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ABSTRACT

A generic reflectometer is modelled as a device for launching and receiving radiation at a
number of microwave frequencies, uniformly distributed over a specified bandwidth. The effect
of density fluctuations is modelled as a phase error at each frequency. The phase distortion has
a known correlation length in frequency space, allowing a semi-analytical prediction of the
resultant error on the time delay. Specific techniques are compared to the generic model:
Frequency sweep, differential phase, AM and sine FM modulation. There is no significant
difference between them and the model in their response to the same type of phase error. An
implication of the model is that there are situations where profile details are unrecoverable by
certain types of reflectometer on a short time scale. These arise when the phase fluctuations are

strong and the phase correlation length short, conditions found in the plasma edge.

1. INTRODUCTION

There are a number of measurement techniques available for reflectometry of fusion plasmas. In
effect, all of them rely on measuring the group delay of the launched radiation as a function of
frequency. This work introduces a generic model to help predict the limitations of reflectometry
in plasmas, and to compare the attributes of different techniques. In particular it examines the
effect of plasma density fluctuations on the group delay measurement.

The generic reflectometer is modelled by the launch and reception of electromagnetic
radiation at N distinct frequencies, uniformly spaced by Aw¥27 and extending over a bandwidth
B. It is assumed that the phase delay ¢, of each line w, is measured independently. In the
absence of any noise or plasma fluctuation, the received set of electric field vectors S has a
phase ¢,= w,7,. Without loss of generality 7, is set to zero. Each vector has superimposed a
noise component N, leading to a phase error of magnitude N, / S+2. The new group delay T is

then found by a least squares fit of a line ¢,+ 1w to the set of points (W, @,).

Plasma noise has two distinguishing features compared to noise associated for example
with the input stage of a receiver. (1) The noise at each frequency is a fixed proportion of the
launched power, provided the line width launched is wider than the typical fluctuation
frequency in the plasma, @, (2) The noise at different frequencies is correlated. Experimentally
it is found that the frequency extent over which the noise is correlated, here termed correlation
length, w/2m varies from <50MHz to several GHz, depending on plasma conditions. The
relationship between the phase fluctuation measured at each frequency and the density
perturbation at the corresponding cut-off layer is not simple, particularly when ¢ > 2x. The
separation in radius equivalent to @, is often smaller than 1-D calculations predict. It is thought

(Mazzucato and Nazikian [1]) that 2-D interference effects account for this behaviour.



2. ERRORS INDUCED IN 7 BY PLASMA NOISE

For a linear least squares fit, it is well known that the unknown parameters are given by
(Matthews [2])
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Here j is the set of N phase errors, M is a 2x2 matrix defined by My; = Zfil fi(@;)fi(;), and

C a 2xN matrix, Cj; = fj(w;), with f=1 and f;=w/Ae. For uncorrelated errors in the phases
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where 0, is the standard deviation of the phase. This leads to
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It follows that the error in 71is given by
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The resultant N™'~ scaling of (4) for large N is the same as predicted by the Woodward formula

for direct pulse delay measurements. In that case (Minkoff [3]),
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Here o is a form factor depending on the pulse shape, E, is the total energy on the pulse, and
N,B is the total power in the noise. Substituting 27E; = NAwS?, 21N = NAa)Ng /BT, where
Ny
oBSVBT

T is the total pulse length we get o, = . For a top hat spectrum, as assumed by our

model, BT=N and ¢ = ir/ J3 so that

o, = ﬂ =2 1_23 9 (6)
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This result is the same as (4) to within a factor of N2, for large N. The difference arises from

the contribution both of amplitude and phase noise to the pulse detector scheme used in [3].



When there is correlation between the noise contribution for each frequency, equation (2)
becomes [2]
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Here p is the next NxN correlation matrix between the errors. The equivalent of equation (3)

now is
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To make further progress, it is necessary to postulate a form for the correlation matrix. A

heuristic Gaussian representation is sometimes used [1], so that
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Evaluating (8) using (9), with Aw held fixed gives the results shown in fig.1 as contour plots of
o;A®. For any fixed ratio of 2nB/Aw, the worst case error in the time delay occurs when
w~nB. In 1-D, this corresponds to coherent structures of scale length comparable to the
maximum separation of the cut-off layers. Figure 2 shows the case of w, fixed. The error is
independent of the number of spectral peaks once Aw<w, for fixed B, but decreases with B. In
practice, B will be limited by dispersion in the plasma, since the position of the cut-off is a
function of frequency.

3. EQUIVALENCE WITH REFLECTOMETRY SCHEMES

The technique most closely related to this model is the frequency sweep. The frequency is
varied between set limits, and the phase is measured at each frequency. In this situation the
problem can be reduced to a least squares fit. For a slow sweep, phase errors between adjacent
points become completely decorrelated, which means that the error for fixed B and Aw
increases, unless @; < 0.354 (27rB)3 /Aa), an approximate relation derived from fig.1.

Straight pulse detection (as in [3]) is very similar to the frequency sweep. However the
equivalent Aw can be very small. In most cases it will be limited by the fluctuation frequency w,
of order MHz. Differential phase, in which the phase diftference for two adjacent frequencies is

measured directly, can trivially be shown exactly equivalent to the model in its response to

®

phase fluctuations, with N=2, so that o = —“—A:(ﬂ (u and | are the subscripts for the upper
w

and lower frequency).



In AM reflectometry, the source is amplitude modulated at a frequency @,,. The time delay
is deduced from the phase delay of the modulation envelope. For small phase fluctuations, AM
reflectometry is equivalent to the model with N=2 and Aw=2w,. This is because the error in the
sin (¢, — @)~ sin (¢ — ¢.)

cos (¢, =) +cos (¢~ ¢c)’
4

—; —9r (Here c is the subscript identifying the carrier. )
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phase of the modulating frequency is given by tan (O’,O)m) = SO

that o, =

Sinusoidal FM modulation (sine FM) is another possibility. For this technique, as yet not
tested on a plasma, the carrier is modulated at frequency ®,, while being swept relatively

slowly to produce a density profile. Following Terman [5], the electric field can be written
E = Ej sin ((w + wmaxcos(a)mt))t) = Eysin (a)t +M sin(wmt)) (10)

Here M is the modulation index ®,,,,/®,,. For M<1, FM reflectometry is equivalent to AM
reflectometry in its response to phase fluctuations (two important sidebands in the launched
spectrum).

For large M it is not obvious how to find an analytical representation of the phase error of

the modulation envelope. Numerical simulation shows that sine FM is approximately equivalent
to the model if one takes N=2*M+1 and Aw=w,, (Fig.3).

4. LARGE PHASE FLUCTUATIONS

When the fluctuation level is such that the phase difference between adjacent peaks becomes
comparable to 1, most reflectometry techniques encounter difficulties. For the simple frequency
sweep, phase tracking in frequency fails. For FM and AM modulation and differential phase,
the error in the phase of w,, exceeds 7. This leads to failure of phase tracking in time. For pulse
compression there are large components above the Nyquist delay, which determines the range
of the instrument. The resultant aliasing renders averaging meaningless. Straight pulse detection
suffers only from peak broadening, so that the average position of the peak is in principle
recoverable by averaging. These effects reconcile reflectometry methods that have Awe<B, such
as differential phase (Hanson [5]) with the model. Errors in the profile for those systems appear
to decrease with B. This is because of their sensitivity to phase errors between frequency peaks.
For fluctuations with short correlation length, obtaining a reasonable estimate of the time delay
can take excessive amounts of time, unless B>>w;: Taking Aw = @, = 50MHz and o, = /4
gives 0, = 2.Ins for a differential phase system (left axis of fig.2). An error of 0.05ns (7.5mm

in vacuum for a mirror) then requires ~1.8*10" independent measurements, which for a 10us
correlation time for the fluctuations corresponds to 7=18ms. Although T could be reduced to
~50us by increasing the bandwidth from 5S0MHz to 2GHz, a typical optimum value for O-mode

systems (Laviron et al [16]), phase tracking would be compromised. Increasing N to 40 (by



going to an FM system) from this point eliminates phase tracking problems and gives
o = 0.05ns. Another consideration is the dependence on the correlation function. One can

construct a function for which there is always an advantage in decreasing the bandwidth. For

i—p m
the family p;, = e-(“”/ A‘“) , m integer, 0; — 0 when B >> @; and when B << ®; but only
for m>2. However as Aw — 0 itis a requirement for a homogeneous fluctuation field that (1-
p;,) must tend to zero as Aw®. (Iwama et al, [7]). This is satisfied for m=2 (Gaussian). It
follows that for a sufficiently small B all correlation functions of homogeneous fields behave
like a Gaussian so there will certainly not be any advantage in decreasing B further. Of course,
phase errors are not necessarily homogeneous so there may be some gain in reducing the
bandwidth in certain regions (for example to avoid averaging over one or more magnetic
islands). This could become a second parameter in an adaptive reflectometer system, that not
only optimises the reflectometer parameters for the density gradient, (Doyle et al [8]) but also

for the fluctuation level characteristics.

CONCLUSIONS

Subject to constraints imposed by the plasma profile, in the presence of homogeneous phase
fluctuations produced by fluctuations in the plasma density, it is a desirable feature of any
reflectometer to maximise the bandwidth covered for the production of each time delay point.
For bandwidths exceeding the correlation length of the noise, there is further advantage in
increasing the density of coverage. Reflectometry techniques such as differential phase cannot
comply with the consequent requirement of simultaneous good phase tracking and maximum
signal to noise in the time delay. Only techniques with variable spectral density coverage, such
all types of FM and pulse compression have the requisite flexibility to adapt to the
characteristics of the noise.
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Fig.1: Contour plot of o, for fixed Aw.
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Fig.2: Contour plot of o for fixed w,
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Fig.3: Comparison of model (lines) with numerical simulations of FM modulation (points, with standard
deviation +5%).



