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ABSTRACT

A linear analysis of MHD instabilities driven by the combined effects of unfavourable curvature
and the pressure gradient is performed in the scrape-off layer of a limiter configuration. The
dispersion relation of fast growing (electromagnetic) modes is derived by means of both
analytical and numerical techniques. The growth rate dependence on the sheath resistivity and
the magnetic shear is investigated. Perturbations are not completely stabilised by conducting end
walls due to finite sheath conductivity. Modes develop into ideal ballooning modes as the
plasma beta increases. The comparison of their behaviour to resistive ballooning modes shows
that in most cases of interest the plasma stability is determined by the electromagnetic modes.
As a consequence a new dependence of the instability growth rate on the plasma parameters is
found, where the key parameter is the density close to the end plates. Results given here can be

applied to a single-null divertor configuration.

1. INTRODUCTION

The scrape-off layer (SOL) is the thin (several gyroradii wide) region surrounding the last
closed surface of a tokamak, either in limiter or divertor configurations. Understanding the
nature of turbulence inside the SOL region is commonly considered a key issue in the
explanation of important features in tokamak physics, such as the L-H transition, the occurrence
of ELMs and the dependence of the SOL width on plasma parameters. SOL plasmas are
characterised by open field lines, so that the theoretical investigation of SOL stability
considerably differs from the analysis of the central region. Interchange and drift instabilities
have been singled out among other modes characteristic of open field line systems as the most
likely to be responsible for the SOL plasma turbulence [1-9].

In the present work we carry out a linear analysis of high mode number interchange
instabilities. It is generally believed that the magnetic field stress prevents any plasma
displacement when the ratio of the pressure and the magnetic field energy is below a critical
value f3.,. According to this picture of the instability, only slow resistive modes can develop if
the plasma beta is below the threshold value. Nedospasov, however, pointed out that
electromagnetic modes driven by finite sheath conductivity are unstable at any value of the SOL
beta [1]. These modes have been investigated in several theoretical works [2-5,10-14]. This
paper continues the investigations of the previous work [12] in a more realistic geometry.

A detailed analysis of resistive ballooning modes has been proposed recently in Ref. [15].
It however takes into account only electrostatic modes. In this paper we apply the balloning
formalism to the analysis of electromagnetic modes. We show that instabilities with a growth

rate of the same order as ideal modes can develop with little field line bending, due to the



presence of a plasma-wall interface. In addition, we describe the growth rate dependence on
sheath conductivity and magnetic configuration parameters. Modes described here transform
smoothly into ideal ballooning modes localised on the low field side of the SOL as the plasma
beta increases.

We refer to a magnetic configuration with a toroidal limiter placed on the bottom of the
torus. This particular configuration has been chosen with the objective getting some insight on
how modes behave in a single-null divertor configuration, like the present JET configuration.
At this stage of the work we avoid the algebraic complexity which arises if we take into account
the X-point in the poloidal magnetic field.

This paper is organised as follows. In Section 2 we describe the model used in the
stability analysis. In Sec. 3 we derive some approximate dispersion relations for different limits
of the plasma parameters. Sec. 4 is devoted to the numerical analysis of the problem. Finally,

Sec. 5 contains a discussion of the results.

2. MODEL EQUATIONS

The relevant features of the interchange instability are derived in the framework of the single-
fluid MHD model described in Refs. [16-17]. Magnetic field fluctuations parallel to the
unperturbed field are assumed to be negligible compared to the equilibrium field. Consequently,

only fluctuations in the perpendicular direction are considered and the electromagnetic field is
described by means of the two scalars ¢ and A, (electrostatic potential and parallel component of
the vector potential). The perpendicular current density j , is determined by momentum balance,

while the perturbation of the parallel component &, (here and in the following perturbed

quantities are denoted by 9) is determined by Ohm's law. The perpendicular motion is assumed
to be given by the electric drift v, = ¢ b x V 8¢ / B, where b is an unit vector along the

equilibrium magnetic field B. In order to describe the main features of the instability, the parallel
plasma motion and the effects due to finite ion drift frequency are not included in the model.
These effects will not influence the qualitative picture of the modes drawn here, but may affect
considerably the quantitative evaluation of the growth rate of the instability.

We are interested in the study of the evolution of perturbations characterised by a
perpendicular wavelength much smaller than the pressure gradient length x, = /Vp /p /-!. Based

on this assumption, we consider in the linearised fluid equations only the leading terms in the

ordering k x, >> L.
With this approximation the charge conservation and the parallel component of the Ohm's

law read [18]
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where ¢, = B/ 4/47p is the Alfven velocity, o is the parallel Spitzer conductivity and, for

simplicity, we assumed dp, = dp;. The pressure perturbation is related to the plasma motion by

the following relation.

The set of Eqs. (1-3) is closed by the parallel component of the Ampere's law.

b-VxVx((SA” b) =47 )

For the description of the equilibrium magnetic field in the SOL region we use a circular
cross-section and an axisymmetric field B = BoRy/R (1/Rq eg + €y) in the conventional toroidal

coordinate system (r, 8, ¢) shown in Fig. 1. Here Ry is the magnetic axis radius, R = Ry - r

cos 6, By is the value of the magnetic field on the magnetic axis and ¢ is the safety factor.

Fig.1: Coordinate system used in the problem.

Perturbed quantities in Egs. (1-4) are written in the following form.

SF = f(r,e)eis(r’ 6, ¢)—iwr (5)

Here the frequency of the perturbation @ s in general complex and the Eikonal § is given
by [19]
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where n >> [ is the toroidal number of the perturbation and we introduce the parameter 6, i.c.
the "origin" of the perturbation. It will be determined by maximising the growth rate, given by
the imaginary part yof the frequency [19].

To first order in n, Eq. (3) gives the relation between the pressure perturbation and the
fluctuating electrostatic potential ¢ (here and in the following the tildes introduced in Eq. (5) are

dropped).
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Here the poloidal wave number of the perturbation kg = ng/r has been introduced and Ty

is the equilibrium temperature (assumed for simplicity equal for ions and electrons).
To leading order in n, the system (1-4) is recast in the following second order ODE [18].
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Here k% =k} [1 +52 (0- 90)2] is the perpendicular wave number, the parameter § = é%%

denotes the magnetic shear, G= —2[3'( 9~90)sin 0 + cos 9] is the field line curvature operator,

Ly = Rq. Furthermore, two characteristic frequencies of the problem are introduced

c
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where ¢, = /Ty /m; is the sound speed and D,, = ¢?/470 is the magnetic diffusion coefficient.
Following Refs. [8,14], the boundary conditions of Eq. (8) are determined by the sheath

physics. Neglecting density and temperature perturbations, the current density flowing through
the sheath is related to the fluctuations of the electrostatic potential at the plasma side of the

sheath by the following relations.
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Here numerical factors of order one are omitted, ned, ¢ and T¢d are respectively the

density, the sound speed and the temperature at the plasma side of the sheath. The labels "in"
and "out" refer to the inner and the outer sides of the limiter. In the chosen coordinate system
the inner and the outer plate are located at 8 = -7/2 and 6 = 3/2 7 respectively. Matching the



expression (11) with the value of the fluctuating current inside the SOL as given by Eqs. (2-4)

yields the required boundary conditions, written here in dimensionless form

J
Q
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where 0y, is -7/2 and 3/2 7. The parameter & gives the strength of the sheath current as a
response to a fluctuation of the potential. It is given by o = ar, (ko /k, )’ (0+io,,)/ w,, where

oy =L,/ Rx (a);‘}' /k(,c) \T,/T¢ and Cl)edls the ion plasma frequency at the plasma edge

of the sheath.
The eigenvalue problem given by Eq. (8) and boundary conditions (12) can be reduced to
a simpler form in some limiting cases. In the low-frequency limit /o << @, perturbations are

electrostatic and are described by the following simplified problem

2
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where A« = ng/n®? x/Ted/TO ~m;/m, A /L is a dimensionless form of the electon mean free
path A [4]. Modes described by Eqgs. (13)-(14) are known as resistive ballooning modes, since
the parallel current density is determined by the Spitzer resistivity of the SOL plasma. The
analysis of these modes has been carried out recently by Novakowskii et al. in Ref.[15]. This
work shows that strong unstable perturbations, with a growth rate of the same order as @,,
arise in two different regimes. The first is the so called "strong ballooning" regime. It is
characterised by w,/w, B. >> I, where B, = L2/Rx is the normalised plasma beta of the
ballooning theory. From the physical point of view, this limit arises if either the plasma beta or
the poloidal wave number of the perturbation are large. Values of @, comparable to y are
expected also in the opposite limit w,/w, B. << [ (weakly balloning regime) if the electron

mean free path is large, i.e. in the limit A, >> /.

In order to satisfy the low-frequency requirement leading to the simplified problem given
by Egs. (13)-(14), the condition w,//w/ >>1 must be satisfied. Consequently, the fast growing
modes described in Ref. [15] arise in the limit w,/w, >>1. This requirement, as will be
discussed below, is met only in some limiting cases where the SOL plasma temperature is
extremely low. The ratio @w,/w, is given approximately by the following expression, where the

SOL temperature Ty is expressed in eV and lengths are in cm.
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Here A is the Coulomb logarithm, m,, is the proton mass, m; and Z are the ions mass and

charge respectively and the numerical factor is due to the parallel Spitzer conductivity. In the

framework of the Eikonal approximation of the fluid equations leading to Eq. (8), the
inequalities xy ! << k; << p; -/ must be satisfied, where p; = ¢/€2; is the ion Larmor radius.

This implies that the following inequalities must hold.
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Fig.2: Region of the wm / wg space where inequalities (16) are satisfied depending on the equilibrium
temperature To . Case with Rp=300cm, xp=2cm B=3T.

The shaded regions of the diagram indicate regimes where the hypotheses leading to either the fluid equations
or the eikonal approximation are not fulfilled. This is due respectively to extremely short or long
perpendicular wavelength of the perturbation. The circles show regions where (depending on  the

perpendicular wavelength and the SOL temperature) perturbations are electrostatic or electromagnetic.

In Fig. 2 is shown the region in the Ty, @,/w, space where inequalities (16) are satisfied
for some characteristic values of Ry xp and of the magnetic field. The electrostatic

approximation gives reliable results for SOL temperatures of the order of Ty = 10 eV,



corresponding to the dotted circle shown in the plot. For SOL temperatures of order Ty = 100

eV, which is the order of magnitude of the measured values in many experiments, the opposite
limit w,/@, << I applies (shaded circle in Fig. 2). From the physical point of view, this means

that perturbations of the magnetic field cannot be neglected in the fluid equations. The purely

electrostatic approach can however be successfully applied to high temperature plasmas in the
limit A, << I, B, << I. In this case the solution of Egs. (13)-(14) leads to the dispersion

relation y = @, 8, [15]. It corresponds to slow resistive modes described already in Ref. [12]
for a different curvature operator.
In the range of frequencies Jof >> w,, Egs. (8)-(12) can be recast in the following

dimensionless form
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where I" = Y/, is the dimensionless growth rate, P= (kl/kg)2 = [1+§2(9— 60)2] and op =
a;I'. Modes described by this simplified eigenvalue problem arise when the Spitzer resistivity
can be neglected in the SOL region and the current response to an oscillation of the electrostatic
potential is determined in the parallel direction by finite sheath conductivity.

Eqgs. (17)-(18) have been studied in Ref. {12] for a simplified magnetic geometry, with a
step-like curvature operator and neglecting effects due to the shear of the magnetic field lines.
Our aim here is to improve the stability analysis by taking into account a more realistic magnetic

geometry.

3. ANALYTICAL RESULTS

The aim of this section is to discuss the general properties of the eigenvalue problem given by
Eqgs. (17)-(18) and to evaluate approximate forms of the dispersion relation in some limiting
cases accessible to analytical treatment.

For large values of f3,, Eqs. (17)-(18) describe a fast growing (ideal) perturbation with I”

of order unity. Ideal modes are not affected by the value of the sheath conductivity. If however
o is large, they become stable when B, is below a critical threshold f,,. The evaluation of 3,

by means of numerical techniques is discussed in the following section. Here we are interested
in the description of the modes due to finite sheath conductivity, which are relevant when S, is

below the critical threshold.



A solution of the eigenvalue problem given by Eqgs. (17)-(18) satisfies the Euler-Lagrange
principle 0E = 0, where the energy functional E is given by the following expression (prime

denotes a 0 derivative).
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A variational method can be used to derive an approximated dispersion relation. Basically
the technique consists of two steps. First, a one-parameter family of functions @.(6) (tral
functions) is chosen, such that any function of the family approximately satisfies Egs. (17)-
(18). The value of the parameter which gives the best approximation is evaluated imposing the
minimum condition JE/dc =0. The dispersion relation is then given by E = 0, where E is
computed by means of the best trial function.
The following part of this section is devoted to the application of the technique outlined
above. In order to perform an analytical treatment of the problem we take the limit B, << .., I

<< I, which allows us to neglect terms of order I’ in Egs. (17) and (19). In this limit the
eigenvalue of the problem becomes oy and the growth rate is determined as
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Two different families of trial functions are required in order to solve the eigenvalue
problem in the asymptotic limit 8. — 0 and when B, is small, but finite. In the first case the

perturbations are flute-like. If 8. =0 Egs. (17)-(18) have the trivial solution @ = const, ot =
0. A trial function family can therefore be written as ¢(6) = I + ¢ f{8), where ¢ << [ and fis

the asymmetric part of the eigenfunction. The minimum condition gives
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These results allow us to draw some preliminary conclustons, independently from the
analytical form of f. First of all, the growth rate of the modes has a quadratic dependence on f.

in the limit 8. — 0. This is due, as shown in Ref. [12], to the fact that a line of force lies partly
in the destabilising curvature region (6 > m/2) and partly in the stabilising region (6 < m/2).



Consequently, flute-like perturbations cannot display strong unstable behaviour. Furthermore
Eqgs. (21) and (22) show that in general ¢ and &y may display singularities for some values of
B, leading to the failure of the hypotheses ¢ << [ and I" << /. Based on this consideration, we

shall refer to a trial function non belonging to the restricted class ¢ = I + ¢ f (with ¢ << I) in
the small but finite . case, so that non flute-like (and consequently strongly unstable) modes

can be accurately modelled.

The analytical form of the trial function to be inserted in Eqs.(21)-(22) is derived from the
following approximated general solution of Eq. (17)

~
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where A and B are arbitrary constants. Rel. (23) has been obtained by means of the asymptotic
technique outlined in the appendix.

Expression (23) is not suitable to be adopted as a trial function without further
simplifications. In the small shear limit we neglect the second term in the square bracket. The
asymmetric part of the solution is then entirely determined by the term proportional to the
curvature operator. Consequently, an appropriate trial function reads ¢ = / - ¢ cos@. On the

other hand, we retain only the terms in the square bracket of Rel. (23) in the opposite limit
§>>1. The required trial function in this case is givenby ¢ =1+c¢ arctan[ﬁ(@— 90)].

The dispersion relation (22) is evaluated explicitly in the case of both small and large
shear. In leading order in f3, it reads

o = 27mp? §<<1 (24)
o ~8mPEE 5> 1 (25)

In the finite 8. case the flute-like trial functions used in the evaluation of Eq. (24)-(25)

with ¢ << [ are no longer adequate for an analytical treatment of the problem. Since, in the
small . limit, the asymmetric part of the eigenfunction is proportional to B, itself, a suitable

form of the trial function in the finite beta, large shear case is given by
o, :%+—}Earctan[§(9—90)]+c (26)

Conditions E=0 and d E/dc =0 give a nonlinear system in the unknown quantities ¢ and
0. It can be easily solved in the §>>1 limit, where the trial function (26) is step-like. In this

case the solution reads

(5+1)°
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This latter approximation of the dispersion relation is consistent with Rel. (25) in the 3,
— 0 limit. If the condition 16 7% 87 >> 1 is satisfied, Rel. (27) can be recast in the following

simpler form
oy =40, (5+1) (28)

Expression (28) can be compared with the dispersion relation given in Ref. [12] in the B,
<< B, limit for modes localised on the low field side of the torus in a double-null divertor
configuration. Both relations display a linear dependence of the growth rate on the normalised
beta. We stress that in a double-null configuration the linear dependence is related to the
asymmetry of the curvature operator in Eq. (17), due to the peculiar vacuum magnetic field
configuration. Here the same dependence is related to the strong asymmetry of the
eigenfunction which, as a consequence of the finite magnetic shear, is mainly localised in the
unfavourable curvature region. This effect screens the different results arising from the stability

analysis of single- and double-null configurations.

4. NUMERICAL ANALYSIS

In this section the analytical dispersion relations derived above are compared with the numerical
solution of the problem given by Eq. (17) and boundary conditions (18). Following a well
established technique [20], Eq. (17) is recast in a system of three first order ODE (the third
dependent variable being the eigenvalue). Boundary conditions (18) are satisfied solving the
system with a shooting method. According to the ballooning mode theory, the growth rate is
then maximised by varying 6y, at fixed values of B., &; and §.

Numerical simulations allow a check of the accuracy of the approximations made in the
previous section. They also show how modes due to finite sheath conductivity, characterised by
Y << @y, develop into ideal modes (with ¥ = @,) when the normalised plasma beta increases.

The threshold value S, for the onset of ideal modes can be evaluated as the value of 3.
where the growth rate of the modes becomes positive in the limit o — o (lines of force frozen
into the sheath). Since this limiting case is not accessible to the numerical analysis with
boundary conditions (18), Eq. (17) has been solved for this purpose with boundary conditions
o=0atB=-n/2and 68 = 3/2 . The stability diagram for ideal modes in the B., § space is
shown in Fig. 3. For large § values, the diagram shows the stabilising effect of the magnetic
shear, with B, = §/2, as it is well known from the ballooning mode theory inside the magnetic

separatrix.
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Fig.3: Stability diagram for ideal modes.
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Fig.4: Solid curves: normalised growth rate in the case § = 1, plotted versus By | B¢y for different values of the
sheath conductivity. Lines of force are frozen into the sheath if oay—e and completely unfrozen if aj—0.

Dashed line: analytical approximation Rel. (28) for o] = 102

In the regime where the sheath resistivity becomes important, we first consider the case
§ = 1. In Fig. 4 the normalised growth rate is plotted versus B for three characteristic values

of ao; . For B« > B, the modes are not dramatically affected by the sheath conductivity, as
discussed above, while it becomes the key parameter if . lies below the critical threshold. In
fact, modes in this region are stable in the limit @¢;— o and they become more and more

unstable as ¢; decreases. In the limit «; << / (lines of force completely unfrozen), the growth

11



rate is of order @, even if . lies well below the threshold value. This is consistent with our

theoretical estimate Eq. (20). We stress that, although in this limit electrostatic resistive modes
are not considered, the instability arises for any value of B due to the finite sheath conductivity.
The dependence of the growth rate on the normalised beta is quadratic in the limit 8+ — 0 for
any value of ¢, consistently with our approximate results (24)-(25). For very small values of
oy, however, the region of quadratic dependence along the 3. axis is very close to zero and is
not resolved in Fig. 4. When «; 1is large the condition y << @, is met at values of the
normalised beta of order unity. Consequently, relation (28) can be compared with the numerical
values. The dashed line in Fig. 4 shows the normalised growth rate computed by means of the

linear approximation (28), in very good agreement with the numerical value.

JG96.547/5¢

o
-
[\
w

Fig.5: Normalised growth rate in the case o) = 1, plotted versus § for different values of B..

The shear dependence of the growth rate is analysed next. The results are displayed in
Fig. 5 for two different values of the normalised plasma beta. For large values of . the modes

are stabilised by the magnetic shear, as it enhances the threshold for the onset of the ideal
instability. On the other hand, § shows a destabilising effect at values of . smaller than .,

This 1s a consequence of the fact that, except for the 8y = /2 case, the curvature operator is not
in general an odd function of the poloidal angle for finite § values (parity is actually assessed by
symmetry around 8= 772 i.e. the top of the cross-section in Fig. 1). Since then stabilising and
destabilising effects of the curvature do not balance, even perturbations not strongly localised in
the outer region of the torus (as in the small 8. case) may have finite growth rate. This is
consistent with our approximate results (27)-(28). The combined stabilising and destabilising
influence of the magnetic shear determines a maximum of the growth rate at values of § of

order unity.



The numerical analysis is completed by a discussion of the properties of the
eigenfunctions corresponding to the different cases discussed. In Fig. 6 three characteristic
eigenfunctions are plotted for comparison. The first corresponds to a case with . >> B., and
Y= wy. It shows the typical feature of an ideal mode: it is close to zero at the boundary 6=-7/2
and it is located mainly in the outer region of the torus (8 > m/2), where the curvature operator
of Eq. (17) has a destabilising effect. The second is a flute-like perturbation. It corresponds to a
case where B, is very small and ¥~ B. 2 w,. It displays the characteristic behaviour of the trial
function used in order to derive the approximate relation (25). The third eigenfunction is an
example of what we refer to as the small but finite 8. case. It corresponds to a situation where

B. is below the ideal threshold, magnetic shear is large and y = B. ®,. This eigenfunction

resembles the step-like trial function (26), used in the derivation of the approximate dispersion

relation (27).
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Fig.6: The eigenfunction structure. Case (1) represent an ideal ballooning mode, case (2) is a flute-like
perturbation and case (3) arise when the plasma beta is not strong enough to shift the perturbation in the

unstable curvature region, but the eigenfunction is asymmetric as a consequence of the finite magnetic shear.

(1) Be=3Bcr S=1; oy=10;  y=098 0y Bp=3.14
(20 B=2x102Bey =1, og=1; y=7x103wg Bg=1.59
(3)  B=67x102Ber §=3; o=l y=028wy 8g =2.11

Finally, in Fig. 7 the value of the origin of the perturbation 6y where the growth rate has

its maximum is displayed versus the normalised beta, at fixed values of the sheath conductivity
and magnetic shear. At values of B, below the ideal threshold the eigenfunction is mostly
determined by the sheath physics through the boundary conditions. Consequently, 6y lies

halfway between the end plates (corresponding to 8 = 7/2). When the normalised beta is close



and above the ideal threshold, the ideal instability sets in and 6y moves toward the outer mid

plane of the torus, corresponding to 8 = 7.

/2
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Fig.7: Dependence of 8g from B, | Ber. Case with § =1, 0 = 1.

5. DISCUSSION

In this paper we have carried out a stability analysis of modes driven by combined pressure
gradient and unfavourable curvature in SOL plasmas. The work has mainly been devoted to the
study of the dependence of the growth rate on the conductivity of the Debye sheath close to the
end plates. A similar problem has been studied in the electrostatic limit in Ref. [15]. Our
analysis 1s based on an electromagnetic model and yields substantial new results.

First of all we studied the problem at values of beta normalised much smaller than the
ideal critical threshold value, by means of analytical techniques (in section 3) and a numerical
technique (in section 4). In this limit the growth rate of electrostatic perturbations is determined
by the electron mean free path, leading to finite Spitzer conductivity of the SOL. Our analysis
showed that the stability of electromagnetic modes is determined by the finite Debye sheath
conductivity. We found that the key parameter governing the instability is o,, which is mainly
determined by the density of charged particles inside the sheath. The growth rate is related to the
SOL and sheath temperatures T and T¢¢ as well, but this dependence plays a less critical role
than in the electrostatic model. As a consequence, an electromagnetic instability at low beta can
arise also in the collisionless limit.

At high values of the normalised pressure gradient S+, but still lower than the ideal
threshold, resistive modes smoothly transform into ideal modes, which are only slightly

affected by the sheath conductivity. This transition, which cannot be described in the

14



framework of an electrostatic model, has been analysed numerically in section 4. In particular,
we have considered the influence of the shear of the magnetic lines of force on the growth rate.
We showed that it has a stabilising effect on ideal modes, as for balloning modes inside the last
closed flux surface. On the other hand, at small values of ., it can lead to an enhancement of
the growth rate.

Our results can be applied to a tokamak plasma with a poloidal single-null divertor
configuration. The analysis gives some insight into the dependence of the growth rate on B, as
discussed in section 3. The presence of a X-point in the poloidal magnetic field leads however
to a dramatic enhancement of the length of the lines of force and of the magnetic shear in the
region close to the X-point itself. Consequently, an accurate description of the interchange

instability in a divertor configuration requires further investigations.
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APPENDIX:
AVERAGING METHOD FOR THE SOLUTION OF ODE

A method for solving Eq. (17), which is a second order linear ODE with non constant
coefficients, is discussed here. Since accurate analytical solutions of Eq. (17) are unknown, we
shall refer to a technique of approximate solution developed by Bogolyubov, known as the
method of averaging. A brief derivation of the basic formulas is outlined in Ref. [21] and the
method has been applied to the ballooning mode investigation by one of the authors together
with Yurchenko in Ref. [18].

We exploit the fact that in the limit § << I the coefficients of Eq. (17) exhibit both a slow
non periodic dependence on the poloidal angle over an interval of length // § and a fast
oscillatory behaviour due to the presence of the curvature operator G. In order to combine the
two different scales of the problem we introduce the slow variable t = § (68-8)).

By the substitution @= _v/ \/g Eq. (17) is recast into a Schrodinger-type equation

dz_v
02 -Vy=0 (Al)

where the effective potential is

§2 d2 f 2 * 2 tsin@ + cos @

T
NI 141

The potential (A2) is a slowly changing well with rapid oscillations superimposed. We

P

2
t

average it over a fast period. Slowly and rapidly changing parts are introduced

_ I 27
V=— [V(.0)d6 (A3)
2
0
V=V-V (Ad)

In the same way the solution of the problem is split into a slow and an oscillatory part
v=y(1)+5(1.0) (AS)
The slow solution satisfies a differential equation analogous to Eq. (A1)

d’v
dr?

—(V)¥y=0 (A6)
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where the modified potential (V) can be expressed by a series in the smallness parameter §. Up
to second order in § it reads

§? B?

V)= LT2-2
v (th)z P 1+12 (A7)

The oscillatory part of the solution turns out to be fully determined by the slow part. It

satisfies the following equation

~1

d’ -
102 -Vy=0 (A8)

Up to second order in § Eq. (A8) is easily solved by successive integrations leading to

tsin@ + cos@ _

{1:—2 *
i p 1412

(A9)

Eq. (A6) cannot be solved analytically for the potential (A7), indicating that so far we
took no advantage of the application of the averaging method. Neglecting terms of order I'? and
,8*2 in the modified potential (A7) however, the averaged equation (A6) coincides with the

starting equation (A1) in the case 8, = 0, which admits an exact general solution
¥ =+/1+1* (A+ Barctant) (A10)

where A and B are arbitrary constants. Inserting this latter result into relation (A9) allows to
evaluate the oscillatory part of the general solution of Eq. (A1) to the same accuracy in 3,. The

general solution of Eq. (17) to first order in B, reads therefore (Cf. Eq. (23))

tsin@ + cos @

(All)

=(A+ Barctant)| 1-2 B«
() ( )( B 1472
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