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Abstract

In this work a number of open questions in the theory of ion-temperature-
gradient-driven turbulence are considered. A simple model is introduced as
a paradigm of more complex plasma turbulence models. Special emphasis is
placed on those issues that are relevant for the understanding of turbulent
transport.

1 Introduction

Understanding plasma turbulence is perhaps the greatest challenge facing theovetical
research in the field of plasma physies.

Turbulent plasma motion occurs in a variety of laboratory as well as natural
plasmas. Not unexpectedly, this widespread phenomenon occurs in a varicty of tyvpes.
This is quite natural, as plasmas arc highly complex fluids. Indeed. from the fluid
dyvnamics point of view, plasmas are multicomponent fluids characterized by a variety
of space and time scales; they can be constrained by complicated geometries and are
subject to anisotropies and inhomogeneities.

A substantial fraction of the theoretical effort has been oriented towards under-
standing plasma turbulence in magnetic confinement devices. This is due to the fact
that some form of plasma turbulence is commonly thought to be the underlyving cause
of particle and heat transport in these devices. Heat losses are a severce limiting factor
towards reaching high temperature plasmas at an acceptable encrgy cost. and thus
achieving ignition: the condition of self-sustained burning plasmas that is a primary

ooal of fusion rescarch.



Among the various confinement machines that have been built, tokamaks are the
most successful so far. Tokamaks are toroidal confinement devices designed to op-
crate with magnetic field configurations possessing rotational symmetry around the
machine axis. It is an experimental fact that tokamaks normally operate under con-
ditions of small deviations from axisymmetry. When magnetic activity is recorded it
is usually identified as the formation of a small. isolated magnetic island chain. Al-
though such a structure breaks the axisymmetry, the incremental transport it causes
is small and cannot account for the observed particle and heat losses.

One should remark that much debate has been devoted to whether there exist
smaller (but numerous) island chains which escape detection because of their size
but whose effect on transport is not negligible. Presently this hypothesis does not
seem to receive much favor. Indeed, on the theoretical side. it is difficult to justify the
formation of islands of suthiciently high amplitude to cause the observed transport. On
the experimental side. the nature of the observed transport seems to differ from what
one would expect from the existence of such islands. Experimental measurements on
TEFTR indicate that in the absence of macroscopic MHD instabilities. these magnetic
islands are not present. or arc too small to be detected [1].

Therefore most of the theoretical effort to understand tokamak transport has been
oriented towards electrostatic turbulence. Electrostatic turbulence refers to a type
of turbulence that is assumed to satisfy the electrostatic approximation. Although
virtuallv any conceivable plasma motion would cause a perturbed current and hence
a perturbed magnetic field, there is a large class of plasma dynamics models where a
perturbation of the vector potential does not enter in the model equations to the lead-
ing order in the relevant expansion parameter. This is the electrostatic approximation:
only the fluctuating electrostatic potential survives. The fluctuating magnetic field
can be computed afterwards but 1ts effect on transport turns out to be negligibly
small. The main source of transport in electrostatic turbulence is the E x B motion
of the charged particles in the fluctuating electric field.

As one may have expected from such a complex fluid. the electrostatic approxima-

tion is not the only simplification one has to introduce tn order to obtain a workable



model of the plasma dynamics. Even considering pure plasmas and ignoring wave-
particle resonances, the model one can conceivably build would require at least five
scalar fields defined on a three-dimensional spatial domain as dependent variables.
Such a model would depend on a large number of control parameters. One can casily
see that a detailed analytical treatment of such a model would be impractical.

Thus one is lead to further simplifications. Often the reduction process is guided
by the analvsis of the linearized equations. One considers the problem of the stability
of the axisymmetric configuration towards various symmetry-breaking perturbations.
Once an instability i1s found, one proceeds by identifying the “drive™ of the instability,
usually the gradient of some equilibrium quantity. The reduction process involves
keeping in the model only those fields which are essential to the linear description
of the instability. The ensuing turbulent state which occurs when the instability is
saturated is termed after the instability drive.

One should point out that there is an obvious drawback with this wayv of classifving
the tvpes of plasma turbulence. Indeed one quickly realizes that different kiuds of
instabilities can lead to qualitatively similar turbulent behavior. Many details of lincar
theorv. which take a part, for example, in determining the instability threshold. are
not relevant for the turbulent dynamics.

Moreover, on the basis of general experience with nonlinear dynamics. one expects
that some selection processes are at work during the nonlinear evolution of an nsta-
bilitv. For example, two nonlinearities which would appear of nominally comparable
importance with respect to the orderings of linear theory could play roles of substan-
tially different importance in the nonlinear evolution. If this turns out to be the case.
concepts hinging on the idea of universality could play a role in limiting the types of
qualitatively distinct turbulent motions to a handful.

Irom this preliminary discussion one can appreciate the complexity of the plasma
turbulence problem. Thus one can expect that progress would initially come from
the analysis of “paradigm models” —i.e., models designed to retain some elements of
the actual plasma dynamics without “unwanted” complications.

As such, paradigm models are rather subjective. The best known examples. the



[Tasegawa-Mima [2] and the Terry-Horton [3] models, have been very useful in un-
derstanding a number of basic features of homogeneous plasma turbulence. However
these models are too simple to be used as paradigms to investigate plasma transport
of the tvpe considered relevant for tokamaks.

Thus. in the past few years the main body of investigation has been focused on
a certain class of plasma dynamics models in which the ion temperature gradient
(ITG) plays a central role. In the I'TG model, nonadiabatic electron dynamics is
neglected, isolating the ion temperature gradient as the sole drive for the ensuing
turbulence. While this model cannot address issues of particle transport or turbulence
driven by trapped electron modes, ion heat transport can be calculated accurately,
since nonadiabatic electron dynamics has little impact on the I'TG instability in many
physically relevant parameter regimes. It is thus natural to consider plasma dvnamics

paradigms belonging to the ITG class.

1.1 ITG turbulence

Gienerically. one can define the ion-temperature-gradient-driven (ITG) turbulence as
a type of plasma turbulence produced and sustained by ion temperature gradients.

When looking at the linear theorv of ITG. one meets a large body of detailed
analvsis in various situations of practical interest. In order to have an instability,
the 1on temperature gradient must be combined with the effect of something else.
Commonly one considers the magnetic curvature and/or the parallel compressibility.
but the addition of an impurity species and other effects have also been studied.

In this work, however, taking the previously outlined viewpoint, no attempt will
be made to classify the various subtypes of ITG. Rather, a relatively simple model
(a minimal model) of ITG turbulence will be introduced, quite liberally ignoring a
number of terms one would obtain from the formal derivation. The goal is to obtain
something workable which can be used to identify the main theoretical guestions

awaiting an answer.



1.2 Outline of this work

The plan of this work 1s as follows. Sec. 2 is devoted to the simplest I''G; equations
which retain the essential features. In Sec. 2.1 the model equations are presented.
Sec. 2.2 presents a brief review of the main results of linear theorv, and Sec. 2.3
summarizes the results of numerical investigations.

The subsequent sections are devoted to the open problems. Sec. 3 deals with the
problem of the dependence of the correlation length and time of ITG turbulence.
First, the evaluation of the correlation length of homogeneous turbulence is outlined.
Then, the mixing length concept in fluid dynamics is reviewed (Sec. 3.2}, and the
questions arising when one tries to apply it to ITG are presented.

Sec. 1 discusses the possible role of coherent structures.

Sec. 5 is devoted to nonlocal effects. T'he possible influence of the boundary lavers
is discussed in Sec. 5.1, and Sec. 5.2 discusses nondiffusive effects.

(‘onclusions are drawn in Sec. 6.

2 The model

This section is devoted to the presentation of simple model equations. to a summary
of the results of linear theory. and to a brief review of the progress in understanding

TQ turbulence that has derived from numerical simulations.
ITG turbul that 1 | 1 T | lat

2.1 Basic ITG model equations

We consider a toroidally confined plasma possessing a simple (low 4) axisvinmetric
equilibrivm with circular magnetic flux surfaces. This magnetic equilibrium is fully
characterized by the safety factor ¢(r). the minor and major radii « and K. and the
toroidal magnetic field B on axis. Since we consider electrostatic turbulence. we
assume that the magnetic field does not change with time. Thus from the point of
view of the charged particles, the main effect 1s the E x B motion across the field

lines and the free-streaming motion along the field lines.



Thus a minimal model of 1TG dynamics must describe the evolution of three
ficlds: the electric potential ¢ which causes motion perpendicular to the field lines,
the parallel ion velocity v which describes the plasma motion along the field lines.
and the ion temperature T whose gradient is the turbulence source.

A formal derivation of a general I'TG model could be obtained from a low-frequency
expansion starting from the general fluid equations of plasma dynamics [1] or prefer-
ably from a closure of the moment hierarchy of the gyrokinetic equation [5. 6. 7. 3.
9. 10].

The model presented helow can be derived from the 341 (three parallel velocity
moments and one perpendicular velocity moment) fluid equations of Ref. [10] by im-
posing pressure isotropy. assuming constant equilibrium density. and omitting certain
damping terms that are not essential for the present discussion.

In summary, one obtains the set of equations:

dn/dt + 2cdz(0 + T) + AV)v = 0, (1)

dv/dt + AV +T) =0, (2)

dT/dt + T AV v = —A|V)|T. (3)

where n = @ — (¢) — piV*%¢ is the density. The operators are the advection op-

erator d/dl = 0 + v - V, the curvature operator d; = (cos0/r)dy + sin0d, and
the parallel gradient operator V|| = (1/q)(qds + dg). The operator |V)| symbolically
represents the nonlocal operator which is |kyj| in Fourier space. and models parallel
Landau damping [5]. () is the flux-surface-averaging operator. The explicit control
paramecters are px = ps/a (ps is the ion Larmor radius evaluated at the clectron
temperature) and € = «/R. Other control parameters are needed to parametrize the
profiles (those that are held fixed) and the boundary conditions when appropriate
(c.g.. the incoming heat flux). A4 is defined as €¢/px and I' is just a numerical constant
of order unity.

We have chosen to employ “large scale” units by normalizing the lengths to a.

the time to «*/Dg (Dg = ¢T./eB is the Bohm diffusivity). and the fields to 7, /c. ¢,



and T,. This scems the natural choice when no a priori assumption is made about
the scaling of the various quantities with the scale separation parameter px. When,
however, an expansion 1s made in px, the macroscopic scales « and R drop out of the
problem. as discussed in Sec. 2.3, below.

The term in the RIS of Eq. 3 describes Landau damping; it is essential in setting
a large-scale cutoff to the unstable modes. Other damping terms could be added to
model various relevant dissipation mechanisms. Note however that. in the spirit of
this paper, no attempt will be made at discussing the various dampiug terms that
one could derive from a systematic approach [10].

Iigs. 1 3 clearly exhibit the E x B advection in the perpendicular direction of the
plasma density. energy. and parallel momentum combined with the streaming along

the field lines.

2.2 Linear theory

We now briefly review the stability properties of this ITG model when the svstem is
subject to a given constant temperature gradient. We take VT = —(7T,/Ly)r + VT,
where the equilibrium jon and electron temperatures have been assumed to he equal
and the temperature gradient scale length Ly has been introduced. It is natural to
use this length instead of @ when discussing linear theory and. for this section only,
we rescale the vartous quantities accordingly.

It is initially convenient to proceed through a naive linear theory. ignoring the
spatial dependence of the equilibrium quantities and replacing the spatial derivatives
with constant wavevectors V. — 1k and V|| — k).

The resulting dispersion relation has the form
O gt 4 [y — (1 + D)o —0F + (& + gl — 1) = 0. ()

where it is convenient to normalize once more the {requencies to the sound frequency
w = w/(Aky) = Q/(csky). ete. We denote with Q the dimensional frequency and with

« the dimensionless counterpart.



[2q. 4 exhibits the two classic ITG roots. First, we observe that with large tem-
perature gradients the first and the third term balance to give the interchange tvpe

branch whose growth rate behaves as:

a2 4
—

3o (Do) 2 (7

When the curvature term @y can be ordered small one obtains the slab-tvpe branch
with growth rate:
§ o~ (@7)'°. (6)
In both cases the imaginary part can be ordered small for sufficiently small parallel
wavelength.
Absolute stability is achieved for sufficiently low ratios of the forcing (temperature
gradient) to the damping (parallel wavelength). By forcing & to be real one obtains

the marginal stability condition (one can verify that the other roots are stable):

32 4 Tasdy — I =0, (

-1

The middle term is subdominant in the situations of interest &y <« &5, The resulting
stability condition can be written in the dimensional form (omitting a constant of
order onc):

uj;ﬂ S (‘s/\‘,H, (S)

which emphasizes the stabilizing role of the ion Landau damping.

The problem with this naive approach to linear theory is the inhomogeneity.
Whereas. in the spirit of the WKB approximation, the wavelength perpendicular
to the field lines can be taken much shorter than the equilibrium scale length. the
same does not hold in the direction parallel to the field lines. This is revealed by the
above calculation. which shows that instability occurs when Ay is in some sense small.

The well known ballooning transformation [L1] is designed to deal with this
situation. It is convenient to employ field line coordinates as advocated by (‘ow-

lev el al. [12]. Tor the simple equilibrium under consideration this amounts to the
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transformation:

r o=
y = q(r)f — o, (9)
z = 8.

The important point here is that the parallel derivative becomes the derivative along
22 V) = (1/¢)d.. The WKB approximation can still be “partially™ emploved in the
perpendicular coordinates: @, — ik, d, — ik,. To the leading order onc obtains an
ordinary differential equation in z. The outcome is a local cigenvalue which depends
parametrically on the other spatial variables.

Most of the linear theory of microinstabilities in toroidal geometry, including
[TG [13. 14. 15]. has been worked out to the leading order only. This calculation
gives qualitative agreement with the previous analysis. as far as the growth rate and
the instability threshold of short wavelength modes is concerned. However, a weakly
unstable branch can survive even at remarkably long wavelengths [15].

Renewed interest in lincar theory has been stimulated by recent works that ana-
Ivze the second-order equations of the WKB- ballooning approximation to determine
the radial structure (envelope) of the eigenfunctions [16. 17. 18]. The remarkable
outcome of these calculations is that the radial extension of the cigenfunctions dr
scales typically as

or ~ (psa)l/2. (10)

Structures resembling the linear eigenfunctions of Refs. [16. 17. 18] are reported in
recent toroidal simulations [19]. These results have prompted a debate whether 15q. 10
should be used to estimate the radial correlation length of TG turbulence. We come

back to this point in Sec. 3.

2.3 Numerical investigations

Numerical work on I'T'G has been performed since the early investigation of Horton

et al. [20]. However. only in the last few years has adequate resolution been emploved



with reliable models of the relevant physics, thanks to the increase in computer power
and to the use of field-line coordinates [12] in flux tube simulations [21]. To date.
most of the effort has been concentrated on increasing the physics content of the
simulations to obtain closer quantitative agreement with experimentally measured
transport levels. By comparison, less effort has been made to understand the basic
(uestions that are the subject of this work. The significant progress made so far is
briefly reviewed in this section.

For parameters typical of present day and future tokamaks, the dominant dissipa-
tion in I'TG turbulence arises from collisionless Landau damping. The carliest fluid
models [1] ignored this damping, so artificially large collisional damping was added to
the simulations at short wavelengths to provide a sink for the fluctuation energy. Re-
cently, two complementary approaches have included the effects of Landan damping
and other wave-particle resonances: 1) gyvrokinetic particle simulations which solve
the gvrokinetic equation in three space dimensions and two velocity-space dimen-
sions [22]. and 2) gyrofluid simulations which solve reduced fluid equations in three
space dimensions [5. 6, 7. 8,9, 10]. These gyrofluid equations contain closure approx-
imations to model the wave-particle resonances, leading to physics-based damping
mechanisims.

Another area of development has been the use of reduced simulation volumes.
The most straightforward approach is to simulate an entire tokamak (full torus sim-
ulations [23]) including sources and sinks of particles and energy. These simulations
are computationally most challenging because they must simultaneously resolve a
wide range of space and time scales. Fluctuation measurements in tokamaks find
turbulent correlation lengths L. ~ 10p; ~ 1 — 2cm perpendicular to B [24]. while
the largest scale which must be resolved is the minor radius, « ~ 100 cm. Similarly,
the turbulent time scales, of order 10 — 100 psec. are much shorter than the trans-
port time scales, of order 100 msec. This scale separation motivated the gvrokinetic

ordering [25]. an expansion in the small parameter p,/L ~ =. where L is the scale

length for the equilibrium variations — e.g., Lt = To/|V1y|. The fluctnation time
scales and magnitudes are ordered small, 1/7.Q; ~ e®/T ~ Fi/Ii, ~ =. and the

11
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turbulent length scales are of order L. ~ p;. Although the distribution function has
heen broken into fluctuating (F7) and equilibrium (Fy) parts, the ordering retains
strong nonlinearity, since VF; ~ VFy. In this ordering. the transport time scale (the
time scale for relaxation of the equilibrium) can be found from the energy balance
equation. gn()(?]})/i)/ ~ V- @), where 914/t ~ 1y/7.,. The heat (lux arises {rom the
fluctuations. so Q ~ ng\VTo ~ no(L?/7.)(To/Lt). where L. and 7. are the length and
time scales of the fluctuations. Thus 7., ~ 7./2%, and on the fluctuation time scale
(or the length of the simulation), the equilibrium can be held fixed. This ordering is
well satisfied in the core of present-day tokamaks, but hecomes less well satislied near
the plasma edge. For example, in the core of TFTR., the equilibrium scales [, and
L7 are longer than 20 cm for r/a < 0.85. while the measured L. =~ | —2 cm. The
gradients stecpen near the edge and Lo, can be as small as 1-10 em for r/a > 0.85.
The breakdown of the gvrokinetic expansion may permit boundary laver effects as
discussed in Sec. 5.1.

This scale separation has motivated the use of flux tube simulation domains.
Instead of simulating the full torus with sources and sinks. one need only simulate a
thin flux tube that is several turbulent correlation lengths in cach direction. leading to
significant. computational savings [21]. On the fluctuation scale L.. the equilibrium
variations are assumed to be weak (L. < L.,) and thus the plasima cquilibrium
is fully specified by the temperature and density gradients Ly and 1,. Over the
time scale of the simulation (several 7.), Ly and L, can be considered constant in
space and time. The heat flux ) across a given flux surface can be calculated as a
function of these local parameters, and can then be compared with the experimental
heat fluxes. Because the calculated transport is quite sensitive to small uncertainties
in the equilibrium gradients, better quantitative agreement with experiments has
been obtained by parameterizing the simulation results in terms of the equilibrium
quantities. and then using this parameterized heat flux in self-consistent transport
calculations which solve for the evolution of the equilibrium on the much longer
transport time scale [26]. This approach has been used with considerable success.

These more detailed simulations have revealed several interesting features of I'TG



turbulence. Toroidal effects arising from the V B and curvature drifts have bheen found
to dramatically increase (by a factor ~ 25) the turbulent heat flux [10] compared to
similar simulations in sheared slab geometry [9]. bringing the calculated heat flux up
to experimentally measured levels. An important feature in the development of the
turbulence is the role played by the nonlinear generation of sheared E x B flows. and
the collisionless damping of the poloidal component of this rotation. The simulations
find that the peak of the fluctuation energy at saturation is at longer wavelengths than
the fastest growing instabilities, and the radial and poloidal fluctuation spectra are in
(ualitative agreement with those measured experimentally [24. 21]. Tt has heen found
that much of the variation in the calculated heat flux can be described by the estimate
() ~ max(~/k%) [26], although this approximation remains to be justified on purely
theoretical grounds. These simulations draw attention to several interesting questions.
as discussed in the remainder of this paper. Idecally, the simulations would be used
as a guide in developing a theoretical parameterization of the transport in terms of
the cquilibrium. The recent favorable comparison of simulation aud experimental
results suggest that these simulations are a relevant tool to address these questions.
Simultaneously. new physics is being added to the simulations to address a wider

range of experimental behavior and parameter regimes.

2.4 Statistical closures

Although statistical closures (SC’s) represent a well developed approach to plasma
turbulence. very little work has been carried out specifically on I'TG models. The
reason is probably that TG models require the solution of inhomogeneous S('s.
Although codes that solve arbitrary SC’s exist, numerical solutions of inhomogeneous
SC"s are rather computationally intensive [27]. As we have seen. most of the nuwmerical
effort has gone into direct simulations as described in Sec. 2.3. The topic of statistical

closures for plasma turbulence is covered by another article in these Proceedings [28].
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3 On the characteristic length and time scales of
ITG turbulence

A primary goal in the current I'TG research is the identification of the dependence of
the characteristic length A., time 7., and the average amplitude vp of the turbulent
velocity on whatever dimensionless control parameters occur in the model.

The conventional point of view is that ITG turbulence. as most types of electro-
static turbulence. 1s characterized by spatial scales much smaller than the size of the
device. If this is the case, it is natural to expect that the transport observed across
a region large compared to A, is diffusive, provided that the scale length of the tem-
perature gradient is also large. One is tempted to assume that the local transport
coefficient, defined as the ratio of the local heat flux to the temperature gradient. is
a function of the control parameters through A.. 7.. and vy. For the turbulent ion

heat conductivity one would have
i = (A1) f(erT /), (11)

where f(x) 1s some function.

An additional assumption, which is often implicitly made in dimensional estimates.
is that vg 1s of order A./7. so that the function f is replaced by a constant. Thus the
knowledge of A. and 7. is usually deemed sufficient to estimate the transport.

One can see that this viewpoint calls for the validation of those otherwise unjusti-
fied assumptions. One can say that virtually all the most important open questions in
plasma turbulent transport come from an examination of the validity of expressions
like 15g. 11.

The question whether A. is much smaller than the machine size is the subject
of this section. Even if this were the case, the expression 11 is per se questionable
when it comes to evaluate the heat conductivity. Indeed, while one expects such a
form to be valid for the diffusivity of tracers in a turbulent field. the temperature
docs not behave as the concentration of a tracer. but enters sell-cousistently in the

dynamics of the velocity field. Thus there is no reason why the function f in Fq. 11



should depend only on vg7./A.; one expects a general dependence on all the control
parameters of the system. This hidden dependence would be even more important
if coherent structures are present. In this case the assumption vp ~ A./7. could be
grossly violated and the resulting difference would be substantial. This possibility
and the role plaved by coherent structures will be discussed in Sec. 4.

More dramatic consequences on the evaluation of transport would occur if nonlocal
cffects are present. One obvious example of a nonlocal effect occurs when the total
heat losses are controlled by some boundary layer. Although there is no compelling
theoretical reason why it should be so, experiments seem to observe such effects in
real svstems in certain transport regimes. Thus it is useful to evaluate under what
conditions such effects are expected (Sec. 5.1). When this occurs. the local profile
must adjust to the given flux. Although the transport may be locally diffusive. the
overall coufinement is controlled by the boundary layer.

Finally. nondiffusive behavior is a theoretical possibility which one should not

ignore (Sec. 5.2).

3.1 The correlation length of homogeneous turbulence

I'TG is inherently an inhomogeneous turbulence problem. Inhomogenecity comes pri-
marily from the radial dependence of the equilibrium magnetic field (magnetic shear)
and {rom the poloidal dependence of the curvature operator. Implicit inhomogene-
ity also comes from the radial dependence of the temperature profile if the latter is
allowed to vary.

Only in special conditions can the I'TG model be treated as homogencous. Since,
however. most of our understanding of turbulence comes from the analysis of homo-
geneons problems, it is convenient to discuss what one may expect in general terms
from plasma dynamics models.

In homogencous situations the concept of cascade in wave-number space is par-
ticularly useful. The conventional approach is to assume that turbulence is injected

locally in k-space (narrow-band injection) and propagates to regions where it is even-
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tually dissipated by some damping mechanism. This approach. when applied to the
ordinary Navier-Stokes fluids, has led to the classic concept of Kolmogorov cascade in
three dimensions [29] and dual (energy and enstrophy) cascade in two dimensions [30].

In these idealized situations, the correlation length of homogeneous turbulence
can usually be evaluated as the inverse of the low-k cutoff of the turbulent spectrum.
the smallest wave-nuinber band containing appreciable fluctuation energy. When the
cascade occurs only towards small scales (as in 3D Navier-Stokes turbulence). this
cutoff turns out to be of the same order as the energy injection wave-number band. In
the presence of an inverse cascade, however, appreciable turbulent fluctuations would
extend to lower wave numbers, until they are finally damped by some mechanism.
Thus the low-k cutoff is determined by the balance between forcing and dissipation.

Little work has been done on the analysis of cascades in plasma dyvnamics models
except for MHD and for the simple Hasegawa-Mima model [2. 31]. The reason is
probably that energy injection in plasmas of interest is usually assumed to be broad
hand. Indeed. in the case of gradient-driven instabilities the growth-rate spectrum
is rather wide, since it behaves typically as v(k) ~ &k in the whole range between a
low-A cutoll Ay, where it turns negative, and some high Apeax ~ p; ! at which it peaks
and then rolls over.

However, one should remark that the turbulent energy injection spectrum ¢ (k) can
he estimated as the product ¢(k) ~ v (k) FE(k) where E(k) is the spectral energy den-
sitv. Thus the real question is whether €( k), which must be computed self-consistently,
can he localized away from the dissipative cutoffs in order to have meaningful inertial
ranges. In this instance it would be possible to evaluate the characteristic scales as
well as the fluctuation energy without much trouble.

Thus the outcome would depend on the natural cascade dvnamics of the model
under consideration. For example, if the system “wants™ to develop an inverse cascade
spectrum such that K(k) ~ k7 with @ > 1, as it is the case for the Hasegawa-Mima
model [31]. the resulting peak of (k) will quickly shift towards A7. This would cause
the relevant energy balance to take place in the same wave-number region. the energy-

containing range. Although one could still take Ay, as the inverse of the correlation



length, it would be difficult to evaluate the fluctuation level in this conditions.
Such a shift of the peak of I/(k) from the peak of (k) is commonly observed in

numerical simulations and is also suggested from the experimental observations.

3.2 Mixing-length approach in fluid dynamics

Many phienomenological works in fluid dynamics are constructed around the mixing-
length concept. In general. one deals with turbulence generated by some gradient of
the average flow. The mixing length is introduced to relate the size of the fluctuations
1o the gradient of the flow.

Since ITG has strong formal similarity to turbulent convection. it is useful to
review the mixing-length argument in the latter as an example.

(‘onsider a fluid in the (constant) gravitational field subject to a temperature
gradient. If the gradient points in the same direction as gravity. the fluid is unstable
to convective motion. If the fluid is confined between two planes, the condition for
instability is expressed in terms of the Rayleigh number
_ ATargl?
==
where AT is the temperature difference across the system, L is the distance hetween

Ra > Ra,. (12)

the confining planes. ar is the coeflicient of thermal expansion. ¢ is the gravitational
acceleration. v and \ are the (kinematic) viscosity and the thermal conductivity. The
critical Rayleigh number Ra,. depend on the boundary conditions.

When the fluid is not confined (free turbulence), the condition 12 must be inter-
preted as determining the minimum unstable wavelength, where L 1s now a wave-
length. We assume that condition 12 is well satisfied.

The mixing length /. for this problem is introduced through the relation

T~ I.VT. (13)
The corresponding velocity fluctuation is estimated from the increment in Kinetic

energy when the fluid element moves a distance [. in the buovancy force:

b (LLATarg)Y? = [.(VTarg)"/?. (11)
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Thus one can estimate the heat flux as
Q~ ol ~ H(VT)(apg)> (15)

So far these results depend on /., which is still undetermined. In general. one
expects that [ 1s a function of the average quantities and of the dimensionless pa-
rameters. Since one 1s effectively working at infinite Rayleigh and Revnolds number,
one realizes that the only possibility is to take /. to be of order of the temperature

gradient scale-length:

le~ Ly = T/VT. (16)
This gives
T~T (17)
and
Q~ T*VT) P arg)' /. (18)

If we now assume that the heat flux is given, integration of Eq. 18 vields the one-third

law [32] for the temperature profile:

2\ 1/3
T(:)N(—Q—) =3 (19)

aryg
where = is a vertical coordinate along the direction of the gravity. [Note that T(z) is
actually the temperature difference between the observation point and infinity.]

Eq. 18 can also be obtained with a somewhat different physical argument. First
we write the heat flux as a dimensional quantity times a function of the control
parameters. It is customary to write

Q@ =\VT[(Ra.Pr) (20)
where Pr = p/y\ is the Prandtl number. Second. we postulate that. in the limit of
v — 0.\ = 0. and across a region L = Ly, the flux is independent of the dissipation

cocfficients. For this to be possible the function f must scale as

f(Ra, Pr) ~ (RaPr)!/? (21)



in that limit. One then recovers Eq. 18.

Thus one is tempted to conclude that the success of the mixing length approach is
not casual. It stems from the lack of free parameters in the relevant limit. (See also
Tennckes and Lumley [33] for a discussion on this point.) Iowever. as already pointed
out. even the simplest ['TG model has enough free parameters that the estimate of

the mixing length has a much greater degree of uncertainty.

3.3 Mixing length for ITG

For the ITG problem one can still assume a relation like Kq. 13. The problem is again
to evaluate [..

Assume for the moment that one can entirely neglect the parallel dynamics. One
is then left with Egs. 1 and 3 with v = 0 and Vj; = 0.

(‘onsider also wave lengths such that 1 < ky < pi'. so that they are sufficiently
long that the finite Larmor radius corrections are negligible but sufficiently short that
the curvature can be considered constant (local approximation). It is also convenient
to separate the average temperature from the fluctuating part: 7' = 7, 4+ 7. In this
situation, the control parameters can be absorbed in the normalization by a rescaling

to new length and time units Ly and L2/[Dg(2L7/R)V?):

dp/ot + a,T = 0. (22)
AT /dt 4+ 9,6 = 0, (23)

where ¢, is the derivative in the poloidal direction. (Note that ¢ has been left out from
I7q. 22 since the rescaling ¢ — (2Ly/R)"/?¢ makes apparent that ¢ is subdominant
with respect to T in that equation.) No explicit parametric dependence is left in this
modified I'T'G model. The situation is similar to turbulent convection. as previously
discussed. Indeed. the analogy is even closer when one considers that Igs. 22-23 are

lhomologous to the two-dimensional Boussinesq system. where o is replaced by Vo
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in the first term of Eq. 22. The heat flux is then obtained {rom dimensional analvsis:
Q ~

This monstrous value (corresponding to a thermal conductivity essentially at the

C

ég(QLT/R)I/QT(/LT. (21)
Bohm level ¢T,/el3) is easily understood from the analysis of the previous section. It
corresponds to the assumption that the mixing length is of order of the temperature
gradient length which is typically of order a. Then usc of Eq. 11 with o = T, /¢ gives
an estimate comparable to Eq. 24.

This value exceeds the experimental observation by three or four orders of mag-
nitude. Thus one should assume that the mixing length is much smaller than so far
estimated.

The origin of the discrepancy can be traced to the neglect of the parallel dvnamics.
Note that this is equivalent to treating the auxiliary parameter 4 of Iigs. -3 as
independent and setting it to zero. However, 4 > 1 in the situations of interest. In
this case the sound waves propagating along the field lines strongly Iimit the radial and
poloidal size of the Huctuations. This can be seen from the linear theory treatment,
where the parallel derivative operator is replaced by an effective by and taken 1o be
constant: ¥y — i/\’ﬁ” ~ 1/(qR). The longest poloidal wavelength of an unstable mode

is obtained from the condition 8:
ff =
Wk T /mﬁ Cg. (ZJ))

This gives the estimate
kg = Lr/(qRp;). (26)
One then invokes two more assumptions about the turbulent dvnamics. IFirst one
assumes. as discussed in Sec. 3.1, that some kind of inverse energy cascade is at work.
The result would be an accumulation of energy in the region of the long-wave-length
cutofl as given by Eq. 26. The second assumption, which is suggested by the results of
most of the direct simulations, is that the turbulence spectrum is essentially isotropic.

Therefore one is tempted to conclude that

le = 1/kg = qRps/ L. (:

i~
-1



Oune can see from this expression that the mixing length is now proportional to the
small scale p,. One expects much lower transport than 24. However. even assuming
27. there is some degree of uncertainty in the choice of the time scale.

For the situations of interest one usually assumes that the strongest drive is the
coupling between the temperature gradient and the curvature operator. One then
balances the time derivative of ¢ with the curvature term in Eq. I. Upon using also

Fq. 13, one ends up with the estimates

7 R (V) Py (

[
v o]
b

and. upon restoring the dimensions,

Nl (29)

X —— 754D 2
eB L‘,}/Z

However there are other possibilities. One can balance the time derivative with other
terms. thus obtaining a different result. One can also estimate the inverse time as
the maximum growth rate, which would give 77! 2 (¢VT)"/? instead of Eq. 29. The
result would be somewhat different [34]:

cT. RJ%/Z

2 Q0
SR —— g ps. 30)
R fi“/qu (30)

One could debate the merits of one choice rather than the other or of anv other
possible expression. by looking, for example, at the experimental results. However
this mav not bhe too relevant because I'TG is an approximate model. [t would also
not be satisfactory from the theoretical point of view.

Thus one is still left with big uncertainties in the evaluation of the mixing length.
The only common parametric dependence in the above estimates is that /. scales with
Ps-

As previously discussed in Sec. 2.2, even this conclusion is objected to by some
researchers on the grounds that lincar theory in toroidal geometry produces cigen-
1/2

functions whose radial extension scales as (psa) It is then argued that this scale

should be used an estimate of A..
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One should note, however, that extended radial eigenfunctions are not unique
to toroidal geometry. In a shearless slab, for example. the radial extension of the
fastest growing mode is of order of the slab width. Such structures often break up
in the nonlinear regime, as observed, with few exceptions [35]. in several numerical
siimlations: see for example [36].

A mechanism for the breakup of elongated radial structures due to sccondary -
stabilities has been proposed and analyzed by Cowley et al. [12]. Elongated (say.
elliptical) structures experience strong gradients in the direction of their minor axis.
This gradients are the drive of the secondary instability through a mechanism anal-
ogous to the primary ITG instability. Qualitatively. the resulting structures must
be roundish in order to be robust to the secondary instabilitics. This explains the
isotropization of the spectrum observed in many simulations. but does not give infor-
mation about the size of the structures and hence of the coherence length of turbulent
fluctuations.

Although this issue is still open, it seems natural to argue that the lincar radial
structure. which is brought in by the weak toroidal coupling between cviindrical eigen-
functions, should not survive the stronger interactions experienced in the nonlinearly
saturated state.

Besides the rvesults of local simulations. the breakup of the lincar structures is
clearly documented in the recent global toroidal particle simulations of Mynick and
Parker [37] and of the Horton-Tajima group [38]. These simulations indicate that the
saturated state contains radially extended structures with a machine size dependence
in the radial correlation length. As an example. Fig. 1 shows the evolution ol the
svstem from a state with extended toroidal eigenmodes [frame (a)] to the partially
circularized structures of frames (b) and (¢).

Both papers report a scaling A, ~ p!7> L5 with the exponent in the range .3 <
a < 0.5, Thus although the linear structures do break up. some dependence on the
macroscopic scale seems to be retained even in the nonlinear regime. The temperature
profile relaxes toward a marginally stable state with Ly & Ly which may partially

account for the preservation of the extended structures. One should also remark



that these simulations were performed at psx & 1072 This may also be a source
of discrepancy with the local simulations which are performed at pyx 2~ 1077, il a
transition in the scaling occurs at some intermediate px as suggested by Hammett [39].

(learly the above discussion shows that the question of the A. scaling is still wide

open and that it is probably the most urgent issue to address in {uture investigations.

3.4 Quasilinear estimates

A large body of literature has been devoted to the computation of transport coeffi-
cients with quasilinear theory (QLT). In QLT fluctuations are treated linearly. Thus
the information about the fluctuation level is not derived internally in the theory; one
must rely on some independent estimate. This is normally done with a mixing-length
relation like Eq. 16. This in turn depends on the assumption made on /.. Thus one
sees that, besides the obvious criticism that phase relations between the ficlds are not
taken into account properly [40] (more will be said in this respect in Sec. 1). one can
casily conclude that, despite the detailed calculations, QLT is in essence not better

than the simpler mixing-length analysis previously outlined.

4 Coherent Structures

In both neutral fluids and plasmas, turbulence often manifests itself in a dual fashion.
One aspect is the occurrence of broadband. space-filling fluctuations (waves or modes)
which in certain conditions are organized in a self-similar, Kolmogorov-like spectrum.
The other aspect is the formation of long-lived nonlinear coherent structures (('S)
(vortices or solitons) embedded in a background of weaker fluctuations.

With the exception of systems exhibiting marked solitonic behavior. the treatment
of turbulence as interacting waves has been the prevailing one. possibly because of
the large amount of work on homogeneous turbulence and the interest in spectral cas-
cades. which makes the use of Fourier amplitudes a natural choice for the fundamental

variables.
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Only in the last decade or so has there been a revived interest in describing
turbulent phenomena in real space. This is in part due to the increased use of power-
ful numerical simulations that have allowed scientists to study the various processes
occurring during the evolution of systems of many interacting vortices. like vortex
generation and mergers. One of the best known results is the discovery of the forma-
tion of long-lived vortices in two-dimensional Navier- Stokes simulations [11]. This,
together with the observation that 2D NS does not exhibit Kraichnan's[30] A~* law in
the enstrophy cascade range [41, 42, 43] has prompted a debate on the role of vortices
in spectral cascades.

[solated cohierent structures (particularly the dipolar vortex or modon) have heen
emploved to describe certain phenomena in atmospheric dynamics [44]. In plasmas.
the conditions for the existence of coherent structures have been analyvzed in various
drift-wave models [45, 16].

Energetically, the coherent structures arise through self-organization as an cfficient
way for the plasma to store free energy and momentum. The mechanism for the
creation of the coherent structures is through the coalescence and merging of aligned
patches of vorticity (angular momentum). Both neutral-fluid simulations and plasma
simulations sec the tendency in the long-time limit {or the turbulence to relax to states
with large-scale coherent structures, predominantely in the form of monopolar and
dipolar vortices. Other factors, however, can mitigate against the formation of ('S
including strong, broadband spectral regions of growth or damping and sufficiently
strong spatial inhomogeneities such as a strongly sheared magnetic field or sheared
mass flow.

The variety of conditions and types of CS implies that it is difficult to give a
general and at the same time quantitatively satisfactory definition. It is useful to
employ the following qualitative definition [17], reserving more detailed definitions

for specific applications.

C'oherent structures are localized structures containing significant cncrgy

and momentum. with a resiliency to erternal perturbations so that their



lifetime is long compared to the wave dispersion time for a linear structure

of the same scale.

Often ('S are characterized by the approximate fulfillment of some kind of func-
tional relation between interacting fields (dynamic alignment). The usual consequence
is that the nonlinearity describing the interaction between those fields can aliost van-
ish in the region occupied by the CS. In the 2D Navier-Stokes equation this occurs

between the stream function ¢ and the vorticity V2.
[, V2] = 0, (31)

(‘oherent structures in the 3D Navier—Stokes equation show alignment between the
veloeity and the vorticity (Beltramization). In plasmas, relations like q. 3} are used
in the explicit construction of ('S [45, 146]. The force-free states that result from
Tavlor's relaxation [48] in 31 magnetohydrodynamics can be viewed as ('S.

Another feature of 'S is that when they are present at a substantial density,
certain fields show a high degree of spatio-temporal intermittency and non-Gaussian
statistics. The paradigm for this 1s again the 2D NS equation. The vorticity tends
to concentrate in the regions where Eq. 31 is satisfied. The resulting probability
density function exhibits non-Gaussian tails with high kurtosis. We refer the reader
to Ref. [23] for an extended discussion of intermittent statistics with some applications
to plasmas.

We now specifically consider how coherent structures can affect the overall trans-
port in plasma models like ITG.

We first consider how the presence of long-lived structures can affect the estimate
of the transport coefficients. Going back to Eq. 11. one can sensibly take the average
('S lifetime as a measure of the (Eulerian) correlation time 7.. whereas A. can be
taken as the typical size of the C'S. For long-lived structures 7. must be longer than
the typical turnaround time A./vg. Thus one is interested in the behavior of Fiq. 11

when the E x B rotation number Ry (also called kubo number in the context of
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passive advection [49]) is large:
Rg = vgpt/A. > L. (32)

The classical treatment of the large-rotation-number regime predicts a lincar behavior

for the function appearing in Eq. 11, f(Rg) ~ Ry. This gives
X~ VA (R > 1). (33)

The latter estimate is challenged by a detailed analysis of the particle dvnamics in 2D
flows with high Kubo number A" [50]. This work predicts the scaling f(L') ~ K7/,
Good agreement with the qualitative features of Ref [50] has been found by numerical
simulations at extremely high A" ~ 10*, although there is some disagrecment in the
resulting exponent [51, 52]. Note that, experimentally, the Kubo number of E x B
turbulence does secem to fall in the range 1 to 10. So. for any practical purpose one
can use Fq. 33 as an upper bound.

More dramatic consequences can occur because of the dynamic alignment. When
this occurs between the advecting field and some advected scalar, there is a substantial
reduction in the transport of that scalar. In I'TG turbulence. the relevant condition

is a functional relation between temperature and electric potential:
[, T'] = 0. (34)

In the region where this occurs T = T'(¢) and the contribution to the heat flux from

that region vanishes:
/ veldV =0, (35)
s

where the integral is over a closed region hounded by an isoline of ¢.

A result in this sense was found for the 2D shearless [TG model numerically inves-
tigated in Refl. [36]. In this work it was found that the heat flux can be substantially
lower than expected from conventional (quasilinear) estimates. At the same time.
large regions of the computational domain where Eq. 34 is approximately valid were

observed. Also a change in the parametric dependence of transport on the control



paraimneters was reported, with the resulting heat flux depending explicitly on the
dissipation coefficients. Qualitatively, this is not too surprising in the light of the
previous discussion. Since the contribution of the CS to transport tends to vanish.
the remaining parametric dependence must come from the boundary region between
the C'S. In these regions the dissipation is effective, due to the presence of sharp gra-
dients. A reduction in the transport was also observed in 2D (single helicity) I'TG
simulation with shear [53], although in this case the role of 'S is less evident.

What is missing here is a quantitative theory that links the correlation function of
T and o to the control parameters and in particular the Reynolds-like numbers. In any
case the above results cast doubts on the utility of Eq. 11 when strong ('S are present.
Although one may still be able to describe the transport as a diffusion process. it seems
nnlikely that one can find a universal parametrization of the transport coefficients in
terms of the three quantities vg, 7. and A..

It remains to be seen whether CS play an important role in the more general
3D TG model we are discussing in this work. One can certainly construet three-
dimensional I'TG coherent structures [45, 46], but the key questions are whether they
evolve spontaneously from the background of wavelike I'TG fluctuations and whether
they affect significantly the ensuing transport. Good candidates for 3D ITG 'S are

the objects shown in Fig. 1, as discussed in Sec. 3.3.

5 Nonlocal Effects

In this section we consider for completeness two types of nonlocal effects that may play
a role in the global transport scaling of a plasma system. In the next subsection we
discuss how a thermal boundary layer can control the overall heat losses in convective
turbulence. In the other subsection we consider what might happen if the diffusion
approximation breaks down.

It is worth remarking that the main motivation behind the following pages comes
from the experimental debate. [t is often reported that confinement devices exhibit

a varicty of nonlocal effects, such as transport barriers at the plasma boundary (or

27



28

even in its interior) and global, abrupt changes of the transport coellicients. The
interpretation of the propagation of perturbations. whether artificially induced or
following spontaneous relaxation events, is also considered problematic.

[t is therefore natural to explore to what extent a paradigm model like the one

discussed in this work could reproduce those features.

5.1 Boundary effects

We consider now the effect of the boundary conditions on the overall trausport scaling
laws. To this end it is again useful to review the Ravleigh Benard problem as a guide
to what one may expect in more complicated situations. Therefore. let us consider
the effect of a rigid wall perpendicular to the direction of the heat flux.

Since the velocity perpendicular to the wall vanishes at the boundary. so does
the turbulent heat flux. Thus near the wall the heat must be carried by collisional
thermal conduction. This leads to the formation of a thermal boundary laver whose
width is determined by the condition that the layer is stable to the onset of convection

(Ra =~ Ra,). For a given heat flux () one has

l/\ C ‘
AT -
\ Bl ~ Q. (37)

6BL

This gives an estimate for the boundary layer width dpr, and temperature jump ATy,

s [ Raen’ i (38)
BL & o790 . 38
Ra.v(Q? 1/4
ATg, ~ (Tg\%—) . (39)

At a distance from the wall greater than gy, the usual free-turbulence estimate
of Eq. 19 applies. The temperature jump across the free-turbulence region can be

estimated by setting z = dgr, in Eq. 19. Upon ignoring numerical factors and the



dependence on the Prandtl number, one obtains again [iq. 39. Still. because of the
power-law dependence of Eq. 19, most of the contribution comes from the region
around the boundary layver.

Thus one can reach the surprising conclusion that although most of the system
can be possibly described by the free-turbulence treatment of Sec. 3.2. the actual
temperature jump across the whole system is mainly determined by the presence of
the thermal boundary layer.

This result is usually seen in the context of the problem of convection between
plates, when the fluid is confined between two walls. In this case the temperature
difference is usually taken as the control variable, while the flux is determined or
measured. By solving Eq. 39 for the flux and taking Tsr, ~ AT one recovers the

known result:

K T ’ 1/3
A ( Ra > . (10)

Q ~ =

L Ra,

This expression. which has been confirmed experimentally at moderate Ravleigh num-

bers [54]. differs from the scaling one would obtain by ignoring the boundary layver.
which is obtained by taking = ~ L in Eq. 19.

The above discussion and the similarity of ITG with thermal convection prompts
the natural guestion whether boundary laver effects are important also for plasma
transport. This in turn leads to the question of what are the appropriate boundary
conditions for the I'TG model.

A boundary condition that is simple to implement is the rigid wall of the previous
example, when the radial velocity at the boundary is set to zero. This type of bound-
aryv condition has been often used in numerical simulations. Naturally. the formation
of thermal boundary layers is expected in this case and has often been reported.

[However, it is not clear whether this type of boundary layer has anvthing to do
with realitv. The point is that confined plasmas are not directlv in contact with the
walls: rather, thev communicate with the outer world via a region of cold plasima. the
so-called scrape-off laver (SOL) that lies between the well confined plasma and the

machine walls, In the SOL. the magnetic field lines are open and connect material
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components of the device. Thus the actual boundary conditions one would ideally
like to implement are flux conditions at the end of the ficld lines in the SOL.

At the main plasma-SOL interface (the outermost region where the I'T'GG model
can be of some utility) substantial turbulence is expected (and observed). Thus the
turbulent transport cannot be neglected there. At the same time the plasma becomes
cooler and the collisional transport can become important (as in the usual boundary
lavers). Direct (ballistic) losses of particles and energy into the SOLL also occur.

One should also say that a variety of experiments suggest that laree modifica-
tions of the plasma parameters at the plasma boundary occur when changes in the
confinement regimes take place. More generally, correlations between the houndary
paramecters (like the ion temperature) and the confinement indicators are sometimes
reported. This is reminiscent of the thermal convection problem where the boundary
temperature correlates with the stored energy of the system.

This suggests that some kind of boundary-layer phenomena may be at work.
Whether the I'TG model, with some proper choice of the boundary conditions. is

suitable for the investigations of this phenomena is an open question.

5.2 Nondiffusive effects

Nondiffusive transport occurs in many systems as a consequence of long-range cor-
relations. For example, diffusive transport of tracers in fluids is guaranteed by the
central limit theorem (CLT) [55] if the time scale over which the transport process is
ohserved is sufficientlv long (usually longer than the Fulerian correlation time) that
consecutive particle displacements are only weakly correlated. Thus nondiffusive be-
havior occurs when the conditions for the validity of the CIL'T are not satislied (see
Refl. [56] for an extended discussion).

In turbulent svstems this can occur in the spectral ranges below the correlation
length. An example is the Richardson’s law of particle displacement in the KNol-
mogorov spectrum. In principle, nondiffusive behavior can also occur at scales above

the correlation length. Thus transport of tracers in two-dimensional turbulence can



be nondiffusive in some intermediate range [51] A. < [ < Ay, wheve Ay is the La-
grangian correlation length, although this requires that the Kubo number is much
higher than usually observed in laboratory plasmas.

As we have seen, theoretical considerations as well as experimental evidence seem
to rule out the possibility that the correlation length is comparable to the macroscopic
length a. Thus one expects that there is a range in scales at which transport is
diffusive. In particular, this would suggest that global transport can be modeled with
diffusion equations.

Things can be different for perturbative transport. Clearlv. if a perturbation has
initially characteristic scales that are substantially shorter than A.. the perturbation
will initially evolve with nondiffusive dyvnamics. This might explain some of the
conflicting experimental observations.

One must also remember that the test-particle approach for the cstimate of the
transport coefficient treats the correlations between the fields incorrectly. This can
lead to a poor evaluation of the transport coefficient. as discussed in Sec. 1. It can
even generate paradoxes, like the one occurring in this TG model. as well as in
any other model with adiabatic electron response. One could naively estimate the
particle diffusivity from the knowledge of the fluctuating potential. This would be
wrong (and appropriate only for real impurities), since the adiabaticity constraint
{orces the density transport to zero, independently of the features of the ambient
turbulence.

It scems that one should leave open the possibility that, although turbulence 1s
small scale. the heat flux at a point may not be parametrizable as a unique function
of the local average fields and their first derivatives.

This poses a methodological problem. The usual approach to turbulent transport
(sce Sec. 2.3) is to assume a given gradient and to derive the local transport coefficients
as a local function of that gradient. However, this will give an ambiguous result if
the dependence of the flux on the profiles is a more general function(al).

The natural way to avoid this uncertainty is to consider the inverse problem. which

means to prescribe the amount of heat carried out of the system and to derive the
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total temperature (fluctuating and average). This choice is in line with real experi-
ments where the iuput power is a control parameter. It can be easily implemented
in global simulations and, with some difficulty. as a flux boundary condition at the
inner boundary in local simulations [57]. Tt is important to stress that the resulting
temperature profile is the “natural” one for the problem at hand.

I'uture studies on the ITG model with flux boundary conditions have the potential
to settle the local/nonlocal transport controversy. Clearly. one must also allow the
possibility that these effects are present in the experiment, but that the I'I'G model

that has been the subject of this paper is missing some crucial ingredient.

6 Conclusions

In this work a simple I'T'G model has been introduced as an instrument to discuss
a number of keyv questions in plasma turbulence theory. We have especially empha-
sized the issues connected with the problem of turbulent transport in magnetically
confined plasmas. This model contains the basic ingredients of more general models.
such as the gradient drive. the magnetic shear and curvature. and the ion Landau
damping. without unwanted complications. It may turn out to be a useful paradigm
for turbulent transport in toroidal plasmas.

Virtually all the open problems discussed hinge around the use and validity of
the local. diffusive approximation and its parametrization in terms of the control
parameters of the model.

Perhaps the most urgent problem is to determine the parametric dependence of
the correlation length. time, and fluctuation magnitude of the I'TG model. As we have
seen. 1t may turn out to be particularly crucial to assess the dependence on the scale
separation parameter px. On the one hand, this will contribute to our understanding
of some of the mechanisms at work in I'TG turbulence. On the other hand. it could
provide a practical contribution to the debate of how to extrapolate the information
of the existing transport databases to future devices.

['nderstanding what role the coherent structures could play in the transport scal-



ing of I'TG turbulence is also a major area of future research. The characterization of
these objects. which are nontrivially three-dimensional, will require the development
of special diagnostics of the output of the simulations.

I“inally, the possibility that nonlocal effects are important should not be underes-
timated. Our discussion was prompted by the experimental debate and by the general
awareness of their importance in fluid dynamics, although the present theoretical un-
derstanding of these issues in the case of plasmas is rather modest. Two kinds of
nonlocal effects have been considered. In the first, boundary layvers may dominate
the overall transport by acting as barriers. The bulk of the system would still be
described in terms of diffusive transport but the global scaling is determined by the
boundary-layver scaling. The second type of nonlocal effect is substantially deeper and
involves the very notion of diffusive transport.

Naturally. substantial progress in this field would come from the interplay between
carefully designed numerical simulations of paradigm models and a general conceptnal

understanding of the turbulence mechanisms.
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Fig. 1. Poloidal cross section showing the isolines of ¢ from the full torus particle
simulations of Ref. [38]. (a) linear phase; (b) during saturation; (c) at satur-
ation.
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