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Abstract.  The effect of a electron temperature gradient on the I-Vy, (electron current-
d(Inr)

eav,

voltage) characteristic of the Langmuir probe is analysed. We find that [ ™" does not

simply represent the local electron temperature when the temperature gradient is taken into
d(Inl)

b

account. [ 7' obtained from the probe measurements corresponds to an effective

temperature, which is approximately the electron temperature a mean free path away from
the probe, the electron energy for calculating the mean free path being that of electrons
which are able to overcome the probe potential. A method of measuring the electron

temperature profile using the probe is suggested.



I. INTRODUCTION

Langmuir probe is one of the oldest and simplest diagnostics used for measuring
low temperature plasma parameters (Langmuir 1929). One can easily apply a voltage to a
probe and measure the current to find the I-Vy, (electron current and voltage) characteristic
of the probe, from which the electron temperature, floating potential, and density are to be
determined. However, the complexity in the interpretation of the I-Vy, characteristic of the
probe is not generally fully recognised (Stangeby 1989).

Recently it was shown that large modifications of plasma sheath can result when
the electron temperature gradient is taken into account (Wesson 1995). This is due to the
combined effect of the dominance of fast electrons and the rapid decrease in collision
frequency with increasing particle velocity. The sheath is found to be dominated by the
distant temperature when the mean free path of a thermal particle is greater than 1% of the
length characterising the temperature change.

The purpose of the present work is to examine the effect of the electron
temperature gradient on the I-Vy characteristic of the Langmuir probe.

When the probe potential is lower than plasma potential, electrons with low initial
energy are repelled by the potential difference. Only the fast electrons with an initial kinetic
energy larger than the potential energy are collected by the probe. If the electron
temperature is higher away from the probe, high energy electrons in the remote plasma
contribute to the probe current, and these electrons have a velocity distribution which is
characterised by the electron temperature some distance from the probe. For a given
electron velocity the characterising temperature will be that at the position of the last
collision. Thus, this temperature is that at a distance of the particle's mean free path from
the probe. Since the mean free path increases with the particle velocity, the characterising

temperature is a function of the electron velocity.



Thus, the electrons collected by the probe have a velocity distribution quite from
different from the local one and have a higher effective temperature.

In Section 2 our model and analysis are presented. The electron saturation current
is calculated in Sec. 3. A more general expression for electron current is given in Sec.4.
The electron temperature inferred from the [-Vy characteristic is analysed in Sec.5. A
method of measuring electron temperature profile is suggested in Sec.6. The effect of

potential gradient is given in Section 7, and the summary is presented in Sections 8.

2. Model and analysis

We consider the single langmuir probe, the direction in which the electron
temperature varies being denoted by x.

The electron current density at the probe is

—oo

j=e J f(0,v) vdv (1)

0
where f(0,v) is the electron velocity distribution at the probe position, x=0. Since, in the
absence of a collision, f is constant along a particle trajectory, we can approximate f(0,v)
by

f(0,v) = f[x,v'(x)] (2)
up to the distance of the last collision, the velocity v'(x) being related to the velocity at the

probe surface by the energy conservation equation

%—m vZ-eVy =%m v2(x) - € 0(x) 3)

where ¢(x) is plasma potential at x, Vy, is the probe voltage, e is electron charge, and m 1s
electron mass.

In general we need to know T(x), n(x) and ¢(x) for calculating the electron current
density j. However the physics will be clearer if we first neglect the role of effect of n(x)
and ¢(x) outside the probe sheath. The more general case will be considered later. Thus

putting ¢(x)=Vp and substituting eqs.(2) and (3) into eq.(1),



j=e J flx,v'(x)] v' dv' (4)
VC
where Vc=2¢(Vp-Vp)1/2/m, Vp denotes the plasma potential outside the probe sheath, and

the electron velocity distribution f[x,v'(x)] is assumed to be a locally non-drifting

Maxwellian,

12

fx,v'(x)] = ng(—a—)"2 exp(

- ) (5)
27rT(x) 2T,

Taking x=A(v'), where A is the mean free path, and noting that (see Wesson

(1987))
A(v)=4hoy? 6)
where y=—;—mv'2/1" o and Ag being the mean free path at T=T, we find the electron current
B 1/2
I= Aeng (—7—"0—)”2 J- ( 7y ) exp(—zq—)i) dy )
2m eV, =V, Ty T(y)

Ty
where A is the probe area, and T(y)=T (x) "
When T(x) is constant , T(x)=To, and eq.(7) leads to the simple expression

I=1 exp(w) Vp<Vp )

0

where

I;=Aeng (—Ti)”2 ©)
2m

Eq.(8) is the conventional probe theory result.

When T(x)>Ty, it is evident from eq.(7) that I is larger than that obtained with
T(x)=Tg. This is due to the contribution from the remote electrons which have a higher
energy. These electrons can overcome the probe potential and be collected by the probe.

In general numerical calculation is needed to find the values of I for a given
temperature profile. However, analytical expressions can still be obtained in some limiting

cases, and those could be useful for experimental purposes.



3. Electron saturation current
When Vy=V), the electron current is at its saturation value. Defining L as the scale
length of the temperature gradient, and the constant T as the electron temperature at x>>L,
the electron saturation current is found from eq.(7) to be
I=1 4y <<L (10)
=1 (;—"")“2 4rg >>L (11)

0
Comparing with the result obtained in the case of T(x)=Tp, eqs.(10) and (11)

indicate that the electron saturation current is essentially not affected by the temperature

gradient when 4Ag/L <<1 but is increased by (%)” ? times when 4Ag/L >>1.

0

The physics of eqs(10) and (11) is clear. When 4Ag/L <<1, the temperature of the
electrons being considered is approximately Tg. Therefore, eq.(1) is the same as that
obtained with T(x)=Tg. When 4Ag/L >>1, the temperature of the remote electrons is
increased to T, so that the I of eq.(11) is also increased.

In general, I is given by

T
I =[5 (=L 12
s ( T, ) (12)

in the case V=V, where Tefpy is defined by

1/2
T, T T T
(_ffi)”Z:J'(_O-) exp(———o—)i) dy (13)
T, 0 T(y) T(y)

Obviously, Tg € Tefio <T... Tefio = To if 4Ag/L<<], and Tefrp = T, if 4A0/L>>1. So we
see 4Ag/L is the key parameter in determining the magnitude of the electron saturation

current.

4. Electron current for V<V,
Experimentally the probes often work in the range V<V to repel the electrons and

reduce the probe current. From eq.(7) the electron current collected by the probe is



V,-V
= Iscxp(—e(—b——”)) c<<l1 (14)
0
V,-V
I=1I (%)“2 exp(&—TT—’ﬁ) c>>1 (15)
where
V,-V
c= 410 (e( b p))z (16)
L T,

Eq.(14) is the same as the conventional theory with T(x)=Tp. In the limit c<<1,
the main contribution to the probe current is from the remote electrons that their mean free
path is smaller than L, so the temperature of these remote electrons is approximately Tg and
the I given by €q.(14) is only dependent on Tg. On the opposite limit, c>>1, the mean free
path of the remote electrons that contributing to the probe current is larger than L, and the
temperature of the remote electronsis 7. In this case the I given by eq.(15) is dependent
on T rather than Ty.

In general, I is given by

T V, -V
1= (L xp e = Vo), (17)
T, Tejf
where Teff is defined by
T e(V, -V ? v
G o= [ () ew-Tyey
TO TEIf e(V,=V,) (0 T(y)

Ty
Obviously, Tg < Teff <T... Ter =Tg if c<<1, and Tegr =T if ¢c>>1. So we see that ¢
is the key parameter in determining the magnitude of the electron current for the case

5. Electron temperature inferred from I-Vy characteristic

From eq.(7) it is found

al e T, eV, -V )
=I5 [(75)? exp(———2-
dv, T,” T, T,

)]1=Lc (19)



The ratio between I and gives the information about electron temperature.

b

Defining

d(Inl)__
Ty= [?(dv;)-] : (20)
Ty is conventionally understood as the local electron temperature measured by the probe.
When T(x) is constant , T(x)=Ty, it is found from eqs.(7) and (19) that Tp= Tp.

When electron temperature is increased with x, Ty contains the contributions both
from the local electrons and from the remote electrons. Therefore, Ty have different
meanings for different plasma parameters.

In the case Vp=Vy, it is found from eqs.(10), (11) and (19) that

Ty= To 4ho/L<<1 (21
Ty= (T_Tg)!/2 4Ao/L>>1 (22)
The general expression for the case of Vp=Vp is found from eqs.(12) and (19)
To= (TefroTo) /2 (23)
where Teffo is defined in eq.(13).
In the case Vp<Vp, it is found from egs.(14), (15) and (19) that
Tp= To c<<l (24)
Te=T, c>>1 (25)
The general expression for the case of V<V is found from eqs.(17) and (19)

To= {(T ;T o))" expl(e(V, — V., )( Tl . 26)

(x) Teﬂ'

where Teff is defined by eq.(18), and ¢ is defined by eq.(16).
Assuming for a plasma Tp=25ev, n=5 x 1019m-3, the effective Z is Zef=2, L=1m,
and [e(Vp-Vp)/To] =6, it is found that Ay/L.=4.6 x 10-2, c=6.6. Then eq.(25) leads to
Ty=T.,
However, if To=5ev, [e(Vp-Vp)/To] =4, and the other parameters are the same as above, it

is found Ag/L=0.18 x 10-2, ¢ = 0.1. Then eq.(24) indicates



Ty = To

So we see that the meaning of Ty, depends on the plasma parameters the probe
measured. On the other hand, eqs.(24) and (25) suggest that it is possible to use the probe
to measure both the local and the remote electron temperature. When the probe voltage is
swept in the region C<<1, Tp= To is obtained. When the probe voltage is swept in the
region C>>1, Ty =T, is obtained.

When C>>1 or C<<l, the detailed profile of the electron temperature is not
important and we only need to know the value of Tpand T,..

When C~1, the electron temperature profile is needed for calculating Tp. An
example of the calculation of Ty as a function of e(Vp-Vp)/Tq is shown in Fig.1 for the
temperature profile

T=To+ (T, - Tp) tanh(x/L)

and T_=2Tp, where curves T1 and T2 correspond to 4Ag/L=0.1 and 0.01 respectively.

6. Mesurement of temperature profile using probe

Eqs.(26) and (18) can be used to calculate the probe electron current for a given
electron temperature profile and the value of (Vy-Vp). However, it is a inverse problem
experimentally. That is, to obtain the electron temperature from the measured values of the
current and voltage of the probe.

It can be found from eq.(19) that

dl
e_—__
dv Lc e(V,=-V, ) dT _
Tp= b=T, {1+ 1+ Poj——)iL 27
p= g ol 2T0[ T 1o e @)
av:

Eq.(27) gives a simple formula for obtaining the electron temperature profile. For a
group of measured values of Tp obtained by swept the probe voltage, it is possible to find a

particular temperature profile that satisfies eq.(27)



Since the temperature gradient is smaller for higher temperature plasma and the
remote plasma has a higher temperature, it is reasonable to assume that the temperature
gradient is small at x=Lc and the second term on the right hand side of eq.(27) can be
neglected, then eq.(27) is simplified as

Tp=T,) L (28)

When T(x)=To is assumed, it is easily to find that Tp=Ty. So that Ty is a constant
in this case and does not depend on the values of (Vy-Vp). When T(x)>T, Tp is varied
with (Vp-Vp). Tp is changed from approximately To to7,, when (Vp-Vp) changes from

zero to large negative values.

7. Effect of potential gradient
For simplicity we assume plasma density is constant. Electron force balance
requires
nVT=neVo (29)
Above equation gives
e(@(x)-Vp) =T - To (30)
Using eq.(3), it is found
%mv2—eVb= %mv'z(x)—eVD-T(x)+To (€3]
Defining c1 as

42,0 [e(vp - Vb) + T(x) _ 1]2
L T, T, o

c1= (32)

With a derivation similar to previous section and the assumption SKoEyfl“ 0<<1 for

y>Lc1/4Ag, it is found that both I and obtained in Sec. 4 and 5 are reduced by a

b
factor exp(To/Tefr-1). However, the expressions for Ty is not changed. The valid regions

of the solution found in Sec. 4 and 5 are modified by replacing ¢ with cj.



8. Summary
In the present work the effect of a electron temperature gradient on the I-Vy

characteristic of the Langmuir probe is analysed. We find that sz[‘—j—(dlr\]lﬁ]" does not
€ b

simply represent the local electron temperature when the temperature gradient is taken into
account. Tp obtained from the probe measurements corresponds to an effective
temperature, which is approximately the electron temperature a mean free path away from
the probe, the electron energy for calculating the mean free path being that of electrons

which are able to overcome the probe potential. The meaning of Ty depends on the
42 €Vs=V,)

- y*. In the limit c<<1, Tp=Tg. On the
0

magnitude of the parameter c=

opposite limit ¢>>1, Tp=T_.

£SY

A method of measuring electron temperature profile is

suggested.
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Fig.1: Ty versus V, =e(V,-V /T, for T.=2T, Curves Tl and T2 correspond to 4A/L=0.1 and 0.01 respectively,
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