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ABSTRACT

The linear stability of the 'Scrape-off-Layer” (SOL) with respect to interchange-type modes is
studied using the reduced MHD model and applying a ballooning approximation to the
perturbations. 'Line-tying' boundary conditions are used at the target plates. Employing a
metric determined by the magnetic field geometry, the influence of the X-point on stability is
assessed. The effect of relevant parameters like X-point height, magnetic shear, and plasma
shaping is qualitively determined. It is demonstrated that the calculations for experimental
configurations and those based on an analytical equilibrium model yield good qualitative
agreement.

It is shown that the SOL plasma just outside the separatrix can become unstable more
easily (i.e. for lower pressure gradients) than the plasma just inside the separatrix where the
magnetic well is stabilising. This finding is used to propose a model for the occurrence of giant
ELMs. The interchange instability in the SOL acts as a precursor and is mainly localised near
the X-point, but may also have a strong signature just above the outer midplane. The model
provides a natural explanation for the occurrence of three different time scales in a giant ELM,
and an estimate for the ELM repetition time is given. The scaling of the repetition time with

power and current is shown to agree with experimental results.

1. INTRODUCTION

In tokamak H-mode experiments specific plasma activity is observed at the periphery of the
plasma column in the form of edge localised modes (ELMs) [1]. The ELMs are MHD-type
perturbations [2] with widely varying amplitudes and repetition rates. Following the
classification of Doyle et al. [3] we concentrate on the so-called 'giant ELM', which occurs
when the core plasma inside the separatrix is close to the ideal MHD ballooning limit. From
MHD studies of ELMs in JET it has become clear that crucial elements are a local steepening of
the edge pressure and current density profiles during the H-mode phase. Moreover, ELMs can
occur at B values far below the ideal ballooning limit. This implies either that the MHD
calculations are not complete or that the ELMs are not pure ideal modes (see e.g. [4]). In this
paper, we analyse more carefully the first possibility by taking into account the role of the
separatrix and especially of the X-point on plasma stability.

The tokamak edge plasma includes a part of the core plasma and a scrape-off-layer part a
few Larmor radii inside and outside of the separatrix. These two regions have quite different
topology with open and closed magnetic field lines. Due to MHD activity these two areas can
interact. Therefore, the edge plasma plays a critical role in the behaviour of the entire plasma. At
the initial stage of the tokamak discharge the modified resistive interchange and drift instabilities
occur at the boundary resulting in large turbulent transport there. This turbulence can be

transferred into the centre of the plasma column due to pumping mechanisms or due to the radial



mode structure. This plasma state corresponds to L-confinement. With increasing edge
temperature the dissipative instabilities become weaker, the (turbulent) transport coefficients
decrease and the gradients at the boundary get steeper. The profile of the pressure, (along with
temperature and density) becomes increasingly more step-like. For large enough gradients
Larmor radius stabilisation or shear flow stabilisation take place and turbulence is suppressed
and the H-mode is set up [5]. Moreover, the development of a step-like pressure profile in the
H-mode will lead to unstable MHD surface modes, which may explain the essential properties
of the ELM phenomenon.

We artificially divide the stability problem near the plasma boundary into regions inside
and outside the separatrix. These two regions are actually tightly connected but in order to gain
some understanding it 1s useful to treat them separately. Inside the separatrix there is a magnetic
well making the plasma more stable with increasing pressure, but outside this effect is absent,
so that the plasma there can be more unstable than inside. Naturally the energy source outside
the separatrix 1s much smaller than inside, but this region can trigger the main internal release of
the free energy. An additional motivation is given by the fact that the stability of the plasma
outside the separatrix is relevant in its own right for the SOL characteristics.

In section 2 we introduce a suitable system of coordinates, allowing substantial analytical
simplification. Section 3 is devoted to the derivation of the MHD stability equation valid near
the separatrix and includes a specific form of the energy principle, which can be useful for more
general calculations. In section 4 numerical solutions of the stability equation in the region
outside the separatrix are presented. In section 5 approximate analytical stability conditions are
derived. In section 6 we apply these results to the description of ELM events and to estimates of
the physical effects which follow from this model. In section 7 we briefly summarise and
discuss the main results and conclusions. Appendix 1 contains a brief derivation and
discussion of the coordinate system used, while in Appendix 2 the stability equation is cast in a

simplified form valid near the X-point.

2. THE SYSTEM OF COORDINATES

For the description of the magnetic field geometry near the separatrix we choose the following
orthogonal system of coordinates, where p 1s a flux surface label, ® an angle-like coordinate on

the flux surface and @ the usual toroidal angle. The line element is given by:
ds* = hjdp® + hido? + R*dg?. (1

In experimental JET equilibria these coordinates are constructed numerically. Then hy and
hy, are given numerically at each grid point. For the analytical and, as will be demonstrated, for

the numerical stability analysis near the separatrix a coordinate system can be used where the



coefficients hg and h(zn have been taken from the straight cylinder model (see Appendix 1).

Near the separatrix the metric coefficients can be written as
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In the following we define h = hy = hgy. We also introduce

=R(p.) =Rg +x(p,w), (3)

where
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The expressions (2), (3) and (4) are correct near the separatrix p << 1, which in usual
notation simply denotes that the distance from the separatrix has to be much less than the radius

of the plasma column a. In an elongated plasma such as JET we distinguish the two semi axes a
and b and have b = y. Near the X-point expressions (2), (3) can be further simplified to:

2
2_ Yo 1
T [m2+92]1/2’ v
NNV 172
x(p.@) = (+/— )\/_ {p+(u) +p) J . (6)

3. THE PERTURBED MHD EQUATIONS NEAR THE SEPARATRIX.

The stability equation for ideal MHD perturbations considered here is the usual ballooning
equation [6], [7], [8] which is rewritten by taking into account the specific properties of the

system of coordinates introduced:
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Here we have used the eikonal [4] representation for the perturbed electrostatic potential:



o(t,p.@,p) = o(p. ) - exp(—yl + injo(:)o q(p,0’)dw’ - in(p), (8)

where n 1s the toroidal mode number, q is the local safety factor, and w( is an arbitrary
parameter which has to be chosen so that the maximum growth rate is obtained [6]. The basic
assumption 1s that the perturbation is localised at a field line (nq>>1) and that small terms of the

order of B% / B?‘ are neglected. The safety factor is given by
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is a quantity that characterises the magnetic shear in the equilibrium. In Figure 1 the derivatives
Xp = dx/dp and x,, = dx/dw are displayed. These characterise the curvature of the magnetic

field lines.

The equations divB =0 and rotB =0 define the dependence of the components of the
magnetic field on the poloidal coordinate :

ho(M)R()
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and

Bj = By(p,®) =By(n)- (12)

Equation (7) also can be derived from a simplified energy principle [9]. This principle can

be written in vector form as a sum of the kinetic and potential energy:
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with



dV = hyh,Rdpdade. (14)

In the right hand side of equation (13) the first term describes the inertia of the plasma, the
second one represents curvature effects, the third term describes the Alfven waves and the last
one accounts for the equilibrium current effects, and does not play a role for ballooning modes.
In the ballooning approximation (8) (with nq >> 1) this expression can be simplified to (the

term with the current disappears in this approximation):
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4. STABILITY ANALYSIS: NUMERICAL RESULTS.

We now present numerical solutions to the stability equation (7) using a standard finite
difference method with variable grid spacing. Instead of the approximate expressions (2) for the
metric coefficients we use the exact ones given in the Appendix. As explained in the
fundamental paper by Connor, Hastie and Taylor (1979) [6], the parameter ® in the shear
integral (10) must be varied and the physical solution is obtained by selecting the most unstable
case. Other important parameters are the distance p to the separatrix, the value of the shear
parameter S, and the distance between the target plates (where the eigenfunctions have to
satisfy line-tying boundary conditions) and the X-point. The effect of these parameters on the
growth rates and especially on the critical B (or B* ) will be detailed below. In Figure 2 a
generic case is shown for a typical set of JET-relevant parameters

(RO =1.5m, y, =1.0m, B, :3.0T). Shown is the growth rate of the (most unstable)

fundamental mode as a function of ®, for three values of the parameter

4n dP,
Bﬁ , dp’

B (16)

and using p = 0.03, while the coordinates of the end plates are oy =-n/4,0 =2n+n/4.

The normalised B is connected with the usual toroidal B, = 4nP ——— by the relation
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The most striking aspect in Figure 2 is the strong variation of the calculated growth rate
when g 1s near the X-point (i.e. 0 or 271 ). A local minimum is reached at the outer side of the
X-point (in fact, for B: 0.0025 the mode is stable there), and the maximum growth rate is
found at a short distance (of the order of the flux coordinate p) above the X-point. Special
attention is drawn to the characteristic feature that another two maxima with exactly the same
value as the first one are present in the growth rate curve. The second one is near the outer
midplane (but somewhat above it), while the third is just above the inner side of the X-point.
This particular feature of the curves can easily be explained by looking at the behaviour of the

shear integral (10) through the SOL. The main contribution to the integrand dq/dp (for
Sp = 0) is due to the dependence of the metric coefficients on p:

0 oh? 21 exp(4p) + 2exp(2p) — 3exp(3p)cos®
p p (1-2exp(p)cos® +2exp(2p))

where we have again used the general expression for the metric coefficients (see Appendix I)
rather than expansions (2) valid for p<<l.

Near the X-point we have cos® =1 and for ® << p << the numerator in the above
expression is approximately equal to —p, and hence the integrand results in a negative
contribution to the shear integral. For larger @ the expression changes sign. For @ = /2 for

instance we obtain
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Because the change of sign of the integrand, and since the denominator in (17) is small
near the X-point, the shear integral has the typical behaviour as depicted in Figure 3.

From Figure 3 the explanation for the three distinct points where the maximum growth
rate 1s found in Figure 2 becomes obvious. In the stability equation (7) the parameter w, only

appears through the function C, i.e. through the shear integral. Scanning over the parameter o,
starting from ©,, we encounter the first point of maximum instability, (wo)]. From Figure 3 it

then transpires that for 0y = (000) we get
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and since the first integral on the right hand side is identically zero, the shear integral and the
function § are identical for the two values @ = (), and ®q =(w),. Hence the stability

equation is also identical for these two values, and evidently the resulting growth rates and



eigenfunctions must be identical, too. The same applies to the third maximum on the stability
curve. Thus, it is clear that the reason for the ocurrence of the three identical maxima is the non-
monotonic behaviour of dq/dp as a function of o along a flux surface in the SOL. It is to be
noted that inside the separatrix this sort of behaviour is absent because dq/dp is always
positive there (in this analytical model). It is also clear from Figure 3 that the inclusion of the
second component of the shear can substantially alter the behaviour of the shear integral for
realistic values of S (of the order of unity). The behaviour of the shear integral as depicted in
Figure 3 is typical for the SOL in diverted plasma configurations, and is not just an artefact of
this model equilibrium. To demonstrate this, we have numerically calculated (using the code
GRID2D, see Simonini et al.) the metric quantities and the shear integral based on EFIT data for
shot 31300 (time slice 56.1s). The resulting shear integral is shown in Figure 4. It is clear that
the global shape of the curve is very similar to Figure 3 (obviously the coordinate ® is not
defined the same in the two graphs). Correspondingly, the shape of the growth rate curve at
fixed [-3 is similar in the experimental configuration as well (Figure 5). An important conclusion
from this comparison is that the analytical equilibrium model has a very good qualitative
agreement with the experiment.

An alternative, and experimentally more meaningful way of solving the stability equation
(7) 1s to set the growth rate y equal to zero and solve the equation for the critical (marginal)
value of B defining the onset of instability. In figures 6a,b the results of this calculation are
presented for various values of the shear parameter S.

In line with the standard interpretation, the physically most relevant points on these
graphs are those corresponding to the most unstable case, i.e. the minimum value. Obviously,
the presence of the three identical maxima in figure 2 translates itself in three identical minima in
the curve for S = 0. The numerical value of B at the X-point (g = 0) can be compared with
the analytical estimate (35). In the same scaling as used in Figure 6a, the analytical estimate

becomes
(B) = 0012 (Bior ~ 107 <1077) 0)

which differs by a factor of about 3 from the numerical results. Since the analytical estimate was
obtained using a constant trial function approach, the agreement is really quite good (obviously

the trial function approach must necessarily overestimate the stability boundary). Also the global
shape of the marginal stability curve and the influence of S are represented quite well in the

analytical approach.

Two further features are noteworthy in figures 6a, b: firstly, the position of minimal
critical B changes as S is increased, and for large enough shear the minimum value is actually
found below the X-point. Secondly, the dependence of the minimum (physical) ch on Sy is

not monotonic. Initially, for low values, the influence of this shear component is stabilising



(compare the curves for 0 and 1), but for larger values the stability boundary is actually
lowered.

Next we have a look at the effect of the X-point height (expressed in terms of the value of
the coordinate w at the target plates). In figure 7 we show the ch curves for Sy =0 and three
different positions of the target plates.

It is clear that for w( above the X-point, the distance between the X-point and the target
plates 1s rather unimportant. As expected, placing the target plates closer to the X-point does
exert a stabilising influence, but unless the X-point gets very close to the target, the influence is
really negligible. This feature can be explained by noting that the main effect really comes from
the total connection length between the target plates, and at flux surfaces close to the separatrix
the dominant contribution to the connection length comes from a very localized region near the
X-point. It is anticipated therefore that as one goes further out into the SOL, the (stabilising)
effect of the target plates becomes more important. The dependence of ch on the distance to
the separatrix is depicted in Figure 8 (again for Sy = 0).

It is found that ch is lower at the flux surface further out (i.e. a smaller pressure
gradient would suffice to generate an instability), but one has also to take into account that the
pressure is largest at the separatrix, which would favour modes localised near the separatrix to
become unstable first. In figure 9 we have plotted the minimal (i.e. the physically relevant)
value of ch on each flux surface as a function of p for various values of the shear parameter
S, All curves are of the form ¢ + pcy with cp<<cy. Thus, (ch) min is nearly constant over
the SOL and the instability would therefore first appear near the separatrix where the gradients
are larger.

However, finite dissipation damps the infinitely localised modes, and the most unstable
mode would have some finite width (of the order of the SOL width) and be effectively driven

by an average pressure gradient over this region. Therefore, to get an estimate of the toroidal
plasma B required to yield instability in the SOL , we approximate

9Py - R : (21)
P
Taking the minimal value of ch for p = 0.03 in Figure 8, we obtain
47P, _
By =| —52| =3.0x107, (22)
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5. STABILITY ANALYSIS: ANALYTICAL APPROXIMATIONS

After normalisation equation (7) has the simpler form:
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R =R/R(m), h = h/h(m). Here we have used the relations (11), (12) between the metric
coefficients and the components of magnetic field.

We now rewrite this equation in a form that is more convenient for analytical treatment.
The first derivative in (23) is eliminated by introducing the new function u(w) defined by

o(w) = v(o)u(m), where v(w)=1/ (f/f{) with f = (l +§2). Then the equation for u(®) is

analogous to the Schrodinger equation in quantum mechanics:

u” = V(p,w,m(,Sgp)-u =0, (25)
where the potential consists of two parts
*
V(p,0.00,Sg) = Vy(p.®.®0,S0) + B Va(p.m,00.S). (26)

The stabilising part is

”
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and the destabilising one is
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The typical dependence of V, and V4 on o is plotted in figure 10. The potential is
obviously strongly localised near the X-point.
Equation (23) has been solved numerically in the previous section. Here we present

analytical results that can be derived if the strong localisation of the potential V(®) near the

X-point is taken into account. Then the simplified expressions (5), (6) for the metric



coefficients near the X-point can be used. In the variable t = w/p the differential equation

assumes the form:

d»=0. (29)

Here a new dimensionless beta is defined
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For the new function u(t):

o(t) = s u(t), 31
the equation:
uy; — V(u =0, (32)
1s obtained with V(1) = V(1) + B - Vy(v), where
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Equation (32) can be derived from the variational form (13) which assumes now a simpler

and Fz =

is the normalised growth rate.

form:
E:% J [(u{)2 +V(t)~u2]dt. (34)

Here we can extend the limits of integration up to infinity as V(t) falls off sufficiently fast
for Itl—ee.

The variational form is convenient to estimate growth rates and, in particular, to get a
marginal stability criterion. Choosing as trial function u(t) = ¢, where ¢ is constant, and

setting I' = 0 we find the marginal stability condition.

10



J' i:vm dt=0

The threshold beta that follows from this condition is:

) Jm V,(t)dt Jm (1+t2)—2dt
Ber ===~ = = =0.5. (35)

J-iovs(t)dt Jl{l+(l+t2)”2} (l+t2)—3/2dt

Note that in terms of the parameter B this corresponds to a scaling Boc p'l/z. This

scaling 1s verified in Figure 11. We can rewrite the resulting sufficient condition for instability

B > B, interms of the plasma parameters at the midplane:

Q(T[)24TCP0 > 1 Yo ((AX)O jllz o b ((AX)O ]1/2. (36)
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Here we assume as in Eq. (4) that yg corresponds to the vertical semi-axis, i.e. yg ~ b,

and estimate %P—O as AP—O, where Ap =(Ax),/yo and (Ax), is the pressure gradient length
p P

scale at the separatrix at the midplane (according to present-day L-H threshold theories (Ax),

can be of the order of a few Larmor radii), and Bg(n) is the toroidal magnetic field on the
magnetic axis. The safety factor q(1t) = q(p, ™) near the separatrix is related to the usual q inside
the separatrix g(p)=8®(p)/dy(p), where @ and y are the toroidal and poloidal fluxes

respectively, by the relation:
q(p) =q(m)A, (37)
where

A=(2/m)-In(4n/p) (38)

takes the usual divergence of q near the separatrix into account. The widely used quantity
Q95 = q(p = —0.05) is for our model related to g() by:

do.95 = 3-q(m). (39)

It is interesting to compare the result (36) with the result derived in the slab model for the
SOL {10}:

2

(40)
B} L R

11



Here L is the connection length - the distance between the end plates along the magnetic

field line (see Appendix I). We assume that L;; < gR.
The resemblance becomes more transparent and the physical meaning of the criterion (36)

clearer when we rewrite (36) in terms of the pressure gradient near the X-point rather than at the

midplane [10]:

1/2
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where (Ax), = ((Ax)oyo) . The similarity between (40) and (41) is obvious. The result (41)
denotes that the main effect comes from the plasma in a tube with radius of the order p = (Ax),

and length L = gR located near the X-point.

In Fig. 12 a typical eigenfunction for ¢ is shown. Physical quantities like plasma
displacement and the perturbation of the transverse magnetic field are proportional to the first
and second derivatives of the potential ¢ and are more localised near the X-point, as illustrated
in Fig. 13.

It is easily seen that the metric (2) can also be applied inside the separatrix, defined by
p < 0. However, it should be kept in mind that inside the separatrix the magnetic well has to be
included in the stability calculations. This well generates an additional stabilising influence.

We conclude this section by addressing the relation of Mercier's criterion to the
ballooning type criterion (36). It is well known that Mercier's criterion is related to the
behaviour of the differential equation (23) and its solutions for @ — *eo (see for example the
review [11]). For the region outside the separatrix the coordinate is confined to a finite domain,
so that the asymptotic properties of the differential equation do not appear. Therefore, Mercier's

criterion is not relevant for the SOL calculations.

6. ELMS AS EDGE MODES

The physical effects which can be a consequence of the nonlinear development of the
interchange modes are now discussed [12]. We first summarise our physical picture of the
processes involved. Initially, the instability starts near the X-point as derived above. From the
linear stability theory the main parameters of these MHD perturbations are established, which
allows us to draw some conclusions on the nonlinear evolution. The perturbations have a width
of order p and an extended tail as determined from the eigenfunction. The structure in the
coordinate p can be estimated from the metric Eq. (2). Denoting the characteristic scale length

for the pressure gradient at the midplane as (Ax)o, the gradient length near the X-point is given

by:

12



)1/2

(Ax), ={(8x)yy0) "~ (42)

where yqy ~ b. During the MHD phase the plasma in the tube with a radius given by (42) near

the X-point is removed and lost onto the target plates. The energy which is lost during this

event is of the order:
2
AW, = 1(Ax), | Pegye - 27R (43)

where Pe(ge is the plasma pressure at the separatrix. From (43) we can estimate the relative
energy loss:
Ax)? P,
_ wa - Tt( X)X edge
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Here W =2n%a-b- RP, is the total energy content, when the area of the plasma cross
section is approximately mab, and Py is the average plasma pressure.

If we choose (Ax), ~15cm, a ~100cm, b ~200cm, and Pyge /Py ~0.2 then
dx ~0.2%. This value is too small to account for the energy lost during a giant ELM, i.e. the
interchange instability near the X-point can only be considered as some precursor event. This
can explain the experimental result that ELMs initially appear preferentially near the X-point.
When the perturbations near the X-point become sufficiently large they can trigger the
interchange instability in the main plasma.

The scenario can be as follows. After the instability appears near the X-point it expels
plasma from this region and destroys the separatrix locally; it is well known that the separatrix
distortions are largest near the X-point. Both these processes yield a strong plasma interaction
with the end plates or the side wall. This interaction produces a cold “dirty’ plasma with low
conductivity that fills the region near the X-point. This is the first stage of the process. This
new plasma plays the role of 'an effective limiter', which is placed inside the separatrix. Due to
the low conductivity the field lines are no longer frozen to the plasma near the X-point. The
MHD perturbations inside the separatrix have “unfrozen’ boundary conditions and the main
plasma near the separatrix becomes MHD unstable to the usual flute perturbations. This is the
second stage of the process and the mechanism for the appearance of the giant ELMs. In the
third stage there is refilling of the empty region by hot plasma from the centre on the diffusive
time scale [13].

The core plasma interchange instabilities can release much more energy than those
localised near the separatrix. They are macroscopic and for this reason the separatrix effects do
not play an important role. Therefore we can consider the region inside the separatrix with

width a/nq (see below) in the usual quasi-cylindrical approximation. Then the perturbations at



the plasma surface comprise a plasma tube with a width of order a/m (the most unstable mode
have m~nq) and length gR. These perturbations have an effective radial width Aa =a/(nq) and

a global poloidal extent. A plasma layer with width Aa near the boundary is removed during the

nonlinear stage of the global instability. This gives the following estimate for the lost energy:

P
AW = rab—92° 57R (45)
(nq)

From (45) we can estimate the relative energy loss for the global interchange instability:

_ AW _ Poegge (46)

o
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For n~1, g~5 and Pycgee /Py ~ 0.2 this yields 8 = 4%.

The time to restore the lost energy (45) due to heating is:

1 P
= 47
T AW 47

where P is the heating power. The time (47) is the ELM repetition time. Combining (45) and
(47) we find:
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As a very approximate estimate for (48) we can write:
P,
T gy tedee (49)
nq Py

where T = W/P is the energy confinement time. Forn ~ 1, q ~ 5 and Ppegge /Py ~0.2 one

has T=4x10721g ~ 4 —20 msec.

We can rewrite the result (48) in a more physical way by introducing the plasma current I
[12]:

(50)

where (Ax)g is the pressure gradient length scale on the separatrix at the mid-plane. From this
result it follows that the ELM frequency scales linearly with the applied heating power, but

stronger than inversely with the total current. Details of the scrape-off-layer contribute through
the width (Ax)g. However, this dependence is weak.
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The theoretical scaling (50) for the ELM frequency is compared with the experimental data
in figure 14 where the theoretically predicted linear dependence of the giant ELM frequency on
heating power can be clearly recognised. In the relations (47) and (50) P denotes the net heating
power, taking into account power losses by e.g. radiation. In Figure 14 the total input power is
used as the ordinate, i.e. losses are not accounted for. It is found that the experimental results
can be well fitted by subtracting 1.5 MW as losses from the total heating power.

In these JET discharges qos, the value of the safety factor near the separatrix which
defines the width of the surface mode through nq in equation (50), is nearly constant. Thus, an
inverse quadratic dependence for given heating power and magnetic field is predicted with only
a weak dependence on the pressure gradient length Ax,, i.e.

P-P. B,
12(AX)1/2

]

f (50a)

This inverse quadratic scaling with current is also well reproduced by the three curves in

Figure 14.

7. CONCLUSIONS.

The basic result is that the presence of a separatrix changes qualitatively the condition for the
existence of interchange MHD instabilities. For plasmas with a separatrix the edge perturbations
are localised mainly near the X-point. The threshold beta for perturbations occurring just
outside the separatrix has been computed by solving Eq. (7) numerically for JET discharges as
well as for model equilibria. It has been established that the simplified analytic metric Eq. (2) is
reasonably accurate. The analytically derived critical beta for marginal stability (36) agrees well
with the numerical solution. MHD interchange type pertubations in the SOL can become
unstable more easily than the corresponding internal perturbations, which experience the
stabilising effect of the magnetic well.

It is found that the critical beta behaves as Bcr =C;-pCy with C}, C3 >0 and Cp << C

with respect to the distance from the separatrix. The transition zone from closed to open field
lines 1s typically one to several poloidal gyroradii wide and, consequently, the pressure gradient
is largest there. Outside this transition region the pressure is found experimentally to fall off
exponentially. This implies that the flux surface, where the ballooning criterion is violated first,
is very close to the separatrix. The lower threshold further out is compensated by a faster
pressure decay. However, it is also physically evident that the ballooning criterion needs to be
violated over a small region outside the separatrix and the resulting perturbation is given by the
envelope.

It 1s important to note that these perturbations can remove only a small part of the total

stored energy but they do destroy the magnetic separatrix near the X-point. These effects lead to
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a filling of the X-point region by cold and high-Z plasma due to the interaction with the end
plates or the wall of the chamber. This cold plasma with low conductivity acts like effective
target plates for the plasma tube with width of order Aa~a/(nq) inside the separatrix. It
destabilises the interchange instability of the main plasma.

From this scenario we can estimate the frequency of ELMs (50) and its dependence on the
heating power and on the plasma current. At modest heating power the ELM frequency is found
to decrease with P supporting the idea of stabilisation of dissipative (e.g. resistive interchange)
instabilities. The giant ELMs, in contrast, appear as a hard, 1.e. ideal MHD, limit. Their
repetition rate scales linearly with power, as 1s confirmed by the experimental results displayed
in fig 14. The explanation as an ideal beta limit yields the scaling of fol /1% when q9s (which
determines the mode width Aa) is kept constant, otherwise the scaling is fol/ .

The evolution of the giant ELM consists of three steps: firstly the appearance of an
interchange instablility near the X-point causing the influx of cold high-Z plasma on a
characteristic time scale Ty, secondly the trigger of the major interchange instability on a fast
time scale T, and, thirdly, the refilling of the removed plasma layer inside the separatrix by hot
plasma from the centre on the diffusion time scale T3 [13]. Reasonable correlation between the

theoretical predictions and the experimental results is found.



APPENDIX 1. METRIC FOR SEPARATRIX GEOMETRY

It is well known that in cylindrical geometry any harmonic function @ of the complex argument
Z = x + 1y satisfies the vacuum magnetic field equation A® = 0. Therefore, this concept is used
for the derivation of orthogonal flux coordinates for straight cylindrical geometry but allowing
for a plasma shape with a separatrix. This two-dimensional solution is then combined with the
toroidal angle @, in order to provide a suitable approximation to a realistic tokamak geometry

close to the separatrix. The complex function W =y + i@ is introduced:
W=InZ1+InZ2=In(Z1722) (Al.1)

Here In(Z1), In(Z2) are the flux functions for the straight current strings, which are placed
at points with the coordinates (0, yo) and (0, -y,), and Z1=x+i(y-y¢), Z2=x+i(y+y). Separating
the real and imaginary parts in (A1.1) we find:

2 2 2
exp(W)-cos(®) = x“ -y~ +y§

(A12)
exp(y)-sin(m) = 2xy.

For the separatrix it holds that y, = ln(y(z)). In the SOL vy >y, and ® varies between

oy and opy, in the plasma inside the separatrix Yy <y, and ® varies between 0 and 2.
Rewriting the length element (ds)2=(dx)2+(dy)2 in the new coordinates (y,m) we obtain:

(ds)* =

1 exp(2y) , ,
4 (dy)” +(dw) (A1.3)
! 4[Y(4) — 2y exp(w)cos() + exp(2\y)]] 2 [ ]

We replace y by the new coordinate p, which describes the distance from the separatrix:
p =Wy —y,. Inthe SOL p >0, and inside the separatrix p < 0. Near the separatrix Ip I<< | we

can simplify the metric (A1.3) and choose the following model for the toroidal metric near the

separatrix:
(ds)? = h2(dp)” +h2 (dw)? + R*(dg)?, (A1.4)
where the metric coefficients hp and hg are deduced from (A1.3):

h, =h, =h, (A1.5)

2
n2 = Y0 L
5517 5 iz
[1—cos((;0)+p /2]

(A1.6)
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This metric is suitable for the description of the SOL plasma and has to be corrected for
the plasma inside the separatrix as it does for example not take the magnetic well into account.
From the equations rotB =0 and divB =0 we can derive the components of the magnetic

field (11), (12) together with the geometrical parameters. The normalised h is approximated by:

- H1/4
h(p,co):h(p,co)/h(n)z[l o) 7/2]“4, (A1.7)
—cos(w)+p~
where
_ Yo 1 _ Yo .
h(n)—25/4 S & = 5320 (AL8)
[2+p /2
the safety factor is:
he,Bo (A(p. @)
,W) = = , ) ———"—, Al.9
q(p.w) RB, qlp.m) = (AL9)
where
h(m)B
q(p.m) = (WBo(m) (A1.10)

Near the separatrix this quantity depends very weakly on p and the main dependence of q
on p appears due to h(p,®) in (A1.9). The quantity (A1.10) is connected with the more
familiar quantity qg5 by relation (39).

The connection length is L is Ly(p) =1y(p,®11,®@1), where Ij(p,m,@;) is the distance

along the magnetic field line from the outer end plate.

w
Li(p.o.001) = R(m)g(p,n) |  h~2dao. (A1.11)

1

The coordinate ® can be replaced by the poloidal length along a poloidal cross-section of a

flux surface.

w
I(p.o,r)=| hydo. (A1.12)
Wy
The dependencies £;(p.. 1) and #(p,w,m;) for @y = —m/5 are plotted in figures 15a.b.

From these figures it is clear that the major contribution to the field line length originates from

the X-point region.
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The expression (10), which reflects the influence of the magnetic shear, can be split into

two parts:

®

O -0 1 0 =0 \2
h(p,t)%dt + = -—j hp,t)2dt|  (AL13)

Sy

(p.w)

&(p. .m0, Sp) Z[B

where 1n the first term

P
— , Al.l4
apq(pn) ( )

is the shear related to the plasma current and the second term in (A1.13) is connected with the
presence of the separatrix. Typically Sy is of order unity. Far from the separatrix, where the

dependence of the metric coefficients on the poloidal coordinate ® becomes weak, the first term
in (A1.13) has the usual form ®S, and the second one is unessential. Near the separatrix both

terms are of comparable value (for Sg = 1).
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APPENDIX 2

Let us consider in more detail the stability equation for the case of small p,®. In this limit we

can write:
. Yo 2, 2y2]"?
X(p’w)zR—ﬁ p+(p + ) sgn(). (A2.1)
(6]

Where sgn(®) needs to be taken into account only inside the separatrix (p < 0). Outside

(p > 0) it has to be omitted. Then the curvature terms can be expressed as:

1/2

< 1+p/ p2 +0°
0% Yo ( ) 75 sen(o) (A2.2)

—:X =

dp P R,2Y? 172
0 I:p+(p2+m2) :|

and

_ai Yo co/(p2 +c02)1/2

0 ® = 372 1/2
® Ro2 {p+(p2 +a)2) J

>

77 sgn(o). (A2.3)

For simplicity we only consider the case ®y =0 =S. The shear term for small p,® then

has the form:
Lp.00) = -~ /p. (A2.4)
and
f(p.w) =1+ = 1+(w/p)* (A2.5)
The stabilising part V(p,m) of the potential V(p,®) = V,(p,®)+B" - Vy(p,®) becomes:

1
(1 +t2)2 ’

V,(p,w) = (A2.6)

where t=w/p, and

1/2

202 [ .
h* [0 J
Vd(P,(D):—2—p——(—X—C5;%]=V2 Yo ’p'

2 12
(1+<;2) ap R(n)(lﬂz)z/z[(l“z) *1} sgn(w), (A2.7)

for p <0 and
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(full curve) and p = 0.1 (dashed curve).
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Fig.2: Growth rate of the fundamental mode as a function of the eikonal quasi-mode

origin ®y at the flux surface given by p=0.03. The three curves are for
B= 0.01,0.005,0.0025 (top to bottom). The divertor target plates were positioned

at a distance /4 below the X-point. Other parameters for the equilibrium are

Sy =0,Rg=1.5m, y,=10m, Byg=3.0T, By o(p.@=1)=0.1(Rph(p.7)) ' T.
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Fig.3: The shear integral J-?)—q-dm for the equilibrium parameters used in figure 2
P
Wy
(full curve) and for Sq = 1, 2 and 5 (dashed curves). The three points where the

maximum growth rate is obtained for Sy =0 are indicated by vertical lines.
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Fig.4: The shear integral J.g—gdm calculated at a flux surface a few millimeters
L
away from the separatrix in the SOL, for a JET experimental magnetic
configuration (shor 31300 at time 56.1). The metric quantities were calculated
using the GRID2D code (Simonini et al.), based on the magnetic equilibrium

reconstruction with EFIT.
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Fig. 5: The growth rate as a function of oy for the same case used in Figure 4, and

with B = 0.001.
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Fig. 6a: Critical (marginal) value of B as a function of o, for different values of the

shear parameter Sy. The other equilibrium parameters are as in Figure 2.
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Fig. 6b: An enlargement of the region near the outer side of the X-point in Figure 6a.
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Fig. 7: Critical value of B as a function of w for target plates ar “distances’ (in the coordinate ®) of 0.25r,

0.1n, and 0.05n below the X-point. Other equilibrium parameters are as in Figure 2.
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Fig. 8: Critical value of B as a function of ®q at two flux surfaces, p=0.03 and p=20.1, with target plates

0.11 below the X-point. Other equilibrium parameters are as in Figure 2.
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Fig. 9: The minimal value of ch on each flux surface as a function of p for S, =0, 1,2, 3 and 4. Other

parameters are as in Figure 8.
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Fig. 10: Typical behaviour of the potentials V (dashed curve) and Vi (full curve) defined in eq. (27), (28), for
Wo=Sp=T=0and p=0.03.

30



0.010
0.008—
0.006(-
0.004
0.002- ’
0 l 1 | | %
0 0.02 0.04 0.06 0.08 0.10

p

Fig. 11: The numerically calculated ch for wy = 0 and Sy = 0 as a function of p (full curve). The dashed
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curve gives a p 172 dependence assuming identical values at the smallest r.
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Fig. 12: Tvpical eigenfunction for ¢ as obtained from the numerical solution of eq. (7). for p= 0.03, S5 = 0,
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W =-3 and @, selected to give the minimum B,
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Fig. 14: ELM Frequency plotted as a function of total input power (radiation losses are not taken into account)

for a sequence of shots from the 1994-1995 campaign.
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