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Abstract

Fourier analysis is proposed as a tool for the recognition of non-diffusive features of heat
pulse propagation in fusion plasmas. Application to a simulated ballistic sawtooth heat pulse
shows that Fourier analysis can identify the plasma region (often well beyond the mixing
radius) where the heat pulse is diffusive. In this region the initial temperature perturbation, as
recorded by a diagnostic with moderate (=1 kHz) time resolution, is negligible. Fourier
analysis of an example of JET sawtooth heat pulse diagnosed with the new ECE heterodyne
diagnostics is consistent with the results from the simulated ballistic heat pulse. It cannot
however be used as an evidence of a ballistic effect due to the limited diagnostic time
resolution. When both the perturbed ()P) and the power balance (y.FB) diffusivity can be
determined reliably in recent JET sawtoothing plasmas, their ratio is xeP/xePB=2-4 in

agreement with previous results.



1. Introduction

Sawtooth heat pulse propagation has been widely used to investigate the transport of
thermal energy in tokamak plasmas. The standard approach for the interpretation of sawtooth
heat pulses is to assume that the process is diffusive. Different methods of analysis can then
be applied to determine a "perturbative" electron heat diffusivity, xeP, from heat pulse data
[1]. The ratio of yeP with the electron heat diffusivity from steady-state power balance
analysis, x.FB, is usually observed to lie in the range 1<x.P/y.PB<5, and can be explained by
a non-linear (or offset-linear) dependence of the heat flux on the temperature gradient. This
result is confirmed by other perturbative heat transport studies including power modulation
and pellet injection experiments.

Unlike other perturbation techniques, the temperature perturbation following a
sawtooth crash is the result of an MHD instability. This instability is generally observed to be
very fast (timescale Tg=100 ps) and localised within the so-called mixing radius (rmix). The
assumption that the plasma outside rpix is not affected by the MHD instability is essential in
order to treat the heat pulse as diffusive in that region. Doubts on the validity of this
assumption have arisen following the observation of the so-called ballistic effect in TFTR
sawtooth heat pulses [2]. The effect consists in an anomaly of the heat pulse propagation
outside ryix as observed with fast (200 kHz) measurements of the electron temperature. This
has been modelled in terms of a strong enhancement of the heat diffusivity extending outside
I'mix on a timescale Ty=1 ms. There ensues a different picture of the sawtooth event, with two
phases: the crash phase, occurring on a fast time scale Tst and confined within rpy;x; and the
ballistic phase, occurring on a slower time scale Ty (still much faster than heat pulse
propagation times) and characterised by enhanced transport over a significant portion of the
plasma volume extending outside rmix.

The possibility to derive a meaningful value of y.P from sawtooth heat pulse
propagation studies depends on the strength of the ballistic effect. Unfortunately, the need for
very fast measurements of the electron temperature has so far limited the investigation of the

two phases of the sawtooth crash to the TFTR and TEXTOR tokamaks (in the latter case [3],



too, anomalies in the heat pulse propagation have been detected, but their explanation in
terms of ballistic heat pulse propagation is not conclusive). It is therefore of interest to see if
any method exists for detecting anomalies in the sawtoth heat pulse propagation when
measured with diagnostics with moderate (1-10 kHz) time resolution. The observation of
non-diffusive features in the heat pulse is not in itself a proof of the ballistic model for the
sawtooth crash. On the other hand, a proof of the diffusive nature of the heat pulse outside a
certain radius allows for standard heat pulse propagation studies to be made in that plasma
region without knowing the detailed dynamics of the sawtooth cash.

In order to look for non-diffusive features of sawtooth heat pulses in JET, Fourier
analysis was applied to JET data in [4]. The Fourier method is very sensitive to non-diffusive
features in the heat pulses, especially during the initial rise of the pulse when a ballistic
contribution may be present. Fourier analysis is also more sensitive to noise in the data,
which limited the applicability of the technique. The availability of a new ECE electron
temperature diagnostic in JET, delivering data with better spatial resolution and s/n ratio than
previously available, provides an opportunity for a more detailed analysis of heat pulse
propagation in JET.

The purpose of this paper is to illustrate how Fourier analysis of heat pulse
propagation can be used to find non-diffusive features in the pulses. This is done by taking a
simulated ballistic heat pulse as an example. The results of the simulation are then compared
with a recent example of JET ST heat pulses diagnosed with the new ECE heterodyne

diagnostic.
2. Simulation of a ballistic heat pulse

Starting from the electron energy conservation equation

3.
EneOTe -V (neOXeVTe) = Pe (D

the equation describing the time evolution of a sawtooth heat pulse is obtained by subtraction

of the steady-state power balance
-V (ﬂeoxeoVTeo) =Pe0- 2)



The difference equation can be written in terms of the perturbed quantities Te=Te-Te,
Bempe-peo andfee (o0 a5

%neOTe -V [neO(XeVTe + XCVTeo)] = Pe 3)
In these equations, Te(r,t) and ne(r) are the electron temperature and density, respectively, pe
is the electron energy source density, and 7, 1s the electron diffusivity. The subscript O refers
to equilibrium quantities; in particular, Xeo 1s the power balance diffusivity (commonly
denoted as .FB). For simplicity the heat flux is assumed to be diffusive (i.e., convection is
neglected). Furthermore, it 1s assumed that the density perturbation is negligible.

In order to further simplify Eq.3, some assumption on ) must be made. According to
the "local transport paradigm" [5] % is normally assumed to be a function of local
macroscopic plasma parameters such as T, and VT,. By further assuming that the
temperature perturbation is small (i.e.,Te/Teo<<1) Eq.3 can be linearised in -T¢ and V Te.
Linearization of % and pe in T, yields convective and damping (energy sink) terms. These
terms normally play a minor role in the heat pulse propagation and will be disregarded here.
Linearization of ¢ in VT yields the usual equation for sawtooth heat pulse propagation

3 - ~
'2—ne0Te -V {neO (XCPVTe )] =0 4

aer
VT,

where xg =Xeo T VT, is the perturbed heat diffusivity and terms of order (VT,)?

have been neglected.

The assumption that . be a function of local macroscopic plasma parameters is not
valid in the case of a ballistic heat pulse. The enhancement of y. following the sawtooth
crash can be modelled heuristically by assuming that . is enhanced by a coefficient which is
an explicit function of time (t) and radius (r):

Le=Y(LDXe0 5)
In this expression, Yo can be a function of local plasma parameters (notably VTe), while the
explicit time-dependence of ) violates the local transport paradigm. In order to derive a
diffusion equation for a ballistic heat pulse, one has to go back to Eq.3 and replace . and ¥
with their expressions as prescribed by Eq.5. The resulting equation can further be linearised

in VT, to yield



3 2 o
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Apart from the enhancement of P on the left hand side, the ballistic effect contributes an
additional (time dependent) source term to the right hand side.

Examples of simulated ballistic heat pulses can be obtained by solving Eq.6
numerically after having specified the functional expressions of Y(r,t), XeP(r), Xe0(r), neo(r)
and Teo(r), as well as the initial and boundary conditions for T.. The simulation of Fig.1 was

obtained with the following specifications:

a) Equilibrium quantities:

neo(r) = ng [1 - (g} n, (7)
2 4
Teo(r) =Ty [1 - G) } (8)

2
r
Xeo = Xo + (X1~ xO)(;) ©)
where the numerical values np=3.46-101% m-3, n,=0.12-1019 m-3, Tp=7 keV, x0=0.5 m?/s,

¥ 1=2 m?/s have been used. The plasma minor radius is a=1 m.

b) Perturbation quantities:

XeP=Xe0 (10)
Y@,b) = [1+8 exp(-t/1h, - k r2)] (11)
with 8=35, tp=1 ms and k = 16 m-2. The sawtooth crash is assumed to occur at t=0.

The simulation is performed starting from a standard prescription for the initial temperature
perturbation profile: Teg is flattened out to the mixing radius, here taken to be ryijx=0.29 m.
Energy conserving instantancous reconnection gives an inversion radius value of rj;y=0.18

m. As a boundary condition, T, is assumed to vanish at r=a=1 m.

The choice of equilibrium parameters for the simulation of Fig.l1 is grossly
reminiscent of typical JET plasma parameters, without aiming at reproducing any particular

JET discharge. For the perturbation, the parameters of a simulation of a TFTR ballistic heat



pulse have been used [2]. This model need not be at all applicable to JET heat pulses. In
particular, due to the low value of X.P assumed, the heat pulses of Fig.1 are rather long,
especially in the outer region of the plasma where the time-to-peak exceeds 50 ms. This
would not have been the case if standard enhancement of %P over x.FB had been used. The
purpose of the simulation is simply to provide an example of ballistic heat pulse on which to

illustrate the use of Fourier analysis.
3. Fourier analysis of a ballistic heat pulse

Fourier analysis of the simulated heat pulse is performed using the procedure of
Ref.[4] to which we refer for details. Before the analysis, all data are multiplied by a damping
function exp(-t/8) with 6=15 ms. This is to ensure that the perturbation vanishes at t=100 ms,
which is the end time of the simulation. Multiplication by a damping function was shown in
[4] to have a negligible effect on the results for not too small values of 6.

The quantities of interest to be determined with the Fourier analysis are the gradient

of the phase (¢") and the logarithmic gradient of the amplitude (A'/A) of the Fourier
transform Tu=Ael? of T,. For a purely diffusive heat pulse in cylindrical geometry with
negligible damping and not too large gradient of (.P, the following relation between ¢’ and
A'/A holds [4,6]:
@'=(A7A)g (12)
where (A'/A)g=A'/A+1/2r-1/2ry includes some (geometrical) corrections to A'/A; rp=-
(neo/neoy! is the scale length of the density gradient. Note that both @' and A'/A are negative
for an outward propagating heat pulse.

Under the same conditions, the value of %P is determined from the following

expression

-1
3 A
X =7 {cp‘ (X)g] (13)

The Fourier analysis represents an unambiguous method to establish the diffusive

nature of a heat pulse. Non-diffusive features will show up in the analysis in the form of a



difference between @' and (A'/A)g at all frequencies. Only if @'=(A'/A)g do we expect Eq.13
to provide the correct numerical value for y¢P. An exception would be the presence of strong
damping of the pulse, in which case Eq.13 is still valid even if @' and (A'/A)q are different
[6].

The results of the Fourier analysis of the ballistic simulation of Fig.1 are shown in
Fig.2 for the frequency range 10<w/2n<30 Hz. At r=0.5m, the pulse is still strongly
influenced by the ballistic effect: @' is nearly independent of frequency and is significantly
lower than (A'/A)g. A saturation of @' is a typical feature of the heat source term in Eq.6 due
to the ballistic enhancement of the diffusivity; the effect on A'/A is smaller. Application of
Eq.13 to determine P results in an error of a factor 2-3. At r=0.6 m, the comparison
between @' and (A'/A)g still shows a significant difference between the two quantities,
although Eq.13 determines yP with an error of only 10-30% in this case. In order to observe
a purely diffusive behaviour of the pulse, one has to go as far as r=0.7 m. There the
agreement between @' and (A'/A)g is very good, and the error in the determination of X P is
very small except for the lowest frequency 0/2n=10 Hz, where the effect of the boundary
condition starts to be significant. Clearly, the ballistic effect is quite strong in this simulation:
despite the mixing radius is ryix=0.29 m, one has to go to r>2rpjx in this particular example
before the heat pulse can be regarded as purely diffusive. At these radii, the amplitude of the
heat pulse is rather small (below 50 eV in this simulation). Other combinations of parameters
in the simulation will result in more or less favourable conditions for diffusive propagation.
The point made here is that if a diffusive region exists, it can be recognised by Fourier
analysis. Note that this is very different from performing a best fit to the data by assuming a
diffusive model. As shown in [2], simulations made under very different assumptions can
result in time traces that are not too dissimilar at first sight; their Fourier spectrum, however,
is significantly different. This can be understood since Fourier analysis is very sensitive to
the rise phase of the pulse, which is different for a diffusive or ballistic pulse. Of course the
possibility for the Fourier analysis to recognise a diffusive pulse is ultimatey limited by the
s/n ratio of the measurement. This must be judged from case to case when doing the analysis

of experimental data.



Even if the pulse of Fig.1 is diffusive for r>2 ryix, application of the extended time-
to-peak (E-ttp) method [7] yields a P value that is about 30% too large. This kind of
shortcoming is common to all methods of analysis based on the standard model for the

sawtooth initial perturbation, which is not applicable to a strongly ballistic sawtooth crash

[2].

4. A practical definition of rpjx

The fact that the ballistic behaviour of a heat pulse must disappear at sufficienty large
radii is trivial and was pointed out already in [8]. The Fourier method provides a rigorous
approach for determining the boundary outside which diffusive analysis is applicable (with
some systematic error depending on the analysis method). However, Fourier analysis is not
always accurate enough depending on the s/n level in the data. This was the case, for
instance, for many of the heat pulses recorded at JET with the ECE polychromator diagnostic
[7]. In cases where Fourier analysis is not possible, other approaches must be used in order to
recognise the diffusive region of the pulse. A possible approach is to study the initial
perturbation of the pulse.

In Fig.3, the temperature perturbation profile for the simulation of Fig.1 is shown at
t=0.5 ms and t=1 ms (at t=0, the perturbation vanishes outside rmix). One can see that within
1 ms of the sawtooth crash, the perturbation has extended over a region well beyond i as a
result of the ballistic enhancement of the diffusivity. There is no sharp boundary for this
extended perturbation, but in practice one can sec that the perturbation is negligibly small for
r>0.6-0.7 m, both at t=0.5 ms and t=1 ms. Now r=0.6-0.7 m is just where the heat pulse starts
to be diffusive according to Fourier analysis. On the basis of this simple observation, one can
therefore justify the approach used, for instance, in previous analyses of JET sawtooth heat
pulses [9]. These heat pulses were diagnosed with a typical time resolution of 0.5-1 ms,
which prevented an accurate determination of rpjx. Nevertheless, rpix was defined
heuristically as the radius beyond which the initial perturbation vanished, and the heat pulse

analysis was carried out for r>rpjx. Applying this approach to our simulation, taking into



account the diagnostic delay time of about 1 ms, would give a value of ryjx=0.6 m. Thus,
even without doing any Fourier analysis, one can perform the heat pulse analysis having
minimised the errors due to the ballistic component of the heat pulse.

The main weakness in this approach is the lack of knowledge on the time scale of the
ballistic effect. In our example, Tp coincides roughly with the time resolution of the
diagnostic. In a real case, longer values of T, cannot be excluded. One should then study the
time evolution of the pulse in its early phase to see if the propagation is diffusive or not. This
is where Fourier analysis is essential. An alternative approach, not discussed here, is to use
analysis techniques that can be extended into the region of the initial perturbation, such as the
double forced boundary method used in [10]. In that case, the time interval where the ballistic

enhancement occurs can be excluded from the analysis.

S. Fourier analysis of a JET heat pulse

It is interesting to compare the results of the simulation with a recent example of JET
sawtooth heat pulse diagnosed with the new ECE heterodyne diagnostic. This diagnostic
covers most of the electron temperature profile with a spatial resolution of about 3 cm. The
noise level depends on the electrical bandwidth: for typical heat pulse signals (1 kHz
electrical bandwidth), the noise equivalent temperature is 10 eV (standard deviation). An
example of sawtooth heat pulse measured with the ECE diagnostic is shown in Fig.4. This
example is a good illustration of the s/n level of the diagnostic. The space resolution can be
inferred from Fig.5, which shows the temperature profile just before the sawtooth crash and
about 200-300 ps afterwards (a) as well as their difference (b). The difference profile has the
role of initial perturbation for the heat pulse, in the sense discussed in the previous section.
The corresponding normalised mixing radius value is pyix=0.7; this is more than twice the
value of the inversion radius (pinyv=0.32).

Fourier analysis (Fig.6) must be restricted to the region p>0.7 in order to provide a
good determination of xcP. The values of @' and (A'/A), in the region p>0.7 are plotted vs

frequency in Fig.6a. The diffusive behaviour of the heat pulse 1s demonstrated by the equality



of the @' and (A'/A)g values for w/2m>30Hz. At lower frequencies, the difference between ¢'
and (A'/A)g is consistent with the estimated damping time value T=50 ms due to perturbed
energy sinks (i.e., electron-ion heat exchange and Ohmic heating). The P value determined
from the data of Fig.6a using Eq.13 is xcP=3.5 m2/s. A similar value of ¢P=3.0 m2/s is
obtained with the E-ttp method. It is interesting to see what would be the consequence of
including data with p<pp;x in the analysis. This is shown in Fig.6b, where the values of ¢'
and (A'/A)g in the region p>0.6 (7 channels) are plotted. The values of ¢' are seen to be
significantly smaller than their true value, while the value of (A /A)g has remained
unchanged. This result is similar to the analysis of the ballistic heat pulse shown in Fig.3.
Given the time resolution of the diagnostic, however, it is not possible to decide whether the
heat redistribution causing the large rjnijx value occurs on a fast (tgT) time scale or on a
slower (ballistic) time scale.

The large pmix value of this heat pulse prevents a meaningful comparison between
perturbed (eP) and power balance (ycFB) diffusivity values due to the large uncertainties in
xeFB near the plasma edge. Other sawtooth heat pulses measured with the heterodyne
diagnostic have smaller ppix values and confirm the result g ¢P/y.FPB=2-4 typical of JET
plasmas.

As a final comment, it seems to us that the ballistic effect is an interesting property of
the sawtooth crash that deserves further investigation. For instance, it may help understand
the relation between transport and magnetic turbulence. The consequences of the ballistic
effect on the subsequent heat pulse propagation can normally be recognised and do not
prevent an accurate determinaton of x¢P. While a detailed investigation of the ballistic pulse
requires a very good time resolution, indirect evidence of the effect can be sought with
moderate time resolution diagnostics by studying the profile of the initial temperature

perturbation. This will be the subject of future work.
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6. Conclusions

Application to a simulated ballistic sawtooth heat pulse has shown that Fourier
analysis can identify the plasma region (far from the mixing radius) where the heat pulse is
diffusive. This region coincides with the region where a diagnostic with moderate (=1 kHz)
time resolution woud find a negligible initial perturbation. Fourier analysis of an example of
JET sawtooth heat pulse diagnosed with the new ECE heterodyne diagnostic and showing a
broad initial perturbation is consistent with the results of simulated data. While a detailed
investigation of the ballistic pulse requires a very good time resolution, it may be possible to
find indirect evidence of the effect in tokamaks other than TFTR by studying the shape of the
initial temperature perturbation profile. In cases where the initial perturbations of the JET
sawtooth heat pulses are not very broad, comparison between perturbed (Y¢P) and power

balance (¥¢FB) diffusivity values confirms the result ycP/x.FB~2-4 typical of JET plasmas.
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Fig.1 at three different locations in the plasma, plotted vs frequency. The Xeg value from
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4. Time evolution of the electron temperature following a sawtooth instabilty in JET
discharge #23425 as recorded by the ECE heterodyne diagnostic (time resolution At=0.5 ms)
at selected radial locations. This was a discharge with B=3.4 T, Ip=3.5 MA, <ne>=1.4-10]9
m-3, <Te>=2 keV, Pog=1.5 MW, Prp=3.8 MW, horizontal minor radius a=1.11 m. The

sawtooth instability occurs at t=50.815 s.
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The T, profile perturbation extends out to p=0.6-0.7.
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are comparable to the size of the symbols.



