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Abstract

A method to calculate the electron Landau damping of toroidal Alfvén eigenmodes
(TAE) is presented. Due to the presence of a small current produced by thermal
electrons near the trapped—passing boundary, a jump in the electrostatic potential near
the k, = 0 surface occurs. An analytic expression for this jump is derived in the low-3,
large-aspect-ratio limit. and is suitable for incorporation into either numerical eigenvalue
codes or analyvtic models. In the limit of small magnetic shear, the calculation is carried

through analytically. giving a simple local expression for the damping.



1. Introduction

In previous analyses of the toroidal Alfvén eigenmode (TAE) [1-4], a large-aspect-
ratio, boundary laver approximation was employed to simplify the rather difficult task
of determining eigenvalues for multiple-gap eigenmodes. The advantage of such an ap-
proach was that all physics beyond cylindrical, reduced magnetohydrodynamics (MHD)
had 1o be retained only within “inner” (i.e., TAE gap) equations. Away from these gap

regions the simple “outer™ equation L,,y,, = 0, with
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was used. Here, y,, = 0,,/r with ¢, the electrostatic potential and £, = (n—m/q)/ Ry
the parallel wavevector. In solving the inner/outer matching problem, the physics of the
outer region is reduced to a calculation of a set of parameters (A,,) which characterize
the variation of o, () from boundary to gap, or from gap to gap. In terms of the radial
variable &, = ng — m. these gaps are centered at r,, = fw/wy, with wy = va/qHRy.
Local theory gives w ~ wy4/2, so that z, = +1/2, although profile variation will

typically shift this value somewhat.

In addition to the intrinsic (i.e., continuum) damping, there are a variety of ad-
ditional mechanisms which can stabilize the TAE. Indeed, the first calculation of the
ion Landau damping (ILD) was given by Betti and Freidberg [5], who considered the
response of passing ions (v; € wvy4) far from the trapped—passing boundary. This
approach is justified as only a small fraction of the thermal ions, far out on the tail

of the Maxwellian. are energetic enough to be resonant.

[t was pointed out by Rosenbluth [6] that this approach cannot be applied directly
to the calculation of electron Landau damping (ELD) in ignited plasmas, for which
we expect T, ~ 20 keV. In this regime. one finds v, > vy — the limit which is
considered in the this note. For electrons in this energy range, a consideration of the
distribution near the trapped-passing boundary is required. Moreover, to satisfy the
resonance condition w—#k v, ~ 0, the electron dissipation will be restricted to radii where

the parallel wavelength is nearly zero. Unlike ILD [5], which becomes exponentially



small as v;/vy4 — 0, ELD is shown to decrease only linearly with the small parameter
v4/ve. However. since the resonant layer where &, ~ (v4/v.)/2qRo ~ 0 typically lies
between TAE gaps. the mode amplitude will generally be reduced somewhat from its
peak value in the gap region. This point is illustrated in Sec. 3, where it is shown that
for small values of the magnetic shear (s < 1) both the mode amplitude and ELD

vanish exponentially at & = 0.

2. The Electron Response

For the mode y,,. we have indicated that the electron resonance points occur very
close to xr,, = £1. If the TAE gap and electron resonance points are not close to
overlapping. onlv the outer TAE mode structure is affected. A qualtitative sketch
clarifying this picture is shown in Fig. 1. To calculate this effect, we rewrite Eq. (1)

including the perturbed electron pressure P:
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with the m subscript denoting a projection onto the m-th poloidal harmonic, and

P=P 1+ (P ~ P.)bb. The projection may be obtained using the integral operator
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An expansion of the RHS of Eq. (2) to lowest order in ¢ shows
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where the pressure components are defined in the usual way through the moment
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R denotes the region of velocity space accessible to passing particles, and g is the nona-

diabatic part of the electron distribution function. To facilitate the velocity space inte-
gration. we introduce a pitch-angle-like velocity variable A = By /& = (v2 /v?)(Bo/B)

with & = v?/2. This effects the transformation
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with the RHS to be summed over both signs of v,. The projection of the quantity inside

square brackets in Eq. (4) becomes
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with & the §-dependent velocity integral

£ dE
/15/ dEdr - Ne+0() . (8)
el

Ui

In IEq. (7). the sum over parallel velocities has been included, so that subsequent
calculations are restricted to v, > 0. Also, the velocity integration is clearly over
all energies subject to the constraint 0 < A < 1/(1+¢). Passing the projection operator

through the & and A variables leaves a result in terms of transit averages of g:
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However. since the line element along a flux tube is df = ¢Ryd#f, we can also write
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A straightforward integration vields an explicit expression for the orbit period,
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and 0 < z < 1. Also. I\ is a normalized elliptic integral:
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The relevant kinetic equation for g contains only the magnetic curvature drift, vp - V.

as a source term. For large-aspect-ratio, circular equilibria, this equation takes the form
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Since we are presumably away from gap regions where finite F| effects are important,
these have been ignored. The reader should be aware that similar corrections due to
L

Cheng [7]. A solution to Eq. (13) may be obtained by standard techniques [8]; first, we

, may be important for trapped electron collisional damping, as indicated by Fu and

write the RHS as a Fourier series
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so that a formal solution may be generated by integration along an unperturbed orbit:
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[t is instructive to consider the physical interpretation of the exponential factor, which

Is written as

ne' = mb' —ot’ = ng — mb - wt+ (ng —m)(8' - 6)

final coordinates field line orbit
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with w; = 2% /7 the electron transit frequency. Substitution of this decomposition into

the orbit integral vields
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An eract evaluation of this integral is possible by an expansion of the rightmost expo-
nential term in a series of transit harmonics. For simplicity, however, we include only
the lowest order (i.e.. transit-averaged) contribution. Since ng — m ~ 0 for the present

case. we are first able to establish that

T
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The resonant contribution from the orbit integral is then found by a simple time

integration, and the transit average of g follows by a similar integration (with w < w;):

<§> ~ =g () 2qu;¢05 [(ng — m)w; —w] . (19)

N7 m

The energy integral may be evaluated using the delta-function, which becomes
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In terms of the dimensionless variables ¢ = w/k nv., € = 2¢/(1 — €) and u = z/¢, we
find
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with a prime standing for a radial derivative. In Eq. (21), and in subsequent formulae,
we supress the Fourier dependence exp[i(ny — wt)] for compactness. Now, the RHS of

Fq. (21) contains the somewhat complicated integral
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It should be apparent that the radial structure of ® exhibits spikes with peaks just to the

x

= such that ¢(r%) = m/n. Thus, to lowest order in wRy/v,, we only

left and right of r
need to know the radial integral of ® to calculate the effective jump in potential, and
thus the damping. The contribution is twice the integral from the electron resonance

surface to the nearest TAE surface (where ng ~ m + 1/2):
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We remind the reader that local quantities are to be evaluated at the resonant surface

r>.. The quantity (i in bq. (23) is
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FFor the interval ¢ € (0.1.1.0), G is nearly constant and to the indicated accuracy, inde-
pendent of v4/v.. The fit G{€) ~ 4.470 — 0.424 ¢ + 0.020 €2 gives a good approximation

in this range. Collecting our results, we see that at ry ., (where ng = m 4 1) the

eigenmode equation is
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while at r> _, (where ng = m — 1) it becomes

m-—1

Om it /73, m-1 9 m 0.\ - 7
! n - - 35 (V - — — O, —  Mr —r* _ . 9
“ ( r ) + Ry ( r 07‘) (rd) o ) (r =771 (26)

[t is simple task to show that the RHS sides of both Eq. (25) and (26) are self-adjoint.
NMoreover, the simple form of the d-function response allows us to obtain jump conditions
for the poloidal harmonic ¢.,. These are calculated in the usual manner by integrating

across the resonance regions. At r=r; . we find
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The corresponding jump at r;, _; is obtained by replacing m — —m and r};, ., — 1’ _,
in Egs. (27) and (28). In Eq. (27), the coefficient .J is
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Unfortunately. the story does not end here. To determine the damping rate, one
must have some model with which to calculate a toroidal eigenfunction — with the
above jumps included. This is in sharp contrast to the ion Landau damping, which is

independent of the shape of the eigenfunction so long as it is radially localized.

3. Weak-Shear Damping

It is possible to obtain an analytic formula for the damping when ¢ < s <« 1 and
m > 1. In this limit. the outer equation reduces to a form containing only the local

value of magnetic shear as a parameter:
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Concentrating on the region v, > 1/2, we set z, = (1 + su)/2. Since the shear is
small. the mode is localized within the region u ~ O(1), and decays exponentially for

su ~ Q(1). To lowest order in s, Eq. (30) becomes
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where a dot has been used to indicate a derivative with respect to u, and m-subscripts
have been omitted from all quantities. The solutions of Eq. (31) are confluent hyperge-

ometric functions {9]. in terms of which the potential has the independent solutions
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The jumps at u = 1/s have a particularly simple form in w-space when m > 1;
namely No = —imJ(o — 20) and A¢ = A¢/2. Taking é» = exp(—u/2)U and
0c¢ = exp(—u/2) [AU 4+ BAM]. and applying the u-space jump conditions, we find
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with W the Wronskian derivative. After some additional algebra, it can be shown that
as u — 0 the potential exhibits the usual logarithmic divergence plus a residual constant
(with «(z) the digamma function): ¢ ~ logu + ¥(1/2) — 2xim.J exp (—1/s). What is
important in this resuit is the imaginary term which appears as a consequence of the
jump. Indeed. when added to the parameter A, of Ref. [2], this term modifies the

(algebraic) TAE eigenvalue equation [2] to give:
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where we have set w = v4/2¢Ry on the RHS. That the damping is exponentially small
in this case is a direct consequence of the mode itself becoming exponentially small
before crossing the electron resonance point. Although this pathology made the analytic
calculation possible. it is not necessarily the rule. In general, one can expect some
poloidal harmonics to have an appreciable amplitude near the k, = 0 surface. However,
by comparison with Eq. (37) of Ref. [1], it is apparent that the electron damping becomes

asymptotically farger than than the continuum damping as s — 0.



4. Summary

A technique for the calculation of electron Landau damping of TAE modes in reactor-
regime plasmas has been derived. Some time ago, the same method was used to
estimate the damping in I'TER-like plasmas — in conjunction with a boundary layer
model of the TAE [10]. More generally, the jump prescription developed herein can be
incorporated into a variety of numerical or analytical TAE models, and also to models
of the ellipticity- and triangularity-induced Alfvén eigenmodes (EAE, NAE), so long
as the aspect ratio is large, the resonance points are sufficiently far from the Alfvén

continuum (i.e.. w = w,4). and the electron thermal velocity satisfies v, /vy < V2e.
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[1] Hlustration of eigenmode structure, as well as TAE gap and electron resonance layer

locations.



