical dimensions. They favour just a

few “effective” physical mechanisms out of larger number of potential candidates. Conditions

can be separated by specifying limits on certain combinations of the parameters. Such limits
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may also be called critical parameters or thresholds. That is why, at least in the complex case of

the SOL physics, it seems more appropriate to speak about critical parameters rather than simi-

larity parameters in their usual sense. Not withstanding the above criticism, similarity param-

eters sometimes accurately reflect underlying physics even in the scrape-off layer, and at least

may be used for initial separation of different conditions, before critical parameters are found.

As a starting point, the case of “cold” and “rare” SOL plasmas (low T  and β , but not too

high ν∗) is considered in this paper, for which transport scaling laws are derived (Section 2). For

very low T , turbulence in such plasmas is strongly affected by collisionality (high ν∗). A lower

limit on temperature as a function of other parameters, below which “typical” scaling laws in the

SOL must break down, is determined in Section 3. Mechanisms limiting “low T  low β  phys-

ics”, as these parameters are allowed to increase, are examined in Section 4. The effect of these

limitations on the SOL transport, including MHD phenomena and the L-H transition, is dis-

cussed in Section 5. A comparison between threshold parameters associated with the proposed

explanation for the L-H transition and local plasma parameters measured just inside the separatrix,

is made in Section 6. Some aspects of dimensional similarity of discharges with an emphasis on

simulation of perpendicular transport in the SOL are covered in Section 7. Experimental scalings

for the H-mode power threshold are analysed in Section 8, where a dependence of the Pthres on

major radius R  which does not contradict to the proposed explanation of the L-H transition is

derived. High T  high β  conditions reached near the separatrix in high input power high density

discharges and their implication for overall discharge performance, in particular the possibility

to exceed the Greenwald limit, are discussed in Section 9. The influence of the assumption that

the decay length at the separatrix position scales with the scrape-off layer width ∆sol  on the

main results obtained in this paper, and their modification in another limiting case where the

decay length scales with the machine size, are examined in Section 10. Conclusions are formu-

lated in the last section.

2. TRANSPORT IN THE “COLD” AND “RARE” SOL

In low β  plasmas, only gradients of density and temperature (but not their product - pressure)

can be a source of turbulence, which at very low temperatures implies collisional drift and

interchange instabilities (see Section 3 and Appendix 1). The most universal instabilities are

drift instabilities, both collisional and collisionless. For “cold” and “rare” plasmas (low T  and

β , but not too high ν∗) turbulence essentially consists of poorly correlated drift waves which

interact with each other in their non-linear stage of development. Regardless of what causes

growth of perturbations of electric potential, they will always behave like drift waves. This is

roughly true even for the special case of an interchange instability affected by finite sheath

conductivity [7,8], since perturbations of electric potential are proportional to Te , as in the case

of volume conductivity considered in the Appendix 1 (although the growth rates have different
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dependencies on temperature). Therefore, to describe the most typical features of edge turbu-

lence, the drift frequency should be selected as a characteristic frequency of fluctuations. This

choice is justified by numerous experimental measurements of fluctuations at the edge [9].

Throughout this paper, the philosophy being followed is that whatever mechanisms con-

tribute to the growth of the instability, the plasma will end up in a state of strong turbulence with

short correlation times of the order of the inverse fluctuation frequency. The radial displacement

of the plasma in the process of spatially de-correlated fluctuations will determine their charac-

teristic wavelength λr  (this is the basis for the so called “mixing length argument”, applied to

transport coefficients). Due to the possibility of the radial transfer of the fluctuation energy,

turbulence may be non-local. The value of λr , and in many cases even its functional depend-

ence on parameters, can only be obtained from experiment.

Strong turbulence with short correlation times τcorr  of the order of the inverse fluctuation

frequency 1/ ν  may cause problems for turbulence suppression by sheared E×B flows, the idea

widely used in theories of the L-H transition (see e.g. [10-12]). The rate at which fluctuations are

distorted by the sheared poloidal rotation associated with radially inhomogeneous radial electric

field, νshear rd cE B dr≈ ( / ) / , may not be high enough to compete with the growth rate of

perturbations when the growth rate of an instability γ  is as high as the fluctuation frequency ν.

The problem is aggravated in large machines (where νshear  is lower) as was pointed out by

Kotschenreuther, Dorland et al. (see e.g. [13] and refs. therein). However, as will be shown in

Section 4, there may be other, electromagnetic mechanisms for turbulence suppression, which

do not exhibit such a detrimental scaling with the machine size. One of them - the skin effect

suppression of drift turbulence, is most likely to be responsible for the L-H transition. It yields a

scaling for threshold parameters at the edge which roughly agrees with local measurements

prior to the transition (Section 6).

Although the analysis which is presented here always refers to the diffusion coefficient

D⊥ , similar arguments can generally be applied to χi . As for χe, analysis of perpendicular

electron heat conductivity is complicated by the high parallel electron heat conduction that can

smooth perturbations of Te  along the field lines. Also, since the SOL width is defined by both

the perpendicular transport and the sink to the target, the effective width of the scrape-off layer

with respect to the decay of electron temperature cannot easily be incorporated into the analysis

owing to more complicated dependence of χe|| on Te  (~ /Te
5 2) and the variability of the func-

tional dependence of the electron heat sink at the target depending on the regime of transport

(conduction or convection limits).

The plasma diffusion coefficient is defined by:

D⊥ = ∆2ν,  (2.1)

where ∆  is a characteristic radial length of turbulent displacements, and ν - a characteristic

frequency. For drift waves the characteristic angular frequency is given by:
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ω π θd e solk cT eB≡ =2 v / ∆  .  (2.2)

As for the functional dependence of kθ and ∆  (not to be confused with ∆sol !), it cannot

be established from first principles and has to be taken from experiment. Experiments indicate

strong turbulence in the SOL with broad band frequency and wave vector spectra, with k s⊥ρ
being of the order of 0.2 [9]. For generality, however,

k fs k⊥ =ρ ρ  (2.3)

is adopted. For the Larmor radius, ρ ωs s ic= /  will be used, with c T T ms e i i= +( ) / . Other

assumptions are conventional for drift turbulence. Large magnetic shear in the SOL (q r~ 2)

imposes a restriction on the minimum possible magnitude of the radial wave vector kr  (maxi-

mum λr) for given kθ and k||, necessary for the very existance of the flux tube:

k k k qRr / /θ π= 2 || .  (2.4)

For the parallel wave vector, k qR|| = 1/  (λ π|| = 2 qR) will be used, describing the longest

most unstable fluctuations, which gives: k kr / θ π= 2 . In general, however,

k k fr r/ θ θ=  ,  (2.5)

so that one can trace the dependence on this parameter, but anyway, frθ > 1. Values of frθ larger

than unity are supported by observations. This allows one to replace k k kr⊥ = +θ
2 2  with kr ,

and the wave vectors are given by:

k fr k s= ρ ρ/ , k f fk r sθ ρ θρ= /  and k f qRr|| = 2π θ/ .  (2.6)

A radial displacement will be defined as:

∆ = =λ πr rk/ /2 .  (2.7)

This is not in any way an arbitrary choice for the relation between ∆  and kr . It can be

demonstrated that, provided turbulence is strong and fluctuations are de-correlated, the typical

distance between maxima of density measured in microwave scattering experiments is, indeed,

twice the average displacement.

With the above assumptions the angular frequency and radial displacement can be written

as:

ω ρ

θ
d

k

r

e

e i

s

sol

f

f

T

T T

c=
+ ∆

 ,  (2.8)

∆ = πρ ρs kf/  .  (2.9)
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The SOL width ∆sol  is found from:

∆sol sD qR M c= ⊥( / ) /π ||
1 2 ,  (2.10)

where M||  is the Mach number of parallel plasma flow, to account for the possibility of strong

recycling in the divertor, and the Eqs. (2.1), (2.2), (2.8) and (2.9):

∆sol s
k r

e

e i sf f

T

T T

qR

M
=

+









ρ π

ρρ θ

2 1 3

2 ||

/

 .  (2.11)

This gives for ωd :

ω ω
π

ρρ

θ

ρ θ
d i

k

r

e

e i

k r sf

f

T

T T

f f M

qR
=

+












2 3

2

1 32/ /
|| .  (2.12)

Finally, for the diffusion coefficient one obtains:

D
c

f f

T

T T

M

qR
s s

k r

e

e i

s
⊥ =

+

















ρ
π

π ρ

ρ θ

2 2 3 1 3

2

/ /
|| .  (2.13)

The relation D T B qR⊥
− −~ ( )/ / /7 6 4 3 1 3 following from this formula, is close to Bohm

scaling against temperature and magnetic field, although it also contains a weak dependence on

the machine size and q . It has to be emphasised that the only critical assumption required to

obtain such a scaling is that k consts⊥ =ρ . The other assumptions are conventional for drift

turbulence.

Eq. (2.13) can be employed to estimate the magnitude of the diffusion coefficient. For

easy comparison with the Bohm formula, cs sρ  is replaced by 
( )( )

( )

T T eV

B T
e i+

 m2s-1, whereas

parameters inside brackets are kept fixed. Then, assuming fkρ = 0 2. , frθ π= 2 , q = 3, R = 3 m,

M|| = 1, T Te i= = 100 eV  and B = 3 T  for fixed parameters, and the case of a deuterium plasma,

Eq. (2.13) gives: D
T eV

B T
e

⊥ = ×0 042.
( )

( )
 m2s-1 , which is close to the Bohm diffusion coefficient

(1 16 0 063/ .≈ ).

As is clear from Eq. (2.13), the assumption f kk sρ ρ ρ≡ ⊥
∗~  is required to turn it into the

exact Bohm-type scaling (frθ is not likely to change much as it is the longest perturbations

along the field line that grow most rapidly; however, the exact value of this parameter is very

uncertain once the plasma is already in the state of strong turbulence). The parameter ρ∗  was

varied widely across the experiments reviewed in the literature [9], enough to detect such a

dependence. The fact that it has not been reported implies that fkρ  should be regarded as con-
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stant. Still, the possibility of the fkρ ρ~ ∗  scaling cannot be completely ruled out and will be

used to provide an alternative scaling every time critical parameters are formulated. In contrast,

a deviation in the opposite direction, fkρ ρ~ /1 ∗ , which would be difficult to justify physi-

cally, results in D T B qR⊥
− −~ ( )/ / /4 3 5 3 2 3. It seems to exaggerate the dependence on the toroidal

field and, therefore, will not be considered.

Scalings for ∆sol  and D⊥  in the SOL and in the main plasma corresponding to different

dependencies of f kk sρ ρ≡ ⊥  on ρ∗, ranging from being proportional to inversely proportional to

this parameter, are assembled in Appendix 2. The f constkρ =  dependence corresponds to the

gyro-Bohm scaling: D T aB⊥ ~ //3 2 2 , in the main plasma. It can be called a “local” scaling,

since the fluctuation size in this case is proportional to a local parameter, the ion Larmor radius:

λ ρ⊥ ~ s . Another extreme case is Bohm-type scaling: D T B qR a⊥ ×~ / / , corresponding to the

fkρ ρ~ ∗ dependence. It may be called a “global” scaling, since the fluctuation size (or, rather,

the radial correlation length of the turbulence spectrum) in this case scales with the size of the

machine: λ⊥ ~ qR . The dependence of D⊥  on q  is eliminated when ρ∗ is defined as

ρ∗ ~ /T RB  instead of ρ∗ ~ /T qRB. There is a general understanding that “global” scaling

describes energy confinement in the L-mode (low confinement regime) [14], whereas “local”

scaling is responsible for energy confinement in the H-mode (high confinement regime) [15].

Large scale fluctuations are removed in H-mode plasmas. Underlying physical mechanisms for

“local” and “global” scalings are discussed at the end of Section 5.

So far ν∗, being an important similarity parameter in the SOL physics (e.g. in parallel heat

transport), did not figure in any equations. Conditions where it must be explicitly present in the

equations related to turbulent transport, are considered in the next section.

3. THE CASE OF VERY LOW T  (HIGH ν∗ )

Collisional instabilities dominate in “very cold” plasmas. Mechanisms causing growth of

perturbations are considered in Appendix 1, where a dispersion equation (A1.4) for the com-

bined drift and interchange instability is derived. It has the form:

ω αωω ωω ω ω ω2 2 2
0+ ⋅ + ⋅ − ⋅ ± ( ) =⊥i i i k kd s d s o y /  .  (3.1)

Here ω λθd e nk cT eB= /  is the angular frequency of the drift wave, also responsible for the

polarisation drift (ion inertia) giving rise to the drift instability; ω λo e i i nT T m R2 2= +( ) /  de-

scribes the effect of the vertical ∇B drift, leading to the interchange instability at the outer

midplane (sign “+”), or stabilisation of turbulence at the inner midplane (sign “+”);

ω ω ω νs i e ei k k= ⋅ ⊥/ /II
2 2  characterises the ability of spatial charge to diffuse along the field lines
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without creating perturbations of electric potential (proportional to νei
−1); α = T Ti e/ .

Expressions for wave vectors and results on ∆sol  from the previous section can be used to

obtain the temperature and density dependence of the three main frequencies (λn sol≡ ∆  is im-

plied):

ωd T~ /1 6 ,  ω θo k k T/ ~ /
⊥( ) 1 3,  ωs T n~ //5 2 .  (3.2)

For the f kk sρ ρ ρ≡ ⊥
∗~  dependence, these results are slightly modified:

ωd T~ /1 4,  ω θo k k T/ ~ /
⊥( ) 3 8,  ωs T n~ //5 2 .  (3.3)

For relatively high temperatures (the criterion on Te  will be derived later in this section)

the resistivity is small (high ωs ), and in the approximation ω ωs d>> ,ω θo k k/ ⊥( ), correspond-

ing to a small growth rate of the instability (γ ω<< ), the dispersion equation (3.1) can be sim-

plified:

ω ω ω ω ωθ= + ± ⊥d d o si k k( / ) /2 2 2 2 .  (3.4)

The imaginary parts of ω  are the growth rates of the drift (symmetric part) and inter-

change (asymmetric part) instabilities. It is of interest to know their relative contributions to γ
to assess which mechanism for instability is stronger: polarisation drift (drift instability) or ∇B

drift (interchange instability). The equation ω ω θd ok k= ⊥/  will define the transition between

their relative strengths:

ρ
π
ρ

ρ θ
s k

k r
e

e iqR q

f
M f f

T

T T
=

+






1
23 2

3 5 2

/

/

|| .  (3.5)

From this equation, a temperature threshold above which the interchange instability will

dominate can be obtained:

T T M f f
m

m

T

T T

R m B T

qe i k r
i

D

e

e i
+ = ×

+






1 22 106 7
5 2 2

.
( ) ( )

|| ρ θ   eV.  (3.6)

For T Te i= , fkρ = 0 2. , frθ π= 2 , q = 3, R = 3 m, M|| = 1, B = 3 T and m mi D=  it gives:

Te = 41 eV. The exact figure is rather meaningless as the accuracy of the temperature prediction

is lost in uncertainties of fkρ  due to the sensitivity to this parameter. Obviously, the ratio of

growth rates of the two instabilities will make an impact on the in-out asymmetry of the diffu-

sion coefficient. As a function of temperature, γ γ ω ωθinterch. drift o dk k/ /= ⊥
2 2 2 2  is proportional to

T1 6/ . With such a flat temperature dependence and numerical uncertainties in the coefficients,
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the dominant source of the instabilities cannot be quantitatively predicted.

Against temperature and density, γ ω ωdrift d s= 2 /  scales as n T/ /13 6  ( n T/ 2  for

fkρ ρ~ ∗ ). Therefore, at sufficiently high temperatures the growth rates become too small, and

other, collisionless mechanisms will contribute to the instability. Various sources of instabilities

will combine to create strong turbulence, and fluctuations will overlap, interact with each other

and the charged particles, break up because of the shear etc. It is important to remember, how-

ever, that no matter what mechanism feeds the instability, it is (almost) always a drift wave

which propagates and grows (or decays) in the plasma, so that all the results of the previous

section, so far, are valid.

Restrictions on some of the assumptions made earlier occur at very low temperatures

when the drift frequency ωd  becomes comparable with ωs , and the growth rate of collisional

instabilities approaches the frequency of oscillations. Physically, this corresponds to the situa-

tion where ion-electron friction becomes so efficient that the parallel current, compensating the

charge pumped into a flux tube of length λ π|| /2 = qR  in  the  course  of the oscillations, creates

fluctuations of electric potential high enough to increase the growth rate of the instability up to

γ ω≈ Re . If the temperature is reduced even further, there will be no need for fluctuations to be

so extended along the field lines, and they will become shorter. Shorter parallel wave length,

owing to the shear restriction: k f qRr|| = 2π θ/  (Eqs. (2.4-2.6)), will imply smaller frθ
(1 2< <frθ π ) and a shorter poloidal wavelength (larger kθ) for the same λr . The angular fre-

quency of fluctuations ω θd e solk cT eB= / ∆  will increase, resulting in an increase of D⊥ .

The critical condition for the plasma to become collisional from the standpoint of the

development of instabilities, ω ωd s= ,  gives the equation:

ρ
π

ν
ω

ρ ρ θs k k r e

e i

ei

eqR

f M f f T

T T







= 



 +







5 3 2 1 3

2

4 3 2 3

8

2/ / / /
|| .  (3.7)

With νei eff e ez n m T eV= × − − −3 8 10 11 3 3 2. ( )[( ( )] /  s-1 and ωe B T= ×1 76 1011. ( ) s-1, the

electron temperature can be extracted as:

[ ( )] . ( )/ / / /
/ /

T eV n m z M f f
m

m

T

T Te e eff k r
i

D

e

e i

7 3 18 3 1 3 10 3 4 3
5 6 3 2

8 1 10= ×




 +







− −
|| ρ θ

×[ ( )] [ ( )]/ /B T qR m2 3 5 3.  (3.8)

For n me = −1019 3, fkρ = 0 2. , frθ π= 2 , q = 3, R = 3 m, M|| = 1, B = 3 T, zeff = 1 and

m mi D= , this gives Te = 7 9.  eV. This temperature is much lower than the one corresponding to

the boundary between the Pfirsch-Schlüter and Plateau regimes: Te = 134 eV  follows from the

equation ν πei e eT m qR= 2 / /  for the above parameters.
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The use of ω ωd s=  rather than ω ωθo sk k/ ⊥ =  to determine the lower temperature

collisional threshold was justified by the smallness of Te  (for Te = 7 9.  eV   ω ω θd ok k> ⊥/ ).

Near and  below this threshold, solutions of Eq. (3.1) have large growth rates. Solving Eq. (3.1)

allows one to obtain the diffusion coefficient by applying the mixing length argument: D kr⊥ ~ /γ 2 ,

seeking the combinations of wave vectors yielding the largest D⊥ . Generally, the effect of shorter

λ|| (smaller frθ)  will be to increase the diffusion coefficient given by Eq. (2.13) as the condition

ω ωd s≈  is approached. The degree of enhancement will depend on the collisionality. That is

why ν∗ is an important parameter for turbulent transport in strongly collisional plasmas.

4. LIMITATIONS ON DRIFT TURBULENCE ARISING FROM NON-ZERO β

Whilst ρ∗ and ν∗ are important parameters to describe turbulence in quasi-stationary magnetic

fields in the β → 0 approximation, finite β  effects account for temporal evolution and small

scale spatial variation of B. There are three ways in which β  comes into play in “cold” and

“rare” plasmas: through a) the skin effect which may restrict turbulence, b) the microscopic

electromagnetic fluctuations always accompanying drift turbulence, and c) MHD instabilities

caused by the pressure gradient.

Fluctuations of the plasma with finite pressure generate fluctuating perpendicular currents

according to ∇ = ×⊥p
c

1
j B. Owing to the continuity equation: divj = 0 , j⊥  cause fluctuating

parallel currents j|| , thereby introducing small scale perturbations of the magnetic field:

curl
c

B j⊥ = 4π
||, which enable electrons to move radially following the perturbed field lines

(mechanism b)). If the parallel conductivity is high, however (high Te ), fast changes in j||  will

be impeded by the counter-current E||  described by: curl
c t

E
B

|| = − ⊥1 ∂
∂

. This is the essence of

the skin effect and its possible suppression of turbulence (mechanism a)). In the equation

∂
∂ πσ
B

V B B
t

curl
c= × +( )

2

4
∆  the skin effect is accounted for by the second term on the r.h.s.,

whereas the first term on the r.h.s. reflects changes in B due to the fast movement of the plasma

across the magnetic field driven by the pressure gradient (mechanism c)).

The aim of this section is to find how limitations imposed on “low T  low β  physics” by

these phenomena can be formulated and which ones occur first, as β  is increased.

a) Skin effect

The skin frequency for the plasma column is: ν
πσskin
c

a
=

2

24
. Dividing it by the transit fre-

quency ωtr e qR= v /   gives a dimensionless parameter, which can be presented as:
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ν
ω

β ν ρ εskin

tr
q a T~ ( ) ~− ∗ ∗ − − −1 1 1 22

 , (4.1)

where ε = a R/ . For given ν∗ and ρ∗, finite β  acts so as to reduce the skin frequency, or to

increase the skin time. However, since the same ratio can also be expressed through T  and

minor radius a , from the physics’ point of view, the skin effect is directly related not with β  but

with the plasma temperature. Large skin times restrict the radial extent and/or frequency of

fluctuations. For fluctuations of radial size ∆ , the relevant skin frequency can be obtained from

the equation 
∂
∂ πσ

∂
∂

B

t

c B

r
=

2 2

24
 ( k kr >> θ  is assumed), considering perturbations of the type

exp ( )i tkr −[ ]ω  with kr = π / ∆ :

ν
σskin
c=

2

28 ∆
 .  (4.2)

Drift turbulence, while being predominantly electrostatic, is nevertheless associated with

fluctuating currents and magnetic fields that have the same temporal and spatial characteristics

as the fluctuations of density and electric potential. These electromagnetic fluctuations are es-

sential for the growth of perturbations (see Appendix 1). Small skin-depths introduce

inhomogenities inside the flux tubes of the width of drift fluctuations ∆ , causing their splitting

into narrower tubes. For fluctuations of parallel current not to be restricted by the skin effect, the

condition ν ν<< skin must be satisfied, which leads to: ∆2 2 8ν σ<< c / , or simply D c⊥ << 2 8/ σ .

Critical parameters for the onset of a strong influence of the skin effect on the drift turbu-

lence can be found from the equation:

D c⊥ = 2 8/ σ  .  (4.3)

c2 4/ πσ is often referred to as the diffusion coefficient for the penetration of the magnetic
field into the plasma. Substituting D⊥  from Eq. (2.13) into Eq. (4.3) gives:

c
c

f f

T

T T

M

qRs s
k r

e

e i

sρ π
σ

π ρ

ρ θ
=

+

















− −

8 2

2 2 2 3 1 3/ /
||  .  (4.4)

Using σ|| = × −1 2 1013 1 3 2. ( ( )) /z T eVeff e  s-1, the above criterion yields:

[ ( )] [( )( )]

[ ( )]
. ( ) [ ( )]

/ /

/
/ /

/
/T eV T T eV

B T
z M f f

m

m
qR me e i

eff k r
i

D

13 6 1 2

4 3
4 1 3 2 3

1 6
1 31 9 10

+ = ×






−
−

|| ρ θ . (4.5)

For T Te i= , B = 3 T, q = 3 , R = 3 m, M|| = 1, fkρ = 0 2. , frθ π= 2 , zeff = 1 and m mi D=

one obtains: T = 85 eV. For T Ti e/ = 5 it would give Te = 69 eV. Parameters M|| , fkρ , frθ and



12

zeff  may vary significantly. Variation of the toroidal field over the magnetic surface is also large.

Some of the most unstable modes are located near the outboard of the magnetic surface. To

stabilise these modes, the toroidal field B  that has to be substituted into the Eq. (4.5), might

need to be taken at a poloidal angle closer to the outboard rather than on the magnetic axis. This

would especially make a strong difference in tight aspect ratio tokamaks by significantly reduc-

ing the threshold separatrix temperature required for the L-H transition. But even at the mag-

netic axis, the threshold Te  is lower in these machines since they have lower B  for the same

plasma current.

It is important to understand what physically happens to the drift fluctuations when the

Eq.  (4.3) is satisfied. As has already been mentioned at the beginning of this section, the skin

effect is associated with an impedance to the flow of current along the field line which is neces-

sary to compensate charges pumped into the flux tube. For low temperature drift turbulence

these charges are pumped by the polarisation and ∇B drifts, and are also affected by the finite

ion Larmor radius. The impedance to j||  increases with the width of the flux tube and the parallel

conductivity. For the same initial fluctuation j̃||  (caused by the pumping of the charges into the

flux tube by perpendicular non-ambipolar mechanisms), the induced counter-current parallel

electric field following from the ∆E c j t|| ||= ×4 2π ∂ ∂/ /  equation will result in the compensation

of j̃||  which would be proportional to the plasma conductivity σ|| ~ /Te
3 2 .

Eq. (4.4) determines the critical temperature where the initial j̃||  in the centre of the flux

tube is fully compensated. The same equation can also be obtained by equalising the skin-depth

∆coll skin c. /= 2 8σν  ( ν ω π= d /2  - drift frequency following from Eq. (2.12)) to the radial

size of the drift fluctuations ∆  given by Eq. (2.9). For higher temperatures, wide flux tubes (of

the width ∆  given by Eq. (2.9)) will break up into narrower ones, since the parallel current

density will have a hollow profile across them. Small scale turbulence, owing to the square

dependence of D⊥  on the size of the fluctuations ∆ , will reduce the diffusion coefficient. The

advantage of formulating the skin effect as ∆2 2 8ν σ= c / , in its application to fluctuations of

parallel current inside the flux tubes, is that it effectively imposes a “prohibition law” on combi-

nations of ∆  and ν which result in the diffusion coefficient D⊥ = ∆2ν being greater than c2 8/ σ .

Perturbations with larger products ∆2ν cannot develop.

b) Microscopic electromagnetic fluctuations

As was first pointed out by Callen [16], fluctuating parallel currents accompanying drift turbu-

lence create micro-islands which cause electron heat flux. The amplitude of the fluctuations of

the radial component of the magnetic field can be easily derived by substituting the contribu-

tions to j̃||  found in Appendix 1, into the equations curl c˜ ˜ /B j⊥ = 4π ||  and divB̃⊥ = 0

( k B k Br r
˜ ˜+ =θ θ 0):
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˜ ˜B
k

k

c

c
r

s
≈ β ω ϕθ

2 2
||

 ,  (4.6)

where β π= +8 2n T T Be i( ) /  and ̃ϕ  is the amplitude of fluctuations of the potential, of the order

T ee sol∆ ∆/ .  The width of micro-islands can be estimated as:

∆m
r rB

B

B

B k
≈ =

˜ ˜λ π||

||2
 ,  (4.7)

with an upper limit on the associated electron heat conductivity:

χ ν π
πθ

e m etr m
r

e
f qR

= =∆ ∆2 2 2 v
 .  (4.8)

This form of χe reflects the extreme case of a resonance where, after every passage along

the parallel length f qRrθπ π λ/ /2 2= ||   of the perturbations, electrons are shifted radially by

∆m . For ve e eT m= / , using all the previous results, a critical β  corresponding to the condition

that this mechanism has a strong impact on the radial transport:χe D= ⊥ , can be derived:

β π π ρ

ρ θ
=







+












2 2
12

1 2 23 12 1 4

f M f

T

T

m

m qRk r

i

e

e

i

s
/ / /

 .  (4.9)

For the parameters used earlier in numerical estimates this gives β = × −5 8 10 3. . A critical

density n = ×6 5 1020.  m-3  follows from this criterion for T Te i= = 100 eV  (if there was no

resonance between 2vee /λ|| and ν, the density would be even higher). Against temperature and

toroidal field, it scales as n B T~ / , and can hardly be reduced to the measured values at the

separatrix by reducing B . Therefore, the density required to cause large χe is too high to be

reached in experiments and such a microscopic electromagnetic turbulence should not contrib-

ute to radial fluxes in the SOL.

c) Pressure gradient as a source of MHD instabilities

Among the MHD phenomena caused by the pressure gradient, ELMs are of the greatest interest

for edge physics. According to [17], resistive ELM activity begins if the critical value for β

exceeds: β = 2
2

R

L
sol∆

||
, where β π= +8 2n T T Be i( ) / . AssumingL qR|| = 2π  and substituting ∆sol

from Eq. (2.11) into this criterion, gives:
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β
π

π ρ

ρ θ
=

+

















−M

q f f

T

T T qRk r

e

e i

s||
1 3

2

2 1 3 2 3

2 2

/ / /

.  (4.10)

For the parameters used earlier β = × −3 8 10 5. . This threshold is substantially lower than

the one derived in the previous sub-section. For T Te i= = 100 eV  and B = 3 T ,

n m= × −4 3 1018 3. .
The value of β  given by this criterion will not be used in the following analysis. Its func-

tional dependence essentially states that the critical gradient of the poloidal beta near the separatrix

is inversely proportional to the major radius: ∇βθ ~ /1 R , where ∆sol  is used as a characteristic

decay length. Such a dependence on R  is typical for the MHD phenomena caused by the pres-

sure gradient. For example, the Sykes-Troyon beta limit [18,19]: β ~ /I aBp , can also be written

as ∇βθ ~ /q R, when the minor radius a  is taken as a characteristic radial decay length.

The importance of the magnitude of β  in MHD phenomena caused by pressure gradients

comes eventually from the similarity of magnetic configurations. On the global scale, the

Shafranov shift increases pressure gradients on the outboard side of the magnetic surface where

the curvature of the field lines is unfavourable, resulting in ballooning instabilities. The Shafranov

shift originates from the superposition of the poloidal magnetic fields created by the inductive

(main) plasma current and the parallel Pfirsch-Schlüter current (which has opposite directions

on the inboard and outboard sides of the magnetic surface) arising from the divergence of the

diamagnetic current: j cp aBθ ≈ / . The ratio of jθ  to the main parallel current density: j B qR|| ~ / ,

which determines poloidal variation in spacing between the magnetic surfaces, can be expressed

as:

j j qθ β ε/ ~ /|| ×  .  (4.11)

As for the two other dimensionless parameters: ν∗ and ρ∗, they come from the similarity

of parallel transport and drift motions. The ratio of collisional frequency νcoll nT~ /−3 2  to

transit frequency νtr T qR~ /  gives:

ν ν νcoll tr nqR T/ ~ / ~2 ∗ .  (4.12)

The ratio of the drift velocity V cE B T aBrθ = / ~ /  (for the ∇B drift V T RBθ ~ / ) to the

parallel velocity V T|| ~  gives:

V V T aBθ ρ/ ~ / ~||
∗  .  (4.13)

The parameter ρ∗ accounts for the similarity of macroscopic drift motions and drift turbu-

lence. The skin effect, according to Eq. (4.1), can be expressed by the parameter β ν ρ/ ∗ ∗2
. The

involvement of two parameters in the dynamics of the turbulence creates the potential for a
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bifurcation at some critical temperature. In dimensionless parameters, the criterion for the L-H

transition (4.5) corresponds to a critical value of β ν ρ/ ∗ ∗2 3
.

In recent three dimensional computations of turbulence with the inclusion of electromag-

netic effects by Scott et al. [20] and by Rogers et al. [21] it was found that the magnitude of β
has strong influence of the state of the turbulence. Early indications in the model also containing

profile dynamics [20] were that the turbulence should be moderately suppressed when β  is

increased to values above the electron/ion mass ratio:

β > m me i/  .  (4.14)

This parameter may be derived by equating the parallel electron velocity ve e eT m= /

with the Alfvén velocity V B nmA i= / 4π , pointing to a possible role of drift-Alfvén turbulence

in the L-H transition; it is also the point at which the collisionless skin-depth,

c c ne mp ee
/ / /ω π= 4 2 , becomes as small as the drift scale, ρ ωs i iT m= / / , so that all im-

portant scales of motion have an electromagnetic response in the electron parallel dynamics.

When the profile effects are separated out, however, the turbulence itself actually becomes stronger

with increasing β  [21]. Whether the interaction of profile and turbulence dynamics gives a

maximum in the transport, as in [20], but with the inclusion of more realistic profile effects,

particularly in the scrape-off layer, must still be sorted out. Nevertheless, as will be shown in

Section 6, a threshold in β  is unlikely to be the parameter which controls the L-H transition.

Local measurements inside the separatrix near the edge of the pedestal, where β = m me i/  is

often reached just prior to the L-H transition, indicate that the transition is mainly controlled by

the critical Te  which increases with the toroidal field, whereas the dependence on density ex-

plicitly present in β  is very weak, at least in typical medium to high density plasmas.

5. INFLUENCE OF HIGH T  AND β  ON THE SOL TRANSPORT: A MECHANISM

FOR THE L-H TRANSITION

Analysis of limitations imposed by high T  and β  on intrinsic “cold” and “rare” SOL turbulence

performed in the previous section, has revealed two main physical mechanisms: suppression of

fluctuations by the skin effect and the appearance of the pressure gradient as an additional source

of turbulence. The latter is responsible for ELMs. The criteria for conditions where these mecha-

nisms become effective are given by Eqs. (4.5) and (4.10).

Suppose the temperature is raised above the threshold specified by Eq. (4.5). The plasma

enters the regime where the radial extent and/or frequency of turbulent displacements is

restricted by the skin effect and D c⊥ ≈ 2 8/ σ . Since σ ~ /Te
3 2 , the diffusion coefficient will

decrease with temperature as D Te⊥
−~ /3 2 . Such a trend is unlikely to continue up to a keV range
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of temperatures, as new, e.g. MHD instabilities caused by both high β  and large current density

gradients, ∇j r||( ) , pertinent to the hot core plasma, would develop. In certain range of tempera-

tures, however, the decrease of D⊥  with Te  is likely to be observed, leading to a bifurcation

where the separatrix temperature, after it has reached the peak of the D Te⊥ ( ) dependence, can

make a sudden upward excursion accompanied by a decay in the level of fluctuations. A de-

crease in D⊥  will cause growth of Te  as a transport barrier is formed (it is implied here that χe

will also decrease due to the reduced level of turbulence). The time scale for such an event is

characterised by the speed of transport processes in a layer of the size of turbulent displacements,

∆ = πρ ρs kf/  (Eq. (2.9)). For the set of “typical” parameters used earlier, ∆ = × −1 07 10 2. m for

deuterium plasma (∆sol = 2 01. cm for this case; surface averaged widths are implied and the

confinement regime is “bad” as expected from Bohm diffusion). Taking D⊥ = 1 4.  m2s-1  which

follows from Eq. (2.13) and is about 2 3/  of the Bohm diffusion coefficient, gives:

τ ≈ ≈ ×⊥
−∆2 58 10/ D s. This is close to time scales for fast changes in the level of turbulence

observed in experiment during the L-H transition. The degree of the increase in the separatrix

temperature is difficult to predict. It requires the analysis of drift turbulence where the skin

effect plays a role. Another restriction can be the influence of the MHD instabilities caused by

both current density and pressure gradients (the latter is discussed below).

Lets look again at the criterion for suppression of drift turbulence by the skin effect (4.5).

It can be recast as:

T T T

B
qRe e i

13 8 3 8
1 4

/ /
/( )

~ ( )
+

       (
T T T

B
conste e i

13 6 1 3/ /( )+ =   for  fkρ ρ~ ∗ ). (5.1)

Owing to a very steep dependence of the parallel electron heat flow to the target on the

electron temperature: q T Le e|| ||~ //7 2 , the Te  in the SOL, up to the separatrix position, must have

a fairly weak (much weaker than linear) dependence on the input power. Therefore, a roughly

square dependence on Te  inside the criterion (5.1) (which applies to the f k constk sρ ρ≡ =⊥

scaling) does not necessarily contradict to the experimentally observed dependence of the H-mode

power threshold on the toroidal field for constant density, which gives for the power flux through

the separatrix: P Sn Bthres / ~ . More detailed analysis of the compatibility of the threshold (4.5)

with the experimental H-mode power threshold will be carried out in Section 8. Comparisons

between this threshold and measured local parameters, mainly Te  inside the separatrix, will be

made in Section 6.

The skin effect can also provide an explanation for the radial profiles of χe in the SOL

measured with Langmuir probes in both L- and H-mode discharges: χe appears to be lower near

the separatrix (where Te  is higher) than deeper inside the SOL [22,23], contrary to the expecta-

tions based on Bohm formulae. This indicates possible strong influence of finite skin-depths on

the size of fluctuations (or their correlation lengths) even in the L-mode, at least in the case of
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the electron heat conductivity. There is also evidence for an inverse dependence of χe on the

local Te  near the separatrix.

The influence of the pressure gradient on the SOL turbulence is manifested by a critical β
in Eq.  (4.10). It has the following parametric dependence:

β ~ / / / /T B q R1 3 2 3 5 3 2 3− − −       (β ~ / / / /T B q R1 4 1 2 3 2 1 2− − −    for  fkρ ρ~ ∗ ).  (5.2)

For density, it gives:

n T B q R~ / / / /− − −2 3 4 3 5 3 2 3      (n T B q R~ / / / /− − −3 4 3 2 3 2 1 2  for  fkρ ρ~ ∗ ). (5.3)

The dependence on T  is weakened by the 2 3/  power. Therefore, as a crude guidance,

criterion (4.10) may be looked upon as a threshold for density. For very high densities, the effect

of pressure gradient on the SOL may dominate over the effect of large skin times. Features

typical of the H-mode may become less pronounced. It is likely that in these conditions coupling

between drift and MHD turbulence occurs, dominated by the latter, as a result of which high

frequency MHD turbulence driven by the pressure gradient (grassy ELMs?) may resemble drift

turbulence, masking skin effect suppression, even when the criterion (4.5) is surpassed. This

might explain experimental observations that in some discharges it is impossible to identify any

sharp temporal changes in the character of the Hα fluctuations, as the discharge progresses from

Ohmic to the L-mode phase (irregular fluctuations are seen on the Hα), then to the H-mode

phase with grassy ELMs, then to distinct individual type I ELMs and, finally, to the ELM-free

H-mode [24]. It is not excluded therefore that the decrease of D⊥  with Te  may not take place at

all in certain conditions and the dependence D Te⊥ ( ) is monotonic. These conditions are likely

to be encountered when the parameter Fβ  which characterises pressure-gradient-driven insta-

bilities (Section 9) is large.

In addition to the criterion (4.5) for suppression of drift turbulence by the skin effect

which is related with Spitzer conductivity and determines the threshold for separatrix tempera-

ture (for given B ), there is also one fundamental restriction on the very possibility for the

collisional skin effect to suppress turbulence. It comes from the collisionless skin-depth origi-

nating from the residual plasma resistivity due to electron inertia and limits the maximum per-

pendicular wave vector k⊥ , so that distances shorter than certain value of λ⊥  are beyond the

control of the (collisional) skin effect. It is easy to show that for kr = π / ∆ , radial turbulent

displacements cannot be restricted by the skin effect if they are smaller than the collisionless

skin-depth defined as ∆skin pc
e

= π ω/ . Numerically, this gives: ∆skin en m= × −1 67 107 3. / ( )

m.  For ne = 1019m-3 this equals 0.53 cm. This distance has to be compared with a characteristic

displacement of drift fluctuations: ∆drift s kf= πρ ρ/ . For fkρ = 0 2. , T T eVe i= = 100 , B T= 3

and deuterium plasma, this equals 1.07 cm. Therefore, ∆ ∆drift skin> , and in this particular



18

example the skin effect does have the potential for reducing the size of fluctuations. For

arbitrary plasma parameters the condition ∆ ∆drift skin>  must be considered as necessary for

suppression of turbulence. It can be formulated as:

ρ ω ρs p ke
cf> ,  (5.4)

and, owing to ρs e iT T B~ /+  and ω p ee
n~ , can also be presented as a condition on mini-

mum β :

β π
ρ

ρ≡ + > = × 



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.

.
 .  (5.5)

For T T eVe i= = 100 , B T= 3 , fkρ = 0 2.  and m mi D=  this gives for the threshold density:

n > ×2 5 1018.  m−3. The criteria (5.5) and (4.14) have the same parametric dependencies. How-
ever, for fkρ = 0 2.  Eq. (5.5) gives a significantly lower β  than the Eq. (4.14).

The dependence on temperature may be eliminated by combining inequality (5.5) with

Eq. (4.5) (elevated to the power 3/8):

n f f M z
m

m

T

T T

B T

qR m
k r eff

i

D

e

e i
> ×





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



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− −
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1 8.
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/ / / /

/ / /

/ρ θ ||  m-3. (5.6)

This criterion may explain the existance of a lower density limit for the L-H transition

observed in experiments. In typical discharge conditions this threshold should be exceeded for

fkρ = 0 2.  (it gives n>2.7×1018m-3 for “typical” parameters used earlier), indicating that either

fkρ > 0 2.  or that the lower density limit is caused (or, at least, affected) by some other mecha-

nisms (Section 7). Increase in the critical pedestal Te  often observed in experiments at low

densities may be related with approaches to the density limit (5.6) when turbulent displacements

in the L-mode phase prior to the L-H transition are close to the collisionless skin-depth. The

electron parallel conductivity in these conditions is reduced by electrons’ inertia, and higher Te

is required to cause the transition.

So far, in has been tacitly assumed that the L-H transition is triggered at the separatrix by

virtue of it being the hottest point in the scrape-off layer. This argument, however, should make

the plasma inside the separatrix an even more suitable location for triggering the L-H transition.

There are nevertheless sufficient grounds to expect that it is the separatrix magnetic surface

where the L-H transition is most likely to be triggered. The plasma as a whole, according to

Kadomtsev [25], may be considered as a self-organising system which, through instabilities, is

trying to reach the state of minimum free energy.  Such a view is supported by experimental

observations of profile consistency. Boundary conditions imposed on this system at the separatrix

may come into conflict with internal mechanisms responsible for adjusting pressure and current
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density profiles in the process of relaxation to the final state with optimum profiles. This is

definitely the case when the plasma near the separatrix is “cold”. Sharp gradients of parallel

current density, especially near the edge (j||  is high in the plasma centre and almost zero - at the

separatrix) cause the growth of tearing modes. A large number of non-linear tearing modes

concentrated around magnetic surfaces with rational safety factor q m n= /  (but m  and n  num-

bers can be high!) will interact with each other, thereby generating magnetic noise all over the

plasma.

This creates conditions for radial transfer of fluctuation energy across the plasma column,

explaining fast re-adjustment of profiles. The tearing mode mechanism implies that the radial

wave length of perturbations will scale with the machine size (for fixed m  and n ) giving rise to

Bohm-type scaling (see Section 2). According to Kadomtsev, such an “incompletely relaxed”

state of the plasma (provided it is “relaxed” with respect to a disruptive instability and balloon-

ing modes) corresponds to the L-mode. This explanation of the nature of electron heat transport

in the L-modes is supported by fast changes in χe observed in experiment during transient

phenomena. As was concluded in Ref. [26] from the analysis of JET data: “During L-H and H-L

transitions, χe is indirectly observed to change very rapidly close to the plasma edge and within

a few milliseconds across most of the plasma... Similar changes to χe occur during ELMs and

soft terminations. Collectively, these events represent anomalous L-mode transport switching

on or off on a millisecond timescale.”

Solutions for p q( ) and j q||( ) found in Ref. [25] for the case of good thermal insulation in

the core (the H-mode), can only be realised for boundary conditions with a pedestal on the j q||( )

profile. This can explain why high conductivity at the plasma edge is a pre-condition for existance

of the H-mode. The H-mode is described as a state with “total relaxation to a minimum energy

with current conservation”. Tearing modes do not grow into non linear stage with high ampli-

tudes (or, at least, do not overlap), and plasma transport becomes “local” with gyro-Bohm scal-

ing for transport coefficients.

An alternative (or additional) explanation for the strong profile consistency observed in

both the L- and H-mode is provided by the idea of a critical temperature gradient [27,28,13] (the

current density profile is, of course, closely related to the Te  profile). An empirical Rebut-Lallia-

Watkins (RLW) model [28] assumes a strong increase in both χe and χi  when the Te  gradient

exceeds its critical value. In a series of calculations by Kotschenreuther, Dorland et al. (see [13]

and refs. therein) core energy confinement was successfully reproduced by computations of

toroidal ion-temperature-gradient-driven (ITG) turbulence. Increasing the T Ti e/  ratio was found

to stabilise the ITG mode, resulting in better confinement. Ti  profiles close to marginality (for

the ITG turbulence) were found in H-modes, whereas in L-modes a significant deviation from

critical profiles could occur, especially towards the edge. The core H-mode temperature was

found to depend strongly on the pedestal temperature. These calculations, however, failed to
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predict stabilisation of turbulence outside the edge of the pedestal, apparently due to the neglect

of the effect of ̃B⊥  perturbations on ̃E|| .

Despite longer wavelength ITG modes being found to be unstable near the edge of L-mode

plasmas, the ITG turbulence is mainly “local”, with k s⊥ ≅ρ 1 [13]. To explain Bohm-type con-

finement in L-mode, the scaling of λ⊥  (or, rather, correlation length of turbulence) with the

machine size is required. This can be provided by toroidal or non-linear coupling of the unstable

modes (of any nature) [29,30]. The combination of “global” (i.e. with some dependence of k s⊥ρ
on R ) transport at the edge with “local” (k consts⊥ ≈ρ ) transport in the core based on critical

temperature gradient model was shown to correctly describe transient phenomena in JET [31].

Such a combination could explain both the Bohm-type global confinement and profile consist-

ency in the L-mode.

There are two reasons why the separatrix position in particular should be regarded as the

location where the L-H transition is likely to be triggered. Being the boundary between the two

topologically different magnetic configurations (closed field lines inside it and open - outside),

it should  be prone to the maximum number of instabilities. Significant problems always occur

when attempts to join solutions obtained inside and outside the separatrix are made. Outside the

separatrix, particle and heat sinks towards the target cause poloidal non-uniformity of plasma

parameters, whereas inside the separatrix profiles should be poloidally uniform. Satisfying the

conditions for the suppression of turbulence near the separatrix should thus be sufficient for the

whole plasma to switch into a state with better confinement.

Another reason to consider the separatrix as a favourable location for the L-H transition is

the existence of short decay lengths of plasma parameters characteristic of the scrape-off layer.

The criterion on the threshold temperature given by Eq. (4.5) was derived from the equation

D c⊥ = 2 8/ σ . The diffusion coefficient is proportional to ωd , which, in turn, has an inverse

dependence on ∆sol . Therefore, shorter decay lengths achieved at the separatrix compared to

more inward positions facilitate the L-H transition by lowering the threshold temperature.

For the mechanism of drift turbulence suppression by the skin effect, the width of the

transport barrier inside the separatrix observed in the H-mode (the so called “pedestal width”:

distance between the edge of the pedestal of temperature and density profiles and the separatrix)

should be determined by the radial extent of the region where such suppression occurs. Further

inside the main plasma, MHD instabilities in combination with drift, ITG etc. waves, are ex-

pected to determine the level of turbulence and the magnitude of transport coefficients.

6. LOCAL PARAMETERS AT THE L-H TRANSITION AS MEASURED IN EXPERI-

MENT

Equations (4.5), (5.5) and (5.6) give thresholds for separatrix temperature, β  and density prior

to the L-H transition that can be compared with experimental results. In recent experiments on
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Alcator C-Mod [32], ASDEX Upgrade [33], DIII-D [34] and JET [35] detailed measurements of

Te  near the separatrix have been carried out. However, due to mainly diagnostic limitations the

data are presented not for the separatrix position but for an outer midplane position correspond-

ing to 95% of the poloidal (Alcator C-Mod and ASDEX Upgrade) or toroidal (DIII-D) flux

inside the separatrix, and for major radius corresponding to ≈95% of Rsep in JET. Since the

criterion (4.5) for the L-H transition refers to the separatrix position, direct numerical compari-

son with the experimental data is impossible to make and only parametric dependencies can be

compared.

In all four machines it is observed that edge Te  is the critical parameter for the L-H transi-

tion which supports the criterion (4.5). There is a limit for the Te  below which the transition

cannot be obtained. The limit is the same for the L-H and H-L transitions, implying that the

hysteresis in the input power (lower Pinput  is needed for the back H-L transition) often observed

at medium densities is due to the improved confinement in the H-mode that establishes higher

edge Te .

The critical edge temperature increases with toroidal field in all four machines. The de-

pendence T f Be edge, ( )= , however, is quite different from the one following from Eq. (4.5) for

the T Te i=  case:  T Be sep, ~ . Experiment gives T Be edge,
.~ 1 46 in Alcator C-Mod, T Be edge, ~

in ASDEX Upgrade and T Be edge, ~ 2 in JET. The discrepancy between these results and the

scaling prescribed by Eq. (4.5) is likely to originate from different locations of experimental

data (inside the separatrix) and the separatrix position assumed in the Eq. (4.5). As has already

been mentioned in Section 5, increase in separatrix temperature is severely restricted by steep

dependence of electron heat sink to the target on Te : q T Le e|| ||~ //7 2 . That is why separatrix Te

should be a rather flat function of the toroidal field in a sequence of discharges with increasing

Pinput  which is necessary to cause the L-H transition.

In Alcator C-Mod, ASDEX Upgrade and DIII-D no dependence or very weak dependence

of the critical Te edge,  on q  (or plasma current) is observed. That agrees well with the depend-

ence of critical temperature following from Eq. (4.5). As for the dependence on density, almost

no dependence of  Te edge,  on  ne  is observed in Alcator C-Mod, unless the density is too small

(see below). DIII-D note that there is an optimum ne  at which the L-H transition power thresh-

old is lower, but the dependence on density is not strong. ASDEX Upgrade report the

T ne edge e edge, ,
.~ −0 5  dependence. In JET, the dependence on the line average density along the chord

corresponding to 93-94% of Rsep (well inside the pedestal) could be established. It was found to

be very weak: T ne edge e edge, ,
. .~ ( )− ±0 083 0 152. Thus, taking all experimental facts into account,

one has to conclude that the absence of explicit dependence on density of the criterion (4.5)

should be regarded as one of its strong points.
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Separately from the dependence of Te edge,  on  ne , stands the issue of lower density limit

for the L-H transition. In Alcator C-Mod, no L-H transitions were observed for

ne < ×9 1019m-3 in discharges with B =5.3 T. Although part of the difficulties in obtaining

H-modes in low density discharges is associated with higher input power required to raise Te edge, ,

it is pointed out that “edge temperature threshold is a necessary but insufficient condition for

remaining in H-mode, and that this local condition, unlike global power thresholds, does not

show hysteresis” [32]. The density limit following from Eq. (5.6) would give ne sep, .> ×1 1 1019

m-3  as a necessary condition for the L-H transition in this machine, lower than the expected

n ne sep e, /≈ = ×3 3 1019 m-3. The discrepancy can either be attributed to fkρ  being larger than

0.2 (due to sensitivity of Eq. (5.6) to this parameter, an assumption fkρ = 0.36 would bridge the

gap between the two densities) or to some additional restraints related to the usual difficulties in

obtaining very low density plasmas. For example, DIII-D report that at low densities, locked

modes can raise the power threshold for the H-mode or even inhibit it. As was pointed out in the

previous section, increase in the critical pedestal Te  observed in experiments at low densities

may be related with approaches to the density limit (5.6) when turbulent displacements in the

L-mode phase prior to the L-H transition are close to the collisionless skin-depth. The electron

parallel conductivity in these conditions is reduced by electrons’ inertia, and higher Te  is

required to cause the transition.

The dependence of local parameters prior to the L-H transition on the toroidal field direc-

tion has been studied in Alcator C-Mod. It confirmed earlier observations on ASDEX Upgrade

that in reversed Bt  plasmas the edge electron temperature required to cause the L-H transition is

substantially higher than in normal field ones. In Alcator C-Mod, threshold Te edge,  was found to

be approximately twice the threshold values with the normal Bt  direction. This seems to contra-

dict the explanation of the L-H transition through turbulence suppression by the skin effect, or at

least to suggest that some other mechanisms affecting the transition are involved. However, in

can also be argued that an extra power pinch near the separatrix expected in the normal Bt

configuration compared to the reversed Bt  one, due to neoclassical toroidal effects [36], will

specifically affect the separatrix temperature, so that there must be a difference in the Te sep,  in

the two field configurations for the same Te edge,  measured at the ψ = 0 95.  surface.

In addition, such an extra pinch or outward flow (depending on the field direction) which

also exists for particle fluxes [37], could affect the scrape-off layer width ∆sol , thereby chang-

ing the criterion on the threshold temperature given by Eq. (4.5) so as to explain experimental

trends. This criterion was derived from the equation D c⊥ = 2 8/ σ . Since the diffusion coeffi-

cient is proportional to ωd , which, in turn, has an inverse dependence on ∆sol , sharper gradi-

ents in the normal Bt  configuration would result in a lower threshold temperature for the L-H

transition.
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A possible importance of the separatrix region in establishing conditions for the L-H tran-

sition is mentioned in the paper from Alcator C-Mod: “... since up-down asymmetries mainly

affect the region outside or just inside the separatrix, the results of reverse field experiments

imply that the extreme edge region plays an important role in H-mode physics”[32].

Regarding the sensitivity of the L-H transition threshold to dimensionless parameters,

data from all four machines suggest that ν∗ is not an important parameter. In the L-mode, just

prior to the L-H transition, ν∗ varied from 1.4 to 5 in ASDEX Upgrade and - from 2 to 17 in

DIII-D. Alcator C-Mod note that, due to wide variation in ν∗ and weak dependence of the

Te edge,  on density, “... ν∗ and β  are not important variables, or that their functional dependen-

cies are such as to cancel out the density dependence” [32]. The mechanism of the skin effect

suppression of drift turbulence suggests a different explanation. The dimensionless parameter

characterising collisional skin effect is roughly proportional to the combination βε ρ νq ∗ ∗− −2 1

(Eq. (4.1)). Therefore, irrespective of possible separate evolution of β  and ν∗ in the experiment,

the density contribution is cancelled out.

7. DIMENSIONAL SIMILARITY OF TRANSPORT IN THE SOL AND DIVERTOR

Having established scaling laws for the most important mechanisms which influence turbulence

in the SOL, it is worth re-examining the validity of arguments usually used for dimensional

similarity of tokamak discharges. Strictly speaking, exact similarity means fixing ρ∗, ν∗ and β .

This makes the problem of simulation of an ITER discharge problematic due to its large size and

toroidal field, as it requires:

B qR~ ( ) /−5 4,  n qR~ ( )−2 , T qR~ ( ) /−1 2.  (7.1)

Geometrical parameters such as toroidicity ε = a R/ , as well as safety factor q , must also

be fixed because they influence transport. For purposes of restricted similarity it is, however,

important to know how sensitive various mechanisms are to variation of the dimensionless pa-

rameters.

First, the drift turbulence as a fundamental feature of the “cold” and “rare” SOL. The

scaling for the angular frequency of drift waves ωd  gives for a relevant dimensionless param-

eter, namely its ratio to the transit time: ω ω ρd tr/ ~ ( ) /∗ −2 3, provided k consts⊥ =ρ . This as-

sumption leads to the D T B qR⊥
− −~ ( )/ / /7 6 4 3 1 3 scaling for the diffusion coefficient, which is

not far from the Bohm scaling. An insistence on the exact Bohm scaling would require

k s⊥
∗=ρ ρ ; then ω ω ρd tr/ ~ ( ) /∗ −5 6 . As reality must be somewhere between these two possi-

bilities, ρ∗ in any case emerges as the most important parameter for transport simulation in the
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“cold” and “rare” SOL.

In “very low T “ plasmas collisionality becomes important, and the question is whether

ν∗ correctly represents its influence on the transport. This appears to be the case. The ratio of

growth rates of interchange and drift instabilities ω ωθo dk k2 2 2 2/ ⊥  is proportional to q , for fixed

ρ∗. Fixing q , therefore, is a necessary condition for reproducing transport in collisional plasmas.

Complete similarity of turbulence in “cold” and “rare” SOL plasmas requires proportion-

ality between the three frequencies determining the dynamics of the combined drift and inter-

change instability (Section 3):

ω ω ωd o s~ ~ .  (7.2)

Provided toroidicity ε is also fixed, this would ensure that such a combined turbulence

behaves in exactly the same way in all machines, with the same mode numbers etc. As another

ratio, ω ωd s/ , is proportional to ν ρ∗ ∗3
,  ν∗ must be fixed too. Thus, all four parameters: ρ∗, ν∗,

ε and q , must be fixed to simulate turbulence of “cold” and “rare” plasmas. This would also

ensure similarity of parallel transport, e.g. proportionality between parallel heat flux in the SOL

and heat transmission through the Debye sheath, as well as similarity of instabilities affected by

finite sheath conductivity. Proportionality between ∆sol  and qR and similar behaviour of mac-

roscopic drift motions would also be observed.

Virtually all aspects of transport in the “cold” and “rare” SOL (except for the interaction

with neutrals and other atomic processes, of course) can be simulated by fixing ρ∗, ν∗, ε and q .

It becomes clear that the set of similarity parameters proposed by Lackner [3] (temperature also

fixed) ensures complete similarity of the SOL behaviour including atomic processes, provided

the plasma is “cold” and “rare”. However, even if temperature is relaxed (atomic processes are

ignored), the realistic possibility to simulate plasma transport in ITER using JET as a model can

be questioned, as it implies: T q R B~ 2 2 2 , n q R B~ 3 3 4, and both temperature and density in

JET will have to be made too low.

This gives weight to the proposal made by Hutchinson and Vlases [4] to allow variation of

the safety factor q  (to raise it in a smaller “model” of the “reactor”). For strongly collisional

plasmas, however, proportionality between growth rates of drift and interchange instabilities

would require keeping q  fixed. But in plasmas which are not too collisional, typical of the main

SOL region, the priority given to the exact simulation of the combined drift and interchange

instability is somewhat lower. As for the correct simulation of parallel transport, it is also af-

fected by atomic physics, especially in high recycling plasmas. Accuracy in reconstructing de-

tails of parallel profiles has already been compromised by the exclusion of atomic processes.

Thus, q   and ν∗ should be considered as a second-tier parameters, right after ρ∗, according to

their importance in perpendicular transport in a SOL which is not too collisional. Unfortunately,
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arguments have to be reversed again when transport in the divertor region is taken into consid-

eration. There the plasma is too collisional for the regimes of practical interest (for the present

reactor concept), and fixing parameters proposed by Lackner [3] (with the exception of T ) has

to be rigorously enforced in order to simulate transport in both SOL and divertor. However,

similarity of atomic processes will be completely lost, as it requires a dramatic reduction in

density and temperature.

Practical steps in modelling the “reactor SOL” would be: running a code for the “reactor”

(assuming plasma-wall interactions and atomic processes can be correctly described) in which

transport coefficients (ideally, local ones) are derived from experiments on the “model” in very

low power and density discharges. D⊥  obtained in the experiments should be scaled according

to D R T Bd⊥ ~ ~ ~ /ν ω∆2 2  (the same q  in the “model” and “reactor” is assumed) when sub-

stituted into the “reactor” code. Owing to the T R B~ 2 2  proportionality which has to be adhered

to in order to create similar conditions in the two machines, the experimental diffusion coeffi-

cient should be scaled up according to D R B⊥ ~ 2  when substituted into the “reactor” code. A

potential difficulty in creating similar conditions in the two machines stems from the fact that

fluctuations tend to cover ≈ πqR distance along the field line. In this sense they are “global”,

and the same poloidal variation of plasma parameters in the “model” as in the “reactor” would

ideally be required. This may prove to be unachievable. For example, it may be impossible to

obtain detached plasma in the “model” for parameters relevant to similarity of the turbulence.

The way β  should be treated for purposes of transport simulation depends on the regime

of operation to be explored. In low density high power discharges affected by the density thresh-

old for the L-H transition (5.6), β  will be an important parameter, as this threshold is essentially

the threshold on β . At higher density, proximity to the L-H transition, characterised by criterion

(4.5), will provide a relevant similarity parameter for the ELM-free H-mode. At even higher

densities, simulation  of  the  MHD  activity  caused  by  the pressure gradient, according to Eq.

(4.10), would require observing the proportionality β ρ~
/∗2 3

. Thus, conditions expressed by

Eqs. (4.5), (4.10) and (5.5), with one of them not exactly being related to β  owing to specific

details of the radial  profiles in the SOL and a possibility that Te  and Ti  may differ significantly,

should be given certain weighted factors depending on the regime. In the core the situation

would have been much easier, as the proportionality β ν ρ ε⋅

∗ ∗ − −~
2 1 1q  correctly characterises

the skin effect.

Finally, in radiative divertor experiments in the L-mode, atomic processes are likely to be

as important as plasma parameters, and ρ∗, ν∗, q  and T  all have to be taken into account.  At

the same time, skin effect and MHD activity play no role in low T  plasmas (the latter - only if

β ρ/
/∗2 3

 is small).
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8. SCALINGS FOR THE H-MODE POWER THRESHOLD

Eq. (4.5) which gives the criterion for the suppression of drift turbulence by the skin effect and

is related to the L-H transition, can be checked for consistency with the experimentally found

dependence for the H-mode power threshold. In line with the dimensional approach adopted in

this paper, the threshold power should scale as:

P R nD T Tthres e i sol~ ( ) /2 × +⊥ α ∆  .  (8.1)

Coefficient α is mainly used to distinguish the ( )T Te i+ α  combination from ( )T Te i+

which enters ρ∗ (present inside D⊥  and ∆sol ). Since the heat conductivities χe and χi  are not

considered, the ratio αT Ti e/  describes the sharing of the power flux through separatrix between

ion and electron channels.

Substituting the expressions for the diffusion coefficient D⊥  and the scrape-off layer width

∆sol  found in Section 2 (Eqs. (2.13) and (2.11)) for the case of f k constk sρ ρ≡ =⊥ , results in:

P nR T T T T T B qRthres e i e i e~ ( )( ) ( )/ / / /2 1 2 1 3 2 3 2 3+ + − −α  .  (8.2)

This scaling has to be compared with the experimentally observed power threshold, which

approximately has the form:

P nBRthres ~ γ .  (8.3)

There is a significant degree of confidence in the linearity of the dependence of Pthres on

B , as well as the absence of a strong dependence on q . At the same time, the value of γ  can only

be established with a large scatter: γ = −1 5 2 5. . , as it involves comparison between different

machines with different magnetic configurations, wall conditions etc. As for the dependence on

density, experimental scalings are usually presented against the line average density ne . As the

best fit to the multi-machine database on the power threshold, the ITER Confinement Database

and Modelling Expert Group has adopted the following dimensionally correct scaling [38]:

P B T n R m n R mthres = × × [ ]±0 45 0 620
0 75 2

20
2 0 25

. ( )( ) [ ( )] . ( ) ( ). .
 MW,  (8.4)

where n n me20
3 2010≡ −( ) / . It predicts Pthres = −50 200 MW for n me = × −0 5 1020 3. . With such

a large uncertainty in the Pthres  prediction, better knowledge of the R -dependence is crucial for

ITER.

Against the line average density, the dependence P nthres e~  has been reported from

JT-60U [39]. According to Eq. (8.4), it implies the P Rthres ~ .1 5  dependence on the major

radius, which is very favourable for ITER as it yields 53 MW for n me = × −0 5 1020 3. . Recent
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JET data, on the other hand, are best fitted by the P nthres e~ .0 75  dependence [35], corresponding

to P Rthres ~ 2.

There is no simple relationship between the separatrix density and the line average den-

sity. It is usually assumed that n nsep e/ ≈ 3, but significant deviations from this relation may

occur. For the purposes of testing the criterion for the onset of the L-H transition given by Eq.

(4.5), on the consistency with the experimental power threshold, the latter will be assumed to

have the form (8.3) where n  is understood to be the separatrix density, and no attempts to

correct the density dependence will be made. Recent data from JET are in a very good agree-

ment with the linear dependence of Pthres on the edge density: P nthres e edge~ ( ),
. .0 952 0 089±  [35].

The ratio of the two power thresholds, (8.2) and (8.3), which can be expressed as:

F R
T T T T T

B qR
P

e i e i e~
( ) ( )

( )

. . .

.

/
2

0 6 0 3 0 2

0 4

5 3
− + +







γ α

,  (8.5)

must be independent of plasma parameters, magnetic configuration and the machine size, pro-

vided the relation between these parameters correctly describes conditions prior to the L-H

transition. Skin effect mechanism for the L-H transition roughly satisfies this criterion, since for

the case of k consts⊥ =ρ  it can be presented in the form: 
T T T

B qR
conste e i

1 63 0 37

0 25

. .

.
( )

( )

+ =  (Eq. (5.1)),

which follows from Eq. (4.5) and is close to the combination inside the square brackets of FP.

This mechanism can explain the absence of q  dependence (with an insignificant difference

~ .q0 15 which contributes q−1 4/  dependence to FP  that should be ignored) provided

( ) ( ). . .T T T T Te i e i e+ +α 0 6 0 3 0 2  scales as T T Te e i
1 63 0 37. .( )+  over the range of machine/regime pa-

rameters which contributed to the P nBRthres ~ γ  scaling. For α = 1, this requires

T T Te e i~ ( ) .+ 0 37 proportionality, which seems probable as in the regimes with high edge tem-

peratures typically T Ti e>> , as invoked from the comparison between the power deposition

onto the target measured with IR thermography and calculated power deposition from Langmuir

probes which measure Te  and particle flux (see e.g. [40]). As for the dependence on major

radius, γ = 1 75.  is required to make FP independent of R .

For the alternative ρ∗ scaling of the perpendicular wave vector, k s⊥
∗ρ ρ~ ,

F R
T T T T T

B qR
P

e i e i e~
( ) ( )

( )

. . .

.

/
2

0 67 0 28 0 22

0 33

3 2
− + +







γ α

.  This has to be compared with the condition

T T T

B
conste e i

2 17 0 33. .( )+ =   (second in Eq. (5.1)). The discrepancy with the scaling against q
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inside the square brackets, ~ .q0 33, is larger than in the previous case, contributing q−1 2/  de-

pendence to FP which seems significant. However, if T T RBe i+ /  is used for ρ∗ rather than

T T qRBe i+ / , then the q -dependence inside FP  will change:

F R
T T T T T

Bq R
P

e i e i e~
( ) ( ). . .

. .

/
2

0 67 0 28 0 22

0 44 0 33

3 2
− + +







γ α

. As for the L-H transition threshold, it will take

the form: 
T T T

Bq
conste e i

2 17 0 33

0 33

. .

.
( )+ = , and the difference in q -dependencies between the two

expressions almost disappears. An explanation of the L-H transition through the skin effect

would require γ = 1 5.  in order to make FP independent of R .

Finally, the k s⊥
∗ρ ρ~  dependence yields γ = 1 0. , which is in a clear disagreement with

the R -dependence of the experimental H-mode power threshold. Therefore, the possibility of

the k s⊥
∗ρ ρ~  scaling for the wave vector near the separatrix position in the L-mode, prior to the

L-H transition, must be completely ruled out.

The conclusion to be drawn from the above analysis is that the power H-mode threshold

must have approximately P Rthres ~ .1 75 or even weaker dependence on R  (as the dependence of

k s⊥ρ  on ρ∗ is expected to be somewhere between k consts⊥ =ρ  and k s⊥
∗ρ ρ~  possibilities,

but seems to be closer to the k consts⊥ =ρ  case), in order to be consistent with the skin effect

suppression of the drift wave turbulence as a mechanism for the L-H transition. The dependence

P Rthres ~ .1 75 is quite favourable for ITER. Threshold power following from Eq. (8.4) in this

case is only 69 MW for n me = × −0 5 1020 3. , B = 5 68.  T and R = 8 14.  m.

9. EFFECT OF HIGH SEPARATRIX T  AND β  ON THE DISCHARGE PERFORM-

ANCE: DENSITY LIMIT IN ELMY H-MODES

As both the input power and density are raised, the relative weight of the two mechanisms

specific to high T  and β  plasmas should increase, first, near the separatrix. The balance be-

tween them must have a profound effect on the overall discharge performance, because they

control the L-H transition and cause ELMs. It is of particular interest to have an idea about the

relative strength of these two mechanisms in ITER. What will be more important: the stabilising

effect of turbulence suppression by large skin times (high T ) or the destabilising effect of MHD

instabilities (highβ)?

To answer this question, criteria (4.5) and (4.10) should first be expressed as ratios (l.h.s.

over r.h.s.), to yield threshold parameters:
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For the radial decay lengths near the separatrix, there may be deviations from the scaling

for ∆sol  given by Eq. (2.11) which is still employed in the parameters FL H−  and Fβ  (the same

remark could be made with respect to all the results on the L-H transition obtained so far). Right

at the separatrix, the decay lengths should be affected by both SOL physics and transport proc-

esses inside the separatrix. Since, however, the very origin of steep gradients at the separatrix is

ultimately due to the particle and heat sinks onto the target, it would be natural to assume that the

SOL mechanisms have certain supremacy over those inside the separatrix in establishing the

gradients. Another extreme case of the λn a~  scaling, which completely ignores the SOL phys-

ics, is considered in Section 10.

There is insufficient confidence in the validity of the dependence on q  in the beta limit

given by Eq. (4.10). On the other hand, the scaling ∇β ~ /1 R for fixed q  is quite common to

characterise thresholds for MHD phenomena. Since safety factor is about 3 in both ITER and

typical JET discharges, in the following analysis q  will be assumed fixed.

The net temperature dependence inside the Fβ  parameter can be eliminated by expressing

( )T Te i+  through FL H−  and substituting into Fβ , leaving only the dependence on the T Te i/

ratio. For the case of f k constk sρ ρ≡ =⊥  this gives:
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This formula allows one to establish the ratio of separatrix densities in two different ma-

chines that would ensure similar pressure gradients, provided they both operate just above the

H-mode power threshold or at a fixed excess of the FL H−  parameter over its value correspond-

ing to the L-H transition.

The density in Fβ  can be replaced with its value normalised to the Greenwald density limit

n n m I A a me GW p≡ =−( ) ( ) / ( )3 14 2 210 π  [41]: K n nGW GW= / . The dependence of KGW  on

major radius and toroidal field can be established when this limit is given the form of the Hugill

density limit [42] (for the fixed plasma elongation, the functional dependence of the two limits

is essentially the same): n n B qRGW Hugill~ ~ /  (q  dependence will be ignored). Since the

Greenwald limit refers to the line average density, the direct relevance to this limit can only be
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made if a fixed proportionality between nsep  and ne  is assumed. For the case of k consts⊥ =ρ ,

one obtains:

F F
T T

T

K z M
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e

GW eff i

D
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/

/
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−
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The physics behind the Greenwald limit has originally been related with the degradation

of the core particle confinement and associated increase in power losses at the edge due to

convective power flux and/or atomic processes (charge-exchange, ionisation and impurity ra-

diation), as larger fuelling is needed to maintain high density near its limit [41]. This leads to

lower edge temperatures which affect current density profile. After the j r||( ) shrinks sufficiently,

sharper gradients at the edge will cause instabilities arising from the free energy contained in the

poloidal magnetic field, leading to a disruption. Such a scenario seems to be applicable to radiative

L-modes. In contrast, in the highest density H-modes in JET and some other machines a “soft”,

non-disruptive density limit is observed, with the density rise limited by the degradation in the

edge confinement associated with increased ELM frequency [43-45].

In JET, the Greenwald limit can be reached but not exceeded in ELMy H-modes. Accord-

ing to Eq. (9.4), similar problems will be encountered in ITER. The dependence on major ra-

dius, however, suggests a possibility of modest improvement in ITER in this respect. For the

same Fβ  as in JET, provided the temperature ratio and other parameters are also the same, KGW

in ITER can be increased compared to its value in JET by a factor of ( / ) ./R RITER JET
1 4 1 29≈

for  R RITER JET/ . / .= 8 14 2 96. Reducing zeff  and the Mach number M||  should also have a

beneficial effect. The influence of zeff  on the Fβ  parameter is obvious: according to Eq. (4.5),

higher zeff  increase the edge Te  necessary to maintain the discharge in the H-mode, and for the

same pressure a lower density is permissible. As for the Mach number, its influence has to do

with the profile effects. According to Eq. (2.11), larger M||  reduce the SOL width ∆sol , thereby

increasing the pressure gradient at the separatrix, so that a smaller separatrix density is permis-

sible for the same Fβ . The reduction in M||  can be achieved by increasing recycling in the

divertor.

Conclusions about the beneficial role of high recycling in the divertor (provided all other

parameters, mainly separatrix Te  and Ti  present in FL H−  are fixed !) cannot be fully justified

within the framework of the present model. The model ignores the effect of neutrals on the main

plasma. If the divertor is not closed enough, or there are leaks from the divertor to the main

chamber (by-pass leaks), the neutral pressure will increase near the walls, resulting in the cool-

ing of the edge plasma. Whether the ionisation source from these neutrals increases or reduces

density gradients near the separatrix, depends on density and temperature distributions across

the SOL.
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Another deficiency of the present model is its neglect of the electron heat flux through the

separatrix. The model predictions, therefore, are better justified when most of the power to the

scrape-off layer is supplied through the ion channel, since ion heat conductivity is much more

likely to be governed by the same scaling laws as the diffusion coefficient D⊥ . Finally, the

extremely weak mass-dependence in Eq. (9.4) may not reflect the full extent of possible isotope

effect in density limits, since this dependence may be implicitly contained in the magnitude of

the f kk sρ ρ≡ ⊥  parameter which was supposed to be fixed.

Criterion (4.10) for the onset of the ELM activity does not include any dependence on the

collisionality. Experiment, however, seems to suggest that resistivity has a strong impact on

ELMs [46]. Therefore, complete similarity of the ELM activity also requires the same

νe eff ez nqR T∗ = / 2.

For the case of k consts⊥ =ρ , νe
∗ can be expressed as:
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3 4
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1 4
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|| .  (9.5)

Comparison with Eq. (9.4) shows that Fβ  and νe
∗ have the same scaling against major

radius as well as against zeff  and M|| . Thus, the maximum density normalised to the Greenwald

limit is expected to scale as R1 4/  for fixed FL H− , T Te i/ , n nsep e/ , q , zeff  and (here, a “similar”

effect of neutrals on the profiles should have been the more appropriate formulation) M|| .

For the k s⊥
∗=ρ ρ  case, the scalings take the form:
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In the νe
∗ dependence, for B BITER JET/ . / .= 5 68 3 4   KGW  can be increased by 11% in

ITER compared to JET, and the collisionality will still be the same in the two machines. At the

same time, the scaling of the Fβ  parameter against major radius is much more favourable for

ITER. The factor of access in KGW  over JET is 1.70. Since the fundamental source of the ELM

instability is the pressure gradient (gradients of current density are the dominant source of MHD

instabilities only in “cold” edge plasmas, as in radiative L-modes), the significant reduction of

Fβ  in ITER indicates the possibility of a significantly lower ELM activity. Thus, it appears to be

that hopes of exceeding the Greenwald limit in ITER are justified. Since the scaling law for the

wave vector should be somewhere between the k consts⊥ =ρ  and k s⊥
∗=ρ ρ  cases (but more
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likely to be biased towards the k consts⊥ =ρ  case), the favourable scaling against major radius

suggests a possibility of an increase over the Greenwald limit in ITER by about 30%.

Even larger excess over the Greenwald limit may be possible in ITER if zeff  or the tem-

perature ratio T Ti e/  could be reduced (dependencies on M||  and m mi D/  are more complicated

issues as was pointed out earlier). Another way to raise the maximum (core) density is to in-

crease the ratio n ne e sep/ ,  by using pellet injection as has been done in experiments on ASDEX

Upgrade [45] and DIII-D [47]. In ASDEX Upgrade, steady state ELMy H-mode discharges with

line averaged densities of up to 1.5 of the Greenwald limit were achieved by a combination of

repetitive pellet injection with moderate gas puff fuelling [45], despite this machine being much

smaller than JET (R RJET ASDEX U/ . / .− = 2 96 1 65, giving rise to 14% smaller KGW  than in JET

for “similar” edge parameters, according to Eqs. (9.4-9.5)). This, however, was achieved at the

expense of a dramatic reduction in confinement. In DIII-D, line averaged densities of up to 1.4

of the Greenwald limit were achieved. However, good confinement (ITER89P H-factor around

1.75) at such a high densities was maintained only transiently, with radiation rapidly increasing

above the input power accompanied by a degradation in confinement.

10. INFLUENCE OF THE λ ∆n sol~  ASSUMPTION ON THE MAIN RESULTS

In the previous analysis, the scrape-off layer width ∆sol  was used as a characteristic radial

decay length near the separatrix. This assumption, as was pointed out in the previous section, is

justified by the fact that the very origin of steep gradients near the separatrix is ultimately due to

the particle and heat sinks onto the target. Still, transport processes inside the separatrix should

definitely have a certain impact on the scaling for decay lengths at the separatrix position. The

validity of some important results obtained so far, therefore, may be questioned. This, in particu-

lar, applies to the conclusion that ITER will exceed the Greenwald limit. If k consts⊥ =ρ  scaling

for the wave vector is adopted, then the validity of this conclusion hinges on a rather weak

dependence of the Fβ  parameter on major radius: ~R−1 4/ .

In order to check how critically the results obtained depend on the previously made as-

sumptions, it is important to derive scalings for FL H− , Fβ , FP  and νe
∗ parameters in another

limiting case where the SOL physics is totally ignored: λn a~ . In the following analysis, the

safety factor q , zeff  and the Mach number M||  will be assumed fixed, and ∆sol  will be replaced

with the major radius R . With these assumptions, Eq. (2.13) for the diffusion coefficient should

be replaced with:

D c
f

T

T T Rs s
k

e

e i

s
⊥ +

~ ρ ρ

ρ

1
 ,  (10.1)

for fixed frθ. This results in:
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for k s⊥ρ  =const and k s⊥ρ ρ~ *  cases respectively. Criterion (4.5) for suppression of drift

turbulence by the skin effect, which in effect is the condition on the separatrix parameters prior

to the L-H transition, will take the form:
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for k s⊥ρ  =const and k s⊥ρ ρ~ *  cases respectively.

The threshold power ratio FP  (Section 8) can be expressed as:
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, for k consts⊥ =ρ . At the same time, separatrix

parameters prior to the L-H transition must satisfy the condition:

FL H− ~ T T T

B R
conste e i

5 4 1 4/ /( )+
= . Hence, the γ = 1 5.  assumption is required to make FP

independent of major radius.

For the case of k s⊥
∗ρ ρ~  scaling, FP  can be expressed as:
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. The L-H transition occurs at
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/
( )+ = . Hence, the γ ≈ 1 33.  assumption is required to make FP in-

dependent of major radius.

For the ELM activity, the λn R~  assumption gives:
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for k consts⊥ =ρ  and k s⊥
∗ρ ρ~  cases respectively. K n nGW GW≡ /  in ITER can be increased

significantly compared to JET, by at least a factor of 2.3, for the same Fβ .

The scaling for νe
∗ can be expressed as:
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for k consts⊥ =ρ  and k s⊥
∗ρ ρ~  cases respectively.

Compared with the previously analysed case of the λn sol~ ∆  scaling, changes in all im-

portant critical parameters are beneficial for ITER. The threshold power for the L-H transition,

edge pressure gradients and electron collisionality in ITER would only be lower if the decay

length λn scaled with R , due mainly to favourable scalings against major radius. Positive con-

clusions about ITER operational space obtained earlier should therefore  be regarded as fully

justified. At the same time, they are more appropriate for projection to ITER than the results

obtained in this section.

CONCLUSIONS

The assumption that drift waves are the fundamental source of turbulence in a typical “cold” and

“rare” SOL plasmas (low T  and β , but not too high ν∗), combined with experimental results on

the relation between perpendicular wave vectors and ion Larmor radius, allows one to derive the

diffusion coefficient. The dependence k consts⊥ =ρ  (≅ 0.2 as a statistical average), which seems

to be supported by observations, results in a near Bohm scaling of the type

D T B qR⊥
− −~ ( )/ / /7 6 4 3 1 3, being numerically close to the Bohm diffusion coefficient for typi-

cal edge parameters. An insistence on the exact Bohm-type scaling requires k s⊥
∗ρ ρ~ . Real-

ity must be somewhere between these two possibilities. Validity of Bohm- and near Bohm-type

scalings must break down in “very cold” plasmas (Eq. (3.6) gives an absolute minimum for the

temperature threshold). Collisionality controls dynamics of the combined drift and interchange

instability in such plasmas, and ν∗ is an important parameter.

Finite β  effects reveal themselves through MHD instabilities caused by the pressure gra-

dient (increases with β) and by the skin effect. The collisional skin effect, caused by Spitzer

conductivity, can be characterised by the dimensionless combination βε ρ νq ∗− ∗−2 1
 in the main

plasma, and, being proportional to T a2 , physically is controlled by temperature. Since drift

turbulence is accompanied by fluctuating parallel currents, the skin effect is capable of reducing

its level by splitting wide flux tubes. The skin frequency for the drift fluctuations with the radial

displacement ∆  is: ν σskin c= 2 28/ ∆  (k kr >> θ  and ∆ = π / kr  are assumed here). At low Te , the

frequency of the drift fluctuations ν is much lower than νskin . The critical temperature for the

onset of a strong influence of the skin effect on the drift turbulence corresponds to ν ν= skin .

This equality can also be expressed as D c⊥ ≡ =∆2 2 8ν σ/  - the condition for equal rates of the

plasma diffusion into the magnetic field and the diffusion of the magnetic field into the plasma.

The same criterion can be derived by equalising the collisional skin-depth ∆coll skin c. /= 2 8σν
to the radial displacement ∆ . For T Te e crit> , , the size of the fluctuations ∆  is limited by ∆coll skin.
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and the relation D c⊥ = 2 8/ σ  is observed. Owing to σ ~ /Te
3 2 , the diffusion coefficient de-

creases with temperature as D Te⊥
−~ /3 2 , in contrast with the increase according to Bohm- or

near Bohm-type scalings at low Te .

The dependence D Te⊥ ( ), therefore, is non monotonic. Once the critical Te  at its peak is
reached, first near the separatrix (reasons why the separatrix should be a favourite location for
this event are given in Section 5), drift turbulence can be suppressed by the skin effect and the
temperature may have a sudden upward excursion. The time scale for fast profile re-adjustments
within the layer of the order of the fluctuation size is ~80 ms  for T Te i= = 100 eV and B = 3 T
in JET. This is interpreted as the L-H transition. The analysis yields Te

13/8(Te+Ti)
3/8/B(qR)1/4 as

a critical parameter for the L-H transition for the  k s⊥ρ =const scaling for the wave vector of the

fluctuations (T T T Be e i
13 6 1 3/ /( ) /+   for the k s⊥

∗ρ ρ~  case). In dimensional space, the bifurca-

tion is attributed to the involvement of two dimensionless parameters in the L-H transition phys-

ics: ρ∗ and β ν ρ/ ∗ ∗2
.

Another necessary condition for the suppression of turbulence is that the collisionless

skin-depth ∆skin p ec n
e

~ / ~ /ω 1 , being the lower limit of distances controlled by the collisional

skin effect, must be smaller than the size of drift fluctuations in the L-mode:

∆drift sk T B~ ~ ~ /⊥
−1 ρ   (k consts⊥ =ρ  is assumed here). The requirement ∆ ∆skin drift<

imposes a restriction on minimum β  which, when combined with the temperature threshold for

the L-H transition, defines a lower density threshold for the L-H transition. Increase in the criti-

cal pedestal Te  often observed in experiments at low densities should be related (at least partly)

with approaches to the density threshold. Near this threshold, turbulent displacements in the

L-mode phase prior to the L-H transition are close to the collisionless skin-depth. The electron

parallel conductivity in these conditions is reduced by electrons’ inertia, and higher Te  is

required to cause the transition.

The mechanism of the drift turbulence suppression by the skin effect implies such a rela-

tion between Te , Ti , B , q , R  and ne  at the separatrix prior to the L-H transition that ensures

consistency between the experimentally found H-mode power threshold of the type

P n BRthres e~ γ  and dimensionally correct scaling P R n D T Tthres e e i sol~ ( ) /2 × +⊥ α ∆ . Once this

mechanism is adopted as an explanation of the L-H transition, it clarifies the uncertainty over

the value of the power γ  in the Pthres dependence on major radius existing in the present multi-

machine database on the L-H transition. This coefficient must be: γ ≈ 1 75. , or even lower. Ac-

cording to dimensionally correct scaling developed by the ITER Confinement Database and

Modelling Expert Group, γ = 1 75.  corresponds to the threshold power of less than 70 MW for

n me = × −5 1019 3.

The critical parameter for the L-H transition (FL H− ), together with dimensionless param-

eters characterising the pressure gradient (Fβ) and the resistivity (νe
∗), create the set of similar-
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ity parameters describing  ELM behaviour. The scaling for the separatrix density normalised to

the Greenwald density limit n ne sep GW, /  with the machine size and toroidal field which ensures

“similar” ELM behaviour can thus be obtained. For the fixed similarity parameters, the analysis

yields weak (~ /R1 4) but favourable dependence of n ne sep GW, /  on the major radius. In recent

experiments on JET and other machines, the degradation in the edge confinement associated

with increased ELM frequency was found to be responsible for the density limit in high power

H-modes. Owing to the approximately R1 4/  dependence, an excess over the Greenwald limit,

ne/nGW, by about 30% higher in ITER compared to JET for “similar” conditions (q , n ne sep e, / ,

separatrix zeff  and the T Te i/  ratio, wall conditions, the use of pellets etc.) in ELMy H-modes is

predicted. This is with the provision that a limit on the central density, related to mechanisms in

the plasma core, is not encountered.
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APPENDIX 1: COLLISIONAL DRIFT AND INTERCHANGE INSTABILITIES

Analysis of individual instabilities in collisional plasmas can be found in [Kadomtsev B.B.,
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Pogutse O.P., in “Reviews of Plasma Physics”, Consultants Bureau, New-York - London, Vol.5

(1970) pp.296-303], as well as many other sources.

In light of a special importance attached to drift and interchange instabilities in the SOL, it

is worth giving a brief guidance through physical mechanisms responsible for these instabilities.

For simplicity, only the density gradient as a source of an instability will be considered.

Inclusion of temperature gradients does not lead to any new quality essential for dimensional

analysis.

Suppose a radial displacement of the plasma at some point has created a bulge on the line

of constant density. Such a perturbation will usually be stretched along the field lines, with

λ π|| ≤ 2 qR , so that there exist small parallel gradients of density. On the figure, the profile of the
bulge is continued by dashed lines to reflect a

conventional approximation of all perturbations

by exp[ ( ]i tkr − ω  in the slab geometry. The

radial structure of the bulge (wave vector kr)

is not reflected in the figure but will be ac-

counted for in equations.

At the centre of the bulge the electric

potential has a maximum, to compensate for

the parallel electron pressure gradient (electrons

EθxB

EθxB

Eθ

Eθ

B

JG97.61/1c

obey Boltzmann distribution in the absence of friction), provided electrons move fast enough

along the field lines to react on changes in the electric potential: v ||e k>> ω / . Finite parallel

wavelength is essential for Boltzmann distribution of electrons, so that they could move away

from the bulge along the field lines. On the other hand, ions should not be too fast to escape the

bulge along the field lines, so that it would quickly disappear: c ks << ω / ||. Thus, the restriction

on the parallel phase velocity will be: c ks e<< <<ω / || v  (the condition v ||i k<< ω /  is also re-

quired to avoid strong kinetic mechanism for the wave damping: Landau damping).

The poloidal electric field has its maximum and minimum on the fringes of the bulge,

whereas Eθ = 0 in its centre. Therefore, E Bθ ×  drift will be shifting the two sides of the bulge

in opposite directions radially, and the whole structure will effectively move up. This is a drift

wave; it propagates in the electron diamagnetic direction. Whether the size of the bulge will

grow as it moves, is determined by mechanisms which affect changes in the amplitude of Eθ
acting across the bulge (δ θE ) and shown on the following figures.
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Ion inertia leads to the so called drift in-

stability. Heavier ions are slightly shifted along

oscillating E⊥  in phase with ̇ /E E⊥ ⊥≡ d dt ,

in addition to their E B×  drift. The resultant

current (the polarisation drift) is given by:

j E⊥ ⊥= nm eBic
2 2˙ / .

As the bulge propagates like a wave over

the plasma, the phase of the poloidal current

( ~ Ėθ) is such that it peaks at the centre of the

bulge, while being zero at its fringes. There-

fore, div jθ θ  will pump a negative charge to

the top and positive - to the bottom of the bulge

(assuming a sinusoidal wave: jθ  is reversed at

the centres of the two neighbouring “anti-

bulges” depicted by dashed lines on the first

figure). The sign of the variation in the poloidal

electric field δ θE  is such that the bulge should

grow. The rate of growth will depend on the

magnitude of δ θE . If the ion-electron friction

is negligible, the charges will escape along the

field lines without creating significant magni-

tude of δ θE . Collisionality, therefore, does not

lead to the dissipation of the bulge, but, on the

contrary, facilitates its further growth.

δEθ
jθ

jθ=0

jθ=0

ion inertia
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97
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1/

3c

δEθ

Vi–∇B
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∇B–drift
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Vertical ∇B drift is responsible for the interchange instability. At the outer midplane, ∇B

drift is exactly in the poloidal direction. Opposite directions of this drift for ions and electrons

result in the net current density of their Larmor circles: j n T T BRy e i≈ ± +( )2 / . Owing to the

poloidal variation of density created by the bulge, jθ  is not poloidally constant and div jθ θ  will

pump a positive charge to the bottom and negative - to its top fringe. Again, as in the previous

example, δ θE  causes growth of the bulge. The same arguments applied to a bulge localised near

the inner midplane would create the same direction of δ θE  (upward), but there the E Bθ ×  drift

acts so as to eliminate the bulge. That is why the interchange instability has positive growth rates

on the outboard and negative - on the inboard sides of the magnetic surface.

Finally, there exists the effect of finite ion Larmor radius which tends to stabilise the

instabilities. It requires the inclusion of the radial structure (finite kr) of the mode in the analy-

sis. Large Larmor radius of ions slightly averages the Eθ acting on the whole Larmor circle, so
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that the E B×  drift velocity for ions will be smaller than that for electrons giving rise to the net

current density j E B⊥ = − ×[ ]Sen c B / 2 , where S k T mi i i= ⊥
2 2/ ω  and k k kx y⊥ ≡ +2 2 .

In the linear approximation, perturbations of the electric potential are assumed to be small:

˜ /ϕ eTe << 1. This also implies small perturbations of density, ñ , and electric field,

˜ ˜ ˜E k= −∇ = −ϕ ϕi  (all perturbations have an exp[ ( ]i tkr − ω  structure with different phases).

Expressions for all three contributions to the perpendicular current should be linearised (prod-

ucts ˜ ˜nϕ  etc. are neglected) and substituted into the quasi-neutrality equation: divj = 0

( k j k j k jr r
˜ ˜ ˜+ + =θ θ || || 0). This gives for the individual contributions to the parallel current:

˜ / / ˜j k k nmc Bi|| ||= ⋅ ⋅⊥
2 2 2 ωφ  for the polarisation drift, ̃ ˜ / /j nk k T T BRe i|| ||= ⋅ +( )θ 2   for the ∇B

drift, and  ˜ / ˜ /j ik Sec Bk dn dr|| ||= − ⋅ ⋅θ ϕ   for the effect of a finite ion Larmor radius.

Perturbations ̃n and ϕ̃ , as well as ω  and components of the wave vector, figure in the

expressions for ̃j|| , whereas the objective is to find the ω( )k  dependence. There are two equa-

tions to attain it. Parallel electron equilibrium equation reads:

− − + =∂ ∂ νp s enE j m ee e ei/ /|| || || 0 .  (A1.1)

All three j̃||  are to be summed up and substituted into the linearised form of this equation:

− = ⋅ +ik nT i enk j m ee e ei|| || ||˜ ˜ ˜ /ϕ ν .  (A1.2)

Density perturbations are described by the continuity equation:

∂ ∂n t div nc B/ /+ ×( ) =E B 2 0 .  (A1.3)

Its linearised form is: ̃ ˜ / /n k c B dn dr= − ⋅θϕ ω . It allows one to replace ñ with ϕ̃  in the

parallel electron equilibrium equation. After such a replacement and cancellation of ϕ̃ , the dis-

persion equation will be obtained:

ω αωω ωω ω ω ω θ
2 2 2 0+ ⋅ + ⋅ − ⋅ ± ( ) =⊥i i i k kd s d s o /  .  (A1.4)

Here ω λθd e nk cT eB= /  is the angular frequency of the drift wave, also responsible for the

polarisation drift (ion inertia) giving rise to the drift instability; ω λo e i i nT T m R2 2= +( ) /  de-

scribes the effect of the vertical ∇B drift, leading to the interchange instability at the outer

midplane (sign “+”), or stabilisation of turbulence at the inner midplane (sign “-”);

ω ω ω νs i e ei k k= ⋅ ⊥/ /||
2 2  characterises the ability of spatial charge to diffuse along the field lines

without creating perturbations of electric potential (proportional to νei
−1); α = T Ti e/ .



42

APPENDIX 2: SCALINGS FOR D⊥  AND ∆sol  FOR DIFFERENT DEPENDENCIES

OF k s⊥ρ  ON ρ∗

Adopting any particular form of the dependence k s⊥
∗ρ ρ α~ ( )  for different α gives rise to

different scalings for D⊥  both in the main plasma and in the SOL. For the frequency of fluctua-

tions, the assumption that turbulence consists of drift waves gives:

ω ~
( )

k T

B size
⊥

×
,  (A2.1)

where the characteristic radial size should be taken as minor radius a  for the core and ∆sol  - for

the scrape-off layer. An expression for the SOL width contains the diffusion coefficient:

∆sol D qR T~ ( / ) /
⊥

1 2.  (A2.2)

In order to find both ∆sol  and D⊥ , another equation which relates the diffusion coefficient

with k⊥  and the frequency should be used:

D k⊥ ⊥~ /ω 2  .  (A2.3)

These three equations allow one to obtain the following scalings:

k s⊥ρ ρ∗ ρ∗ const 1/ ρ∗ 1/ρ∗

core D⊥
T

B

qR

a

T

B

qR

a

5 4

3 2

/

/
T

B a

3 2

2
1/ T

B a qR

7 4

5 2
1/

/
T

B aqR

2

3
1

SOL D⊥
T

B
qR

5 6

2 3
1 3

/

/
/( )

T

B

T

B qR

7 6

4 3 1 3
1/

/ /( )

T

B qR

4 3

5 3 2 3
1/

/ /( )

T

B qR

3 2

2
1/

∆sol
T

B
qR

1 6

1 3
2 3

/

/
/( )

T

B
qR

1 4

1 2
1 2

/

/
/( )

T

B
qR

1 3

2 3
1 3

/

/
/( )

T

B
qR

5 12

5 6
1 6

/

/
/( )

T

B

1 2/

The most probable cases for the ρ∗ scaling are in the fourth (k consts⊥ρ ~ ) and third

( k s⊥
∗ρ ρ~ ) columns, the former corresponding to the gyro-Bohm scaling for D⊥  in the core.

The q -dependencies will change for all the cases apart from k consts⊥ρ ~  when ρ∗ ~ /T RB

is adopted instead of ρ∗ ~ /T qRB.


