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Snakes

J.A. Wesson

JET Joint Undertaking, Abingdon, Oxfordshire, U.K.

The injection of pellets into JET sometimes leaves a resonant
localised structure commonly known as a snake. Snakes
constitute a remarkable phenomenon, having both an intrinsic
interest and a relevance to understanding transport. How are
snakes formed? What maintains the magnetic island created by
the snake? How does the confined density persist? And finally,
why don't such structures arise spontaneously?

1. The experimental observations

When high speed deuterium pellets are injected into JET and reach the q =1
surface a persistent modification of the equilibrium frequently occurs. This
behaviour was first detected through its effect on the soft X-ray emission [1].
Typical signals measured by an array of soft X-ray cameras are reproduced in
the time-space graph of figure 1. The snake-like appearance of these traces
has given the phenomenon its name.
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Figure 1. Typical snake as seen by the soft X-ray camera. The observed
pattern is formed by a small region of localised soft X-ray emission rotating
under the field of view [2]..



A tomographic reconstruction of the soft X-ray signals, as illustrated in figure
2, shows the localised nature of the perturbation in a given poloidal cross-
section. The region of enhanced emission appears to be concentrated at the
q =1 surface, and its m = 1, n = 1 structure enforces this view. The label m =1
here does not refer to a Fourier component but just means that there is one
peak in poloidal angle. The soft X-ray perturbations are typically localised to
~10% of the poloidal circumference of the q = 1 surface. The radial width is
somewhat less than the poloidal width. The form of an m =1, n =1
perturbation on a toroidal surface is that of a tilted and displaced circle [3] as
illustrated in figure 3.

Figure 2. Tomographic reconstruction of the multi-channel soft X-ray signals
showing the enhanced radiation from the snake.

Figure 3. Showing that the snake has the geometry of a tilted and
displaced circle.

There is an initial drop in temperature inside the snake but this decays away
over tens of milliseconds leaving a density perturbation which can be of the
same magnitude as the background density. This density perturbation
sometimes persists as long as the observation time, up to 2 seconds.
Furthermore the snake does not decay as would be expected. In fact in some
cases it actually grows, as seen from figure 4. This points to the conclusion
that, once formed, the snakes are essentially permanent.
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Figure 4. Showing the growth of the soft X-ray flux after the initial
formation of the snake [2].

2. An overview

The basic interpretation of the observations is as follows. The pellet crosses
the plasma radius in ~ 1ms. As it does so it is evaporated, and the
interaction with the plasma causes a cooling on each flux surface. However
on rational surfaces the direct cooling is restricted to those field lines
intersected by the pellet's trajectory. The lower thermal capacity of these
regions means that they are more deeply cooled. This effect is strongest on
the q = 1 surface where just a single field line transit leads to a rejoining of
the field line. The cooling process is quite complicated involving thermal
conduction, sound propagation and thermoelectric effects. However this
does not need to be dealt with here.

The magnetic response to the cooling is also very complicated, partly because
of the effect of the sheared field geometry on the cooling and partly because
of the competition of thermal and electromagnetic time-scales. However,
again the details of the transient behaviour are not necessary for an
understanding of the snake itself.

The basic mechanism of the snake formation is that the localised cooling on
the q = 1 surface increases the local resistivity, causing a drop in current
density. As this occurs on a rational surface it leads to the formation of a
magnetic island, and this magnetic island traps some of the particles released
from the pellet, thus forming the snake.

We would now expect the snake to decay away. The initial fall in
temperature which drove the island growth decays on a time-scale of tens of
milliseconds. Furthermore, even if the island were maintained, the density
perturbation would be expected to diffuse away. In many cases it does not.
Since even the neoclassical loss time is much shorter than the existence
time, the persistence of the snake cannot be understood in terms solely of
good confinement.



Finally, if permanent perturbations of the snake type are natural to a
tokamak plasma, what prevents the spontaneous growth of such structures?

It is surprising that little serious attention has been given to these problems,
given that they introduce fundamental questions of plasma physics. More
specifically we are concerned with the subject of confinement which is poorly
understood and where insight should be sought wherever it can be found.

In what follows a set of suggested solutions to the above problems is
proposed. While it is unlikely that they will all stand the test of time, at least
they offer a framework for discussion.

3. Formation of the snake

The formation of the snake requires the formation of a magnetic island at
the rational surface to prevent the spreading of the material of the pellet
over the surface. This clearly requires that the island should grow
sufficiently fast.

The island growth is driven by the local plasma cooling which is
geometrically complicated. The immediate response involves the formation
of a skin current around the cooled region and the diffusion of this current.
However it is possible to obtain a simple description which avoids these
complications, and this is outlined below.

The helical flux function, vy, is defined by
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and the resistive diffusion is described by
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Taking the radial variation to be dominant, equation (1) can be integrated
across the island width w to give the early growth
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where ¥ is the time dependent part of v, (i) is the radially averaged

resistivity perturbation within the islands, and j, is the unperturbed current
density.

Equation (2) is transformed to an equation for the island growth using the
geometric relation for the island



to give
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Taking Bg = Mojor/2, the island width is given by
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The time for spreading of the density over an angle 8 at a distance w/2 from
the rational surface is
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where R is the major radius and vTj is the ion thermal velocity. Substitution

of 1 =t from equation (5) into equation (4) gives a requirement for trapping of
the density in the island
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It is seen from inequality (6) that density trapping will occur at early times
while w is small, and be halted at some critical island width. The quantities

(M) and vtj are in reality time dependent but relation (6) allows a rough

estimate of the requirement for density trapping. Using typical JET
conditions and assuming a parabolic g-profile with go = 0.75, it is found that

trapping up to an island width of 0.1m, with rA8=w, requires that the
temperature be reduced to ~70eV. If the shear were an order of magnitude
lower, as indicated by the analysis by Gill [4], the required temperature would
be ~700 eV. The actual temperature during the pellet ablation is not known
but adiabatic cooling would produce an order of magnitude temperature fall
within the island.

4. Sustainment of the magnetic island

Since the temperature perturbation within the snake decays away while the
snake itself persists, another mechanism is required to explain the
sustainment of the magnetic island. One possible mechanism is the
accumulation of impurity ions within the snake.



In the frame of the plasma ions the large pressure gradient in the snake is
balanced by the force of an electric field across its "minor radius”. Impurity
ions with a charge Ze will see this field and will be subject to a radial force
which is Z time larger than that on the plasma ions. The force will be
diminished by the effect of any relative velocity between the plasma ions and
impurity ions. Since this depends on uncertain anomalous transport

processes we introduce a factor ¢ to allow for this.

Thus, the force balance equations for the plasma ions and the impurity ions,
with densities ny and ngz, are

TVnH = Ny EE

and
TVn; = ¢nz ZeE
6z
so that Nz ( N ]
nZo nHo

where the subscript zero refers to values in the background plasma.

Taking, for example, a snake density ne = 1.5 ngg and an oxygen impurity

with ¢ =1, we obtain nz/nz, = 5. If the background impurity level nzo/ng
were 1% this would produce a resistivity enhancement over the background
plasma of a factor 1.8.

An estimate of the resulting island size can be obtained by balancing the
drive term, given in equation (3), with the usual stabilising term (no/Ho) A’

with A" = 2kg where kg is the effective poloidal wave-number. The resulting
island width is

kgw = 8@(—‘4-,)
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The observed value of kgw is of order one and consequently, for (rq'/q) ~ 1/2,
a resistivity enhancement of ~ 10% would be adequate to sustain the
magnetic island. The enhancement factor of 1.8 obtained in the numerical
example above is seen therefore to be more than adequate, and this perhaps

indicates that the impurity density gradient factor ¢ is less than one.
5. Sustainment of the density

At first sight the persistence of the density perturbation in the snake in the
presence of the very large local pressure gradient seems to be explained by
good confinement. However the life of the snake exceeds even the
neoclassical confinement time, and it appears that if the discharge were
permanent, the snake would be also.



The neoclassical confinement time is given by
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where wg and wyp are the snake and electron banana widths, 1t¢o1 is the
electron collision time and f is the fraction of trapped particles. For a typical

case, ws = 0.15m, wp = 0.6mm, 1t =2 ps and f =1/5, giving a confinement

time, Theo = 0.6s, to be compared with life times of ~ 2s and decay times which
appear to be effectively infinite.

It is seen therefore that an explanation of the persistence of the density
perturbation is called for. This has to be in terms of a density source.

A possible source is the particle pinch. It is believed that such a pinch
operates in tokamaks and it is often modelled by the form

Vp = —-Qr
This constitutes a source S = - V-ngp , that is
S = 2an

Since this source is operative in the normal plasma it is possible to estimate
the diffusion coefficient required to explain the snake by a simple
comparison with the whole plasma. Thus in both cases the source balances
the diffusion and equating the diffusion for the two cases

D, D, .
2 ns = 2 n
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where Dg and D, are the diffusion coefficients characterising the snake and

the bulk plasma, ng and fi are the enhancement of the density in the snake
and the peak density in the plasma, and w and a are the width of the snake
and the radius of the plasma. Thus

D, _ _ﬁ_(_‘l)z
D ng\2a
Typically w/2a =0.1 and 1i /ng = 2, so that we require
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Since D, is typically greater than the neoclassical diffusion coefficient by a
factor ~ (m;/me)1/2, relation (7) indicates a diffusion coefficient of the order
of the neoclassical value.

An alternative possibility is that the snake is subject to its own pinch effect,
operating across its minor radius. If such a pinch were dominant, the
required diffusion coefficient in the snake would be correspondingly
increased.

6. Absence of spontaneous’ snakes

Since the snake, once formed, seems to be a natural and permanent feature
of the equilibrium, the question arises as to why such structures are not seen
as part of normal plasmas.

To understand the general behaviour we examine the time trajectories in the
space (ns,w)-of the snake density perturbation and island width. The
governing equations take the form

,
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The first term on the right hand side of equation (8) describes the drive
resulting from the impurity concentration, and C represents the stabilising
effect of line bending. In equation (9) S represents the source, possibly due to

the pinch, and Ans/w?2 is the loss of density due to diffusion out of the snake.

Figure 5 illustrates the behaviour schematically. The two lines represent the
zeros of dw/dt and dngs/dt and the dots represent equilibria. The arrows
show the direction of the time trajectories and it is seen that small density
and island size perturbations decay into the origin. This explains the absence
of spontaneous snakes. The diagram has no stable point and it is clear that
some further non-linear effects must be included. Examples would be the
removal of the thin island assumption and non-linear transport within the
island. There is no value at present in including such uncertain effects, but it
is reasonable to assume that there will indeed be a stable saturated state since
this is what experiment shows. Including such a point in the (ns,w) diagram
leads to a trajectory flow diagram of the type illustrated in figure 6. The
dashed line shows the critical boundary to the left of which perturbations
decay to zero and to the right of which the state moves to the stable snake
equilibrium.

1 It should be noted that in the paper by Gill et al. [2], the adjective spontaneous is used with a
different meaning from that used here. There it means "not induced by a pellet”, the snakes
being produced by the sawtooth instability. Here spontaneous means "arising without an
immediate cause”.



w

Figure 5. Time trajectories in the space of snake density and island width,
showing the decay of possible snakes with small ng and w.
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Figure 6. Showing the behaviour of snakes on the two sides of the critical
line in (ng,w) space. Above the critical line the state moves to a stable
snake-like equilibrium.

7. Summary

The localised and persistent density concentration following pellet injection
has been analysed. The formation is attributed to the growth of a magnetic
island at the q =1 surface, driven by the localised cooling. This island traps
some of the ionised pellet material, but the long life of the density
perturbation cannot be explained by this initial trapping. It would be
expected that on the observed timescale the density perturbation and the
magnetic island would decay away. The suggested explanation of their
persistence is in terms of two processes which support each other. On the
one hand the density perturbation increases the resistivity through impurity
concentration, and this maintains the magnetic island. And on the other
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hand the magnetic island affects the local confinement in such a way as to
increase the density. A possible source for the background density
perturbation is the divergence of the pinch velocity.
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