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Abstract

The nonlinear evolution of magnetic reconnection in collisionless and weakly
collisional regimes is analyzed on the basis of a two-dimensional incompressible
fluid model. The initial equilibria are unstable to tearing modes. In the limit where
the stability parameter A’ is relatively large, the mode structure is characterized by
global convective cells. It is found that the system exhibits a quasi-explosive time
behavior in the early nonlinear stage where the fluid displacement is larger than the
inertial skin depth but smaller than the typical size of the convective cells. The
reconnection time is an order of magnitude shorter than the Sweet-Parker time for
values of the inertial skin depth, of the ion Larmor radius and of the magnetic
Reynolds number typical of the core of magnetic fusion experiments. The
reconnection process is accompanied by the formation of a current density sub-layer
narrower than the skin depth. In the strict dissipationless limit, this sublayer shrinks
indefinitely in time. Physical mechanisms limiting this tendency to a singular

current density profile are also discussed.
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I. INTRODUCTION.

Laboratory plasmas close to thermonuclear conditions exhibit a variety of
relaxation phenomena involving strong magnetic activity. The oldest known and
best studied of these phenomena are sawtooth relaxations{1]. A common feature of
these phenomena is the fact that they become more marked in the largest, hottest
devices like the Joint European Torus (JET). In JET, for example, the ratio of the
sawtooth period to the crash timescale exceeds three orders of magnitude. This is
not unexpected on general grounds, since the crash time and the slow evolution
should depend on different powers of the relevant Reynolds number (the magnetic
Reynolds number).

Renewed interest in the crash problem was prompted by the observation[2] that
at the high plasma temperatures of these experiments sawteeth can occur on a time
scale shorter than the electron-ion collision time (see Fig. 1). Since the sawtooth
phenomenon is associated with the m=1 internal kink, these experimental findings
have generated considerable interest in the problem of magnetic reconnection in
collisionless regimes, where electron inertia is responsible for the decoupling of the
plasma motion from that of the magnetic field. In Astrophysics, of course, magnetic
reconnection in collisionless regimes is thought to occur in several systems, such as
for instance the low density environment of the Earth magnetosphere (see, e.g. the
review article by Vasyliunas[3]).

Recently, the linear theory of m=1 kink-tearing modes has been extended to
experimentally relevant regimes for plasmas close to thermonuclear conditions[4-7].
For the parameters of JET high temperature plasmas, the ion Larmor radius is
larger than the plasma skin depth (examples are discussed at the end of Section III
below). Under these conditions, magnetic reconnection in the linear stage can occur
at a rate, normalized to the characteristic Alfven time, which is determined by an
appropriate combination of the inertial skin depth and of the ion Larmor radius,

normalized to the macroscopic size of the reconnection region, rather than by



collisional effects. This rate is significantly faster than that of the well-known
resistive internal kink mode evaluated for the same plasma parameters. Thus, the
conclusions from linear theory is that these modes can remain virulent at low
collisionality with an initial growth rate which compares favorably with that
observed in the experiments.

As usual, the validity of the linear theory is limited by the condition that the
magnetic island width does not exceed the width of the reconnecting layer, in
practice the electron skin depth, d,=c/o > O the ilon Larmor radius,
p, = (mc®T /e’ B*)"?, whichever is larger. On the other hand, the example of Fig. 1
shows that the magnetic axis can move as fast as exponentially for a good fraction
of the plasma size, well into the nonlinear stage.

The analysis of the nonlinear stage of fast sawtooth reconnection was initiated
by Wesson[8]. Neglecting Larmor radius and pressure gradient effects, Wesson
assumed that the nonlinear collisionless evolution qualitatively follows the standard
Sweet-Parker[9-10] reconnection process in resistive MHD, but with the electron
inertia replacing the collisional resistivity as the effective impedance to the electric

field. Let us introduce a dimensionless reconnection time, T, measured in units of

the characteristic Alfven time, the inverse magnetic Reynolds number, 7,
proportional to the electrical resistivity resulting from electron-ion collisions, and
the dimensionless skin depth parameter d =d, /a, where a is a macroscopic scale
length. Wesson suggested that the reconnection time shortens, going from the

Sweet-Parker value t,,.~ n'” 2

when d <n"’, to the new value 1, ~d”' when
d >n". This result can be interpreted as a consequence of the wider reconnection
channel when electron inertial effects are considered. The channel width is
8,.~n" according to Sweet-Parker theory, but as the temperature is raised the
relevant width cannot drop below the value 9, ~d. Interestingly, this nonlinear
width is of the same order as the width found in the linear approximation (when

Larmor radius effects are neglected). Similarly, Wesson's reconnection time turns

out to be of the same order as the linear growth time. This led to the suggestion



that, in regimes where p, >d,, such that the ion Larmor radius sets the linear as
well as the nonlinear width of the reconnection layer, the displacement may
continue to grow exponentially well into the nonlinear phase [11], with a
characteristic reconnection time t,,,~a/p,.

Wesson's conclusions were questioned by Drake and Kleva [12], who
simulated the merging of two isolated flux bundles. In this simulation, a new scale-
length much smaller than the inertial skin depth was observed to develop during the
nonlinear evolution. Using an argument from Sweet-Parker theory, namely that the
reconnection time is proportional to the inverse width of the reconnection layer, and
assuming that the relevant width corresponds to the newly found scale-length,
Drake and Kleva concluded that the reconnection process would slow-down
considerably as the nonlinear phase is entered, 1i.e. for magnetic island widths
comparable with the plasma skin depth. This latter result would at least imply that
the model studied cannot even qualitatively account for the experimental findings.
This has induced some authors to investigate the behavior of more general
models[11,13-14].

In this paper, first we discuss in detail the numerical and analytic solution of a
reduced 2-D incompressible fluid model which neglects ion Larmor radius and
pressure effects, essentially the model studied in Ref.[15] where preliminary results
were reported. We find that, in the appropriate nonlinear regime, the current is
mainly distributed over a distance d from the reconnecting surface, with a narrow
inner sublayer shrinking with time. The physics of this narrow scale-length is
qualitatively extraneous to Sweet-Parker theory. Indeed, as a consequence of the
formation of the narrow sublayer, the reconnection process is found to exhibit a
quasi-explosive behavior, in contrast with Drake&Kleva's conclusion. However, it
is reasonable to expect that some physical process intervene at some stage during
the nonlinear evolution, limiting the tendency to a singular current density profile.

Next, we turn our attention to dissipative effects, specifically to what extent

they can limit the formation of this narrow current sub-layer. Of course, in a real



plasma, one can think of several collisionless mechanisms that introduce a spatial
cut-off, such as, for instance, velocity space instabilities or 3-D effects. From our
analysis it is tempting to conclude that, even in the presence of such limiting
mechanisms, and as long as they do not affect the broader structure of the current
channel, reconnection in weakly collisional regimes should proceed at least as fast
as predicted by Wesson. However, more work is needed to validate this statement.

The possibility of magnetic reconnection in dissipationless regimes may raise
questions of principle. It may be argued that the process is reversible and that the
reconnection process may bounce back nonlinearly. One of the aims of the present
paper is to clarify these aspects of the theory.

This paper is organized as follows. In Sec. II we present the model equations.
The linear theory is discussed in Sec. III. General properties of the collisionless
model, and in particular the question of reversibility, are discussed in Sec. IV.
Sections V and VI report, respectively, the numerical and analytic solutions of the
model equations in the collisionless limit. Numerical results with dissipation are

discussed in Sec. VII. Our conclusions are presented in Sec. VIII.

II. MODEL EQUATIONS

We consider a two-dimensional model of magnetic reconnection, where the
coordinate along the reconnection line is ignorable. A strong magnetic field is
present along the direction of the ignorable coordinate. The perpendicular fluid
motion is assumed to be incompressible, V-v, =0, where v, is the plasma flow in
the plane orthogonal to the reconmnection line. Ion Larmor radius effects are
neglected in the bulk of the paper, thus the electrons and the ions move together at
their Ex B drift velocity in the perpendicular plane, v, =v,, =v,. Owing to their

lighter mass, the parallel current density is carried mostly by the electrons,

J, ~ —en,v,, while the parallel ion flow is neglected.



Our goal is to study the evolution of a reconnecting mode in the early nonlinear
phase, defined by the condition 8y, <<A<<a, where 8, . is the width of the
reconnection layer as given by linear theory, A is the displacement of the magnetic
axis and a is the macroscopic scale length. In this regime the behavior is expected
to be universal, i.e. independent of the geometry. The model we consider is
essentially an extension of reduced MHD on a slab, where the electron inertia
terms, proportional to the square of the electron skin depth, d,* cm,, are included
in Ohm's law.

Therefore we consider the following equations:
o,U+[e,U]=[J.vy],
O, F +[0,F]=nV’(y~y,)-pVy,

where we use the notation 0, =0/dt and [A4,B]=e,-VAx VB, with e_ the unit
vector along the z direction. U=V?¢ is the fluid vorticity, ¢ is the stream function,
v, =e_x Vg is the fluid velocity, J=-V?y is the current density along z, y is the
magnetic flux function, F =y +d’J, with d the normalized skin depth (skin depth
parameter). Moreover, we have explicitly added some dissipative effects
proportional to the electrical resistivity n and the electron viscosity p, .

The co-ordinate z is ignorable, 0, =0. The co-ordinates x and y vary in the
intervals x e[—Lx, Lx] and ye[—Ly, Ly], with the slab aspect ratio €= L, / L,.
Periodic boundary conditions are imposed at the edge of these intervals. The

magnetic field is B= Be, +Vy xe,, with B, a constant value which we take to

scale as B, ~¢”'|[Vy| in order to mimic the magnetic field of a Tokamak. All

L, /B, (the

quantities in Eqs. (1,2) are dimensionless, with L, and t, =(4np, )"

poloidal Alfven time) determining the length and time scale normalization. Thus the

fields ¢, U, y and J are normalized to (B,/c)(L/x,), 1/1,, LB, and
(c/4n)(B,/ L,), respectively.

(1)
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Since the equations are normalized, the dissipation coefficients must be
interpreted as the inverse of Reymnolds-like numbers. Thus v is the ratio of the
poloidal Alfven time to the resistive diffusion time and p, is the inverse of the usual
electron Reynolds number based on the poloidal Alfven velocity.

This model can be extended to include ion Larmor radius effects[16-17] as well
as ion diamagnetic frequency and electron pressure gradient effects. In regimes
where the ion Larmor radius is large, a Pade approximation of the kinetic ion
response allows a fluid-like modeling of the ion dynamics. We shall limit our
discussion of these effects to the initial phase of the instability, where the main
results from linear theory will be recalled. In the final discussion presented in Sec.
VIII, it will be argued that the nonlinear evolution in regimes where electron
pressure gradient effects become important may have to be treated with a full

kinetic model for the electrons[17].
III. LINEAR STABILITY ANALYSIS

For typical plasma parameters, d, n and p are small quantities. This enables
the search for an analytic solution of the linear stability problem using standard
asymptotic matching techniques. In particular, the electron inertia term and the
resistive term have the structure of singular perturbations, which bring about
topological transitions in the structure of the magnetic field.

When the small nonideal terms are neglected and stationary solutions satisfying
0, =9, =0 are considered, one finds that any periodic function y(x) =w(x+2L )
is an acceptable equilibrium. We consider a simple equilibrium specified by L, ==,
¢,=U,=0, J =y, =cosx, and F, =(1+d")y,. This choice allows a completely
analytic treatment of the linear problem. One finds that this equilibrium is tearing-
unstable to linear perturbations of the type ((p,&y):Real{[(p L(x),8y, (x)]e" ™ }
where ¢, (x) and 8y ,(x) are respectively odd and even functions around the two

equivalent reconnecting surfaces at x =0 and at x =xZ,. Instability occurs at long



wavelengths such that k£ =me <1, where m is the mode number and & the slab
aspect ratio which must therefore be less than unity.

The linearized system of equations (1,2) can be written as
(82— ko, = (iksinx) (k2 =1-82 )6y,

Y(1-d%8 +d?K* )5y, +ik(1+d*)sinx ¢, = (& —k>)dy,

In the outer region, i.e. outside narrow layers around the reconnecting
surfaces, the small terms proportional to vy, n and d° can be neglected. Thus, we

obtain from (3) the single equation for dy , ,

{28y, +(1-k*)8y, }sinx =0

while Eq. (4) yields the proportionality relation between ¢, and dy, in the outer

region,

Equation (5) allows a discontinuity in the first derivative of dy, across the two
reconnection layers at x =0 and x =% , where sinx vanishes. If the two layers
are equivalent, in the sense that the layer equations around x =0 and x=+L, are
identical, then we must choose the solution of Eq. (5) which has the same
discontinuity across these layers (see below Eq. (16)). For 0 <k’ <1, this solution

1S

Sy, =y, cos[K(]xI -n/ 2)]

3

4)

)

©)

)



with y_ a constant and x E(l—kz)l/z. The jump of the logarithmic derivative of

Sy, across the reconnecting layers is

A’ in Eq. (8) is a positive parameter. As is well known, A’ >0 is a necessary
condition for instability of reconnecting modes. For the considered model, this
condition is also sufficient. When k?>1, the outer solution changes character,
from sinusoidal to exponential, and the corresponding A’ becomes negative. Thus,
instability is possible only when 0 <k < 1, which requires values of the aspect ratio
parameter € <1, as anticipated. When 0.5<e <1, only the mode with m=1 is
unstable. The smaller €, the larger the number of unstable modes, up the maximum
mode number m,__ = integer(e™').

In the inner region (inside the reconnection layers), we can approximate
sinx ~ x and neglect small terms such as k° compared,té) 0. Thus we obtain the

equations
,YZEJH - _k2x6wn

Sy = xE+(d> +m/y)dy"

where we have introduced the linear displacement §E=v,, /vy =—(ik/v)p,, with v,
the x-component of the perturbed velocity field. It is clear from these equations that,
in the linear approximation, the only change introduced by electron inertia is in the
constant coefficient multiplying 6y” in Eq. (10), where the resistive term n/y is
replaced by the combination A’ =(d” +m/y). Noting that the magnetic Reynolds'
number can be written as n=d’v, /2, where v, is the electron-ion collision

frequency normalized to the Alfven time, the parameter A can be written as

®

®

(10)
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A=(1+v,/ 2y)1 *d , which shows that in the linear instability phase electron inertia
prevails over resistivity for modes growing over a time scale shorter than the

collisional time.

A solution of the inner equations can be conveniently found in (generalized)

Fourier space, where the transformed displacement é(Q) = j_mg(x) e dx satisfies

the equation
dl & & . _
7 Y EE=
dC[1+(A0)" dC
where y =y /k. This equation must be solved subject to the asymptotic boundary

conditions
£(%) ~ const[¢ ™! +(r/ A")sign(§) +6(¢)] , for £ — 0,

E(%) — 0 for | — oo,

These conditions, which are appropriate only for positive values of A’, ensure
the proper matching of the inner and the outer solutions and determine the growth
rate ¥ as an eigenvalue problem. For negative A’, the outer solution changes
character, as we already mentioned, and the boundary condition (12) has to be
reconsidered.

The solution of (11-13) can be found in terms of Kummer's hypergeometric

functions U(a,b;z),

£(C) = const-exp(~8,2C? / 2)E(Z)

E(Z):U(.Qll’_%;z)__l_zU(g_ﬂ’.s_;z)
4 2772 4 2

(11)

(12)

(13)

(14)

(15)



where &, =(yA)"? is a measure of the linear layer width and Q=7/A. The

eigenvalue condition is

_Q)” r[(0-1)/4]
4) T[(Q+5)/4]

(A'>0) (16)

Since we are dealing with two layers, we point out that in the general case
where the parameter Q may have different values at the two layers, the proper
matching procedure yielding a unique solution for the eigenfrequency y requires a
specific ratio in the values of the outer A’ parameter at the two layers. For two
equivalent layers, this ratio must be‘taken equal to unity.

The dispersion relation (16) is well known. In particular, in the collisional
limit[18-19], it yields the limiting expressions for the mode growth rate and layer
width

1/3

y~8,~n"" when AM">>1, ’d <<n'? 17)
¥ ~n(Aa)", 8, ~n(A)"” when AM" <<, d<<n"(A) (18)
In the opposite limit of infrequent collisions, one ﬁnds the scalings[20-21]
y~8, ~d when A'd>>1, d>>n" (19)
y~d*(A)?, &, ~d*(A")' when A'd<<l, d>>n"(A")?" (20)
Of particular interest is the change in the mode structure going from small to
large positive values of A’ (Fig. 2). In the limit A’d <<1 (or A"’ <<1 in the

collisional case) the mode structure corresponds to a standard tearing mode. In this

case, Oy, is nearly constant across the reconnection layers, while ¢, is localized

11
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near these layers, that is to say the corresponding flow cells have a characteristic

width L

(!

. ~0,. In the opposite limit of large A’, i.e. A’d>>1 (or A" >>1),
dy , varies rapidly across the reconnection layers, while the structure of the stream
function is macroscopic, with ¢, ~ @ _signx, ¢, = (iy/k)y ., everywhere except in
the reconnection layers. The profiles of the current density and of the stream
function in the vicinity of the layer at x=0 take the form
8J, ~ vy (2/nd? )1/2 exp(-x?/2d?) and ¢, ~ ¢_ erf(x/2"2d), which match onto the
outer solution for |x|>d. Thus we can say that the large A’ regime is characterized
by macroscopic flow cells with L, ~ L, >>9,.

This distinction between large and small A’ regimes is essential in the
following discussion of the nonlinear mode evolution. In the small A’ regime we
expect a very slow nonlinear growth of the magnetic island on the resistive time
scale, as described by Rutherford[22]. The large A’ regime allows an intermediate
nonlinear phase[15], characterized by magnetic island widths satisfying the
inequalities

0, <Wy <Ly
We shall show that fast nonlinear magnetic reconnection can take place during

this intermediate nonlinear phase.
Extensions of linear theory

The discussion above already indicates that the linear growth rate of the
reconnecting mode does not decrease with increasing temperature as a purely
collisional model would predict, but that it saturates to a value determined by the
inertial skin depth according to the simple model discussed above. In reality, as the
temperature becomes higher and higher, it is no longer possible to neglect finite ion

Larmor radius effects. If we separate between nonlocal (kinetic) effects and



diamagnetic frequency effects associated with gradients in the equilibrium pressure,
both of which are brought in by the finite Larmor radius, we can show that the
former effects cause a further enhancement[4,23] of the linear growth rate, while
the latter effects exert a stabilizing influence, introducing a large-A’ threshold for
the excitation of reconnecting modes[4,24]. It can be argued that, once this
threshold is crossed and the magnetic island reaches a width of the order of the ion
Larmor radius, diamagnetic effects are quenched and the mode grows according to
the large A’ regime discussed in the following sections.

The discussion of ion Larmor radius effects has already been presented in the
literature. Thus we limit ourselves to recall briefly the main results.

The additional scalelengths occurring in finite temperature theory are the proper

ion Larmor radius p, and the ion sound Larmor radius, p,=c,/Q_, where

c,=(T./m)" and Q, =eB/mc. For realistic plasma parameters, the proper ion
Larmor radius effects and the ion sound Larmor radius effects should be considered
simultaneously, since p,/p,=(T./T)"*~1. Early investigations[25,26] of
reconnecting modes in collisionless regimes considered the cold-ion limit, p, — 0,
while retaining effects associated with finite p . The cold ion approximation implies
that a fluid model for the ions can be assumed, while a full kinetic treatment for the
electrons was employed in the mentioned early investigations. In this case the linear
width of the collisionless current channel is determined by the inertial skin depth

(although the stream function varies rapidly over a distance of order p,), so that the

fluid ion approximation remains valid as long as p; <d,. Now,

(p;/d,)=(mB,/2m,)" (22)

tends to be larger than unity for values of the ion B, = 8np, / B* parameter that are
of interest in controlled thermonuclear experiments. Therefore, the analysis of
Porcelli[4] was aimed at extending the early analyses to the regime where p, >d,.

This extension requires a full kinetic (Vlasov) treatment of the ion dynamics,

13



leading to a rather involved integro-differential dispersion equation in coordinate
space (see, e.g., Ref.[27]). The analysis simplifies in Fourier space, where an
ordinary differential dispersion equation can be obtained. This simplification arises
provided ion Landau damping can be neglected. This, however, is a safe
approximation in so far as modes are found whose complex frequency satisfies

o >>kv,, where k,~8,/L, is the parallel wavelength. As for the electrons, a

fluid approximation can be assumed, with the generalized Ohm law

E+1V,xB=nJ+ (3+Vexv)J—lv-Pe (23)
c n,e” \ ot n,e

where P, is the electron pressure tensor and the other terms have their usual
meaning. The fluid electron model requires a closure. In the large p, or p, limits, it
can be shown a posteriori that this closure is accomplished by the choice of an
isothermal equation of state. Of course, the fluid electron approximation excludes
the treatment of modes whose growth or damping may Qépend on Landau resonant
processes.

A great analytic simplification is obtained by adopting a Pade' approximation of
the kinetic ion response, as discussed in Ref. [16,23] . With this approximation,
the two scale lengths p, and p, combine into a single scale length equal to their

geometric mean,
p. = (] +p1)"* =(1+1)"p; , (24)

where 1=7 /7. The implication is that a result correct in the ion kinetic regime
can be recovered simply replacing p, by p. in the dispersion relation obtained
earlier in Refs. [25-26]. A similar conclusion was reached by Aydemir[28], who
employed a four-field model to analyze the stability of m=1 modes, and by

Zakharov and Rogers[7], who used the two-fluid Braginskii model. We point out,



however, that the stream function is significantly different in the cold and kinetic
ion regimes[29], as is shown below. In addition, the Pade' approximation is not
entirely correct if temperature gradient effects are included in the ion response
function. Then, only the kinetic description can fully account for the proper ion
equation of state[23].

The dispersion relation in the limit p=p_ /a>d, y <p and n=0 is

(n/2)y* =~np/A' +p*d /¥y (25)

(for a derivation see Ref.[4]). In the limit A’ — o, we obtain the growth rate

,‘Y‘ ~ (2/n)]/3d1/362/3 = ,?0 (26)

which is higher than the growth rate in Eq. (19) by a factor (p/d)**. A modest

enhancement of this growth rate, by a factor (1+v,,/2y)"®

, 1s found for v, <y,.
For (pd*)"”* <A, <p, where A, =-n/A’ is the stability parameter of
cylindrical geometry, the growth rate y ~(A,,0)"” is obtained from (25). The ideal
MHD result, y ~ A, applies to the limit A, > p, where Eq. (25) is no longer valid.
In the limit A’ <(pd*)™", Eq. (25) yields ¥ ~ pdA’, so that for small A’ the growth
drops below the collision frequency and the (semi)collisional regime is recovered. A

graph of ¥ /7y, versus the parameter A, /(p"’d*”

) is shown in Fig.3.

Examples of the perturbed parallel current density and of the electrostatic
potential across the reconnection layer for A’ —>o and p . /d =5 are shown in
Fig.4. The larger part of J;(x) is localized over a distance x ~ (p/d)" d, where the
decoupling of the electrons from the magnetic field lines can occur, with a tail
extending up to distances x ~p,. This profile remains unchanged in the cold ion
limit 77 - 0 keeping p, fixed (7, — 27.). On the other hand, the profile of the

stream function is very different in the cold and kinetic ion limits. For kinetic ions

(T ~T), o(x)varies rapidly up to distances x ~d, while it approaches a constant

15



over distances x ~ p_. This behavior reflects the decoupling of the electron and ion
radial flows at distances x<p,. By contrast, for fluid ions (7, /7, —0), the
structure around x ~d disappears and ¢(x)varies gently over the scale length p,.

These considerations bring about the question of the validity of the assumed
isothermal equation of state for the electrons. As we have seen, the current density
is localized over a distance x ~(p/d)"*d=8,. It can be easily checked that this is
also the distance where 7)~k'vi,. Below this distance, the isothermal
approximation for the electrons breaks down. On the other hand, the eigenvalue
condition is determined by asymptotic matching in the interval §, <x <p. Thus a
correct result for the eigenfrequency to leading order in the small parameter d/p is
obtained when an isothermal equation of state is chosen across the entire layer. This
conclusion is supported by the numerical analyses of Refs.[5-6], who investigated
the linear stability properties using a kinetic electron model which more properly
represents the electron equation of state.

These results are valid as long as diamagnetic effects can be neglected. These
effects have been considered by Porcelli[4] following the earlier analysis of semi-
collisional m=1 modes by Pegoraro et al.[23]. The main findings are as follows.
Using a Pade' approximant for the kinetic ion response function, the modified

dispersion relation at ideal MHD marginal stability (A" — ) is
(y +io. )y +i0,) " (y +i0 )" =15 (27)

where ©., =(cT,/eBr,)(dInn,/dInr)_, r, is the radius of the reconnecting surface
in a toroidal plasma (the g=1 surface for the case of the sawtooth instability),
0., =—0.,, 0z;=0+n)o, and n,=dInT/dlnn. Then, assuming t~1,

stabilization is predicted when

o, 1 7 Y m\(L
.,=_(_) (__) (—’)Bf’3>l (28)
Yo 2\1+47 m, r,




For finite values of A" we may conclude that a threshold exists, A’ =A! (0.),
corresponding to the criterion y(A',0.)=w,, with y(A’,®.) the solution of the
dispersion relation (25). The threshold (28) is found to correlate very well with the
onset and stabilization of sawteeth in recent Tokamak Fusion Test Reactor (TFTR)
supershot discharges[30]. It should be pointed out that the Pade' approximant for
the kinetic ion response is not entirely correct when y ~ @. and 7, becomes large.
For instance, using the full kinetic ion response, a residual growth rate for values of
M, > M, o ~ 1.6 was found in Ref. 23.

The main conclusion of the linear analysis is that magnetic reconnection in the
large A’ regime can remain a very fast process at high temperatures, contrary to
expectations based on collisional models. In Fig. 5 we present a sketch of y versus
T =T, =T for near ideal MHD marginal stability conditions (A’ — ), keeping all
other parameters constant. At low temperatures, the resistive growth rate scales as
y ~T7". At intermediate temperatures, corresponding to (p/n"*)*’d <n'” <p,
one finds the semi-collisional growth rate vy~ (2/7)*"p* """ « T, which is
virtually independent of the temperature. At higher temperatures, the collisionless
growth rate (26) increases with temperature as y o 7', In this regime the condition
for diamagnetic stabilization for A’ — co involves the plasma beta parameter [cf.
Eq. (28)]. This condition is more stringent than predicted by the two-fluid resistive
model. The stabilization condition ©, >y is more easily met for values of
A' <—p™d?*"” where y drops below v,.

Let us now evaluate the relevant stability parameters for internal kink modes in
JET high temperature discharges. We choose the reference values R =3m, B =3T,
n,=3.x10"m™> and T =5keV near the g =1 surface. With the effective charge
Z,, =2, the electron-ion collision time is t,, ~130us. Thus v, ~ 1 is 1 to 4 times
smaller than the experimental growth rate of Fig. 1. The plasma skin depth is

d, =1mm. Considering a deuterium plasma with T =T,

[ e’

the ion gyroradius is

p,~1/3cm. Assuming a parabolic ¢ profile with g, =0.7 and a ¢ =1 radius
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r,=0.3m we find y,' ~ 70us. Thus v;' agrees within a factor 2 with the observed
growth time. Finally B,(r,) ~ 0.6% and assuming a density scale length L ~1m we

have o,,/y,=0.36.

IV. GENERAL PROPERTIES OF THE NONLINEAR COLLISIONLESS
MODEL.

In this section we discuss some properties of Eqgs. (1-2) in the inviscid
(dissipationless) case.

We start by noting that Ohm's law can be interpreted as a conservation law for
the quantity F. F is simply advected by the flow, which means that the value of F
on a given fluid element is conserved. Upon restoring the physical dimensions, one
finds that F ocm,v, —ey/c, where v, is the velocity of the electron fluid in the z
direction. Thus F is proportional to the density of the electron toroidal canonical
momentum at a given point. Since the fields do not depend on z, the particle
canonical momentum along z is always conserved. One cannot however conclude
that the conservation of F on the fluid element is a general property of the two-
dimensional models. One must also impose the condition that the electrons move
together with the fluid (i.e., the ions) in the (x,y) plane, as in the derivation of
Egs. (1-2).

Note that in general, the electron guiding center drift in the (x,y) plane is

given by:

ve=—ExB+v% 29)

where B, is the magnetic field in the (x,y) plane. On the other hand the fluid
is subject only to the ExB motion. Thus the fluid canonical momentum is

conserved only when the projection on the (x,y) plane of the electron drift along



the field lines (the second term in the r.h.s. of Eq. (29)) can be neglected. This
condition turns out to be v,y /ce <<1. Upon using ideal MHD with o = kv, one
obtains v /v, <<1. For thermal electrons this condition becomes p,/d, <<1, as
expected from the range of validity of Ohm's law in the form given in Eq.(2).

The pointwise conservation of F brings about the existence of two families of

integral invariants:

I, = [ dxdyf (F) (30a)
and

I, = [dxdyUg (F) (30b)

where f(F) and g(F) are arbitrary functions. In addition the total energy is also

conserved:
E = L{dxdy[(Vo) +(Vy ) +d* (V)] (30¢)

We now use the conservation of F to show that a singularity should form.
Consider a hyperbolic stagnation point of the flow (X-point). Such points are for
example the X- and the O-points of the isolines of y when the initial conditions for
Eqgs. (1-2) are the linear eigenfunctions. Assuming x to be the direction of the
stable manifold one can approximate the equation of the fluid element as
dx/dt =—v_ (t)x/d. Then the fluid elements converge exponentially to the X-point
according to x =x,e™, A(t)=];v,(1)dr. If F has nonzero derivatives along x,
these derivatives are exponentially amplified. Moreover, if F is analytic in the
complex x-plane in a strip containing the x axis, the width of the strip will shrink
exponentially. Thus the occurrence of a singularity at =+ is generic and does

not occur only when the system evolves to a state of zero flow (a new equilibrium).
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The formation of a singularity in F brings about a related current sheet around
the X-point of the flux function. The nature of this singularity is discussed more in
detail in the next sections.

We now present a more general heuristic argument as why singularities are
expected in the evolution of fields satisfying equations like Egs.(1-2) in the
dissipationless case. Assume smooth initial conditions. The existence of derivatives
of arbitrary order implies that the Fourier spectrum must decay at least
exponentially at large wavenumbers. This means that although the spectrum will
usually have a power law range, this would extend up to a maximum wavenumber,
say k,,, where the exponential portion of the spectrum begins. Naturally k,, will
change with time as the fields evolve. Three possibilities can in principle occur, as

sketched in Fig. 6.

1) k,,(t) stays bounded as t — +co.
2) k,,(r) grows indefinitely as t — +o. The solution exists at all the times but the
spectrum spreads as times goes on.
3) k,,(t) becomes infinite at some finite time ¢,. Then the field becomes singular

and the solution ceases to exist.

We argue that the first option is not possible for generic initial conditions.
Assume for the moment that k,(f) stays bounded. Then, upon truncating the
equations to some wavenumber &, >>k,, one can replace the continuum system
with a finite number of Fourier modes, at the price of introducing an exponentially
small error. However it is known that such a system will in general evolve into a
spectrum whose time average is a power-law all the way to k, (see Ref.[31]). The
exact form of the spectrum depends on the invariants of the system and on the value
of these invariants. For a truncated system the invariants are of the form given in
Eqs. (30a-c) when only quadratic terms are retained. Thus the probability

distribution is a Gibbs distribution of the form P[¢,y]«<exp(-al,—Bl,-yE),



where o, B, and y are Lagrange multipliers. When computing the expectation
value of the Fourier components of the fields, one concludes that the spectra are
rational functions of the wavenumbers. This contradicts the assumption that the
spectrum decays exponentially for £ > k,,.

The third option is also unlikely to occur. Indeed a consequence of the
existence of pointwise invariants like the vorticity has been used to show that the
solution of the two-dimensional Euler equation remains C” for all the times when
the initial conditions are C*[32]. Although no proof is known for Egs.(1-2) it is
commonly thought that 2-d fluid equations possessing topologic invariants have the
same properties. In Eqs.(1-2) the quantity F is such an invariant. (Although we
have used F to show that a singularity is expected, the very existence of this
invariant makes the singularity milder).

Thus one concludes that a singularity will in general occur but only at 7 = +oo.

Finally we comment on the issue of reversibility. Clearly Egs. (1-2) are
reversible. It is therefore interesting to pose the question of principle whether the
reconnection taking place in this system is only a transient phenomenon and the
magnetic field will eventually unreconnect[33].

One can see that this would be the case if one assumes that the system goes into
a saturated state with zero flow. Indeed zero flow states have the property that F
and y are functionally dependent, F' = f(y), which implies that F' and y possess
the same set of isolines. Since the topology of F has not changed, the topology of
vy in the final state would be the same as in the initial state, although the final
configuration could be different.

Essential to this argument is the assumption that the system goes back to rest as
t - +o. However it is unlikely that this would happen. A generic trajectory of a
multidimensional system (actually an infinite dimensional system) is nonperiodic.
Even when the system departs from the equilibrium at f = —~co along the unstable
manifold, there are no reasons why it should come back to the same equilibrium (or

to another equilibrium) at ¢ = +c0 along a stable manifold. We simply do not expect
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that the system comes back to rest or that follows a periodic trajectory. Only in this
latter case would the initial magnetic field topology be restored. In this sense one
could qualify the reconnection process as irreversible.

In practice, irreversibility (in the usual meaning) is anyway introduced by the
effect of dissipation, which comes into place when the microscale becomes small

enough, as discussed in a later section.

V. NUMERICAL RESULTS IN THE DISSIPATIONLESS CASE.

The numerical investigation of Egs.-(1,2) has been carried out with a pseudospectral
code[34] which advances in time the Fourier representation of the field variables,
truncated to 1024x 64 (x,y) components.

In the choice of the slab aspect ratio we are motivated by conflicting
requirement. On the one hand, in analogy with the internal kink, we are interested
the large-A’ regime, which can be achieved for low values of m and €’ <<1 such
that A’ ~ (8/mk?) can be made arbitrarily large. On the other hand we want just one
mode (m=1) to become unstable. This sets a lower bound on the aspect ratio
g=1/2, hence an upper bound on A’ = 8.12. Most of our studies were carried out
with d =1/4, thus satisfying the large A’ condition as well as allowing a good scale
separation ( d /2L, =0.04).

The initial conditions are chosen to approximate closely the linear
eigenfunctions of the unstable model with small amplitudes. The initial conditions
are such that the X-points of these islands are x=0, y=0and x=L,, y=L, . The
spatial symmetries of the initial conditions, namely reflection symmetries with
respect to the reconnection line and with respect to the four points x==+L /2,
y=%L,/2 are preserved during the nonlinear evolution.

The results of a collisionless simulation (p, =1 = 0) are summarized in Figs.

7-10.



Fig. 7 shows sections of dy =y -y, , v . =-8¢/0y ,Jand F across the X-
point (y=0) at various times. 8y and v, are normalized to their value at
x=-L/2. Initially the systems evolves essentially linearly. This phase lasts
conventionally until 7 ~80, when the magnetic island reaches a width of order d.
Until this time, the profiles shown in Figs. 7a,b are very close to the linear
eigenfunctions. The linear layer width 8., ~d is visible from these graphs.

For ¢ >80, the system behaves nonlinearly. Note that the width of the profiles
of dy and v, remains of the order of the skin depth (Figs. 7a,b). By contrast, the
current density profile and the invariant F (Fig. 7c-d) develop a time dependent
scalelength which keeps shrinking with time, in agreement with the analysis of Sec.
IV. This behavior is confirmed in Fig. 8d, which shows the evolution of the inverse
of the scalelengths of v, and J, measured, respectively, by
8, =(v.)epn/(0,v,) , and 8, =(287/8J)" (Here, 8J=J-J,). One can see
that & is little changed while 8, becomes rapidly small.

Figs. 8a-c show profiles of Sy, &°F and v, versus .y along the reconnection

line, at various times. Note in particular the X-point/O-point asymmetry developed
by the flux function (Fig. 8a). The curvature of the profile of F, *F/éx®, grows
around the X-point and decreases around the O-point as a consequence of the
conservation property combined with the flow direction (Fig. 8b). At 7~125, the
nonlinear microscale has become so narrow that it can no longer be resolved by our
truncated Fourier expansion, and so the simulation is stopped. By contrast, the
profile of the y component of the velocity (Fig. 8c) does not change much from the
linear phase.

Contour plots of ¢, v, J and F are shown in Fig. 9. Note again that the
convection cells retain approximately their linear shape well into the nonlinear
phase (Fig. 9a). The same is apparent for the magnetic island (Fig. 9b). Also note
the development of a current sheet around the reconnection line (Fig. 9¢) and the

preservation of the topology of the isolines of F (Fig. 9d).
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Finally, the time behavior is illustrated in Fig. 10. It is remarkable that the
mode growth remains very rapid throughout the simulation. Indeed, the growth of
@, as well as that of oy and &J at the X-points, accelerate in the early nonlinear
phase, which suggests that the growth is quasi-explosive.

To summarize this section, we have found that the reconnection rate in the
purely collisionless case accelerates nonlinearly. The electric potential and the flux
function maintain a "broad" structure, with a characteristic scalelength nowhere
smaller than the electron skin depth. Conversely, the current (and the vorticity)
develop a nonlinear time dependent microscale which decreases with time. In the
next section we will show how the above findings are coherently explained with

analytic calculations.

VI. ANALYTIC APPROACH.

The conservation of F' allows the formal integration of the collisionless Ohm's

law (2):

F(x,y,t) = F[x,(x,y,0)]= (1+d*)cos[x,(x,y,1)] , (31)

where x,(x, y, t)=x—-E(x, y, t) is the initial position of a fluid element situated at
(x,y) at time ¢ and & is the displacement along the x direction defined by the
equation d&/dt=v,, E(t=—0)=0.

As discussed in the previous section, the numerical results suggest that the
spatial structure of the stream function does not vary significantly with time

throughout the linear and early nonlinear phases. This motivates the ansatz:

o(x, y, )=V, (D g(x)h(y) +u(x,y,t) , (32)



where A(y)~ k' sin(ky), g(x)~¢,(x)/o, contains the linear scale length 4 and
u(x,y,t) develops the rapid scale length 8(¢)~&, observed in the numerical
simulation. We assume u <<v, and 0,u~ v 0 g, which is consistent with the near
constancy in time of the width of v_ across the reconnecting layer (Fig. 8d), as well
as that of the ratio vy(O, Ly/2,t)/vx(—L,/2,0,t) (Fig. 10). This assumption allows a
parametrization of the system of Egs. (1,2) in terms of the displacement
At) = [, v, (V)dr.

By integrating the equation of the fluid element along the line y =0 (across the

X-point), dx/dt =v,, and neglecting the contribution from u(x,y,t), one gets
—fax/g(x)= [v,(¢)ar =2(r).

In the large A regime, the leading behavior can be extracted by approximating
g(x) as g(x)=x/d for |x|<d and g(x)==I for |x|>d. Inverting Eq. (32) one
gets the dominant contribution to the function x,(x, y, t) in three characteristic

spatial ranges bounded by the linear scale 4 and by the nonlinear microscale

8(t) = dexp[-\(t)/d]

x, ~ x(d/) for |x] <8 (34a)
%, ~d In(e|x|/8)sign(x) for d>|x|>8  (34b)
x, ~ Asign{x)+x for |x| > d (B4c)

Analogous relations are obtained along the ky =m line, crossing the O-point, by
swapping x and x,.

A sketch of the dependence of x, on x is presented in Fig. 11. Thus we see
that near the X-point along the x direction, F(xo) (and hence J) varies over a
distance &(¢) which becomes exponentially small in the ratio A/d. Conversely,
around the O-point F (xa) flattens over a distance |x|~A from the O-point, as

observed numerically.
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The flux function can be expressed in terms of F by means of the proper
Green's function. Here we neglect the derivatives along y, which is justified in the
large A limit. Moreover we replace the Green's function defined in the box with the
one defined in the plane. This is a valid approximation in the range of interest
x<Ai<<lL.:

W0 yat)m o [ et R (e y, e, (35)

One can see that any fine scale variation of F is smoothed out over a distance of
order d. Therefore d is the smallest scalelength of the leading contribution to .
Asymptotic evaluation of the deviation from the equilibrium 8y and 8J can be
derived from Eq. (35) by using Eq. (31) and Eqs. (34). Along the line y =0

crossing the X-point we find:

Sy =—122+06(\d) for x <d (36a)
Sy=-I0 -Ax+0(d®) ford<x<<lL, (36b)

and:
& =-1\d for x <8 (37a)
&) =~ —(A/d)In(x/d)-[1+In(x/d)} +6(h/d) for8<x<d  (37b)
&J =0(A/d)exp(-x/d)=0 for x>d (37¢)

The logarithmic singularities in expressions for the current would have
appeared as subdominant corrections to Eq. (36a).

We can see that the current perturbation is distributed over a region of width
d. (At finite values of A’, as in numerical experiment, there are delocalized
corrections to Eq. (37c) which come from the y-derivative of &y. These are

apparent in Fig. 7c).



The current density has a peak of order &J, ~ O.S(k/d)2 and an average value
of order A/d >>1 (i.e., much bigger than the equilibrium current density) in the
region |x|<d.

A similar calculation can be carried out along the line y = L, crossing the O-

point. In the following, we will only need the values at the X- and O-points:
Sy, ~-1N(t), Sy,=06(d?), (38)

as well as the relation 8J=-8y/d’, valid along the reconnection line where
6F =0. Thus we have demonstrated that an asymmetry develops in the values of
Sy and of 8J between the X- and O-points, as observed numerically (Fig. 8a).

Let us now integrate the vorticity equation (1) over the quadrant

S:[O <x<L,0<y< Ly]. Using Stokes theorem, we obtain

[ v-dl=§ odp+§ Jdy =p Jdy. . (39)

where C is the boundary of S, i.e. the quadrangle XOXO which connects the
critical points of the two symmetric islands (Fig. 12). We have use the fact that
dp =0 on C. By exploiting the symmetry with respect to (L, /2,L,/2) one realizes
that it is enough to integrate along the lines OX and XO'. As a rule the integrals
along XO' gives only a subdominant contributions in the large A limit.

The Lh.s. of Eq. (38) is dominated by the integral of v, (the integral of v,
contributes to order 6(gkd)). Using the ansatz (32), and neglecting corrections

contributed by ;¢ , we find
8,.v-dl~~(2cc /K d)d*\[dr*, (40)

where ¢, =d (dg/dx)  =6(1) and ¢,(t)=1+(d/ covo)(axu)x is a factor of order

x=0

unity, which depends weakly on time (e.g. 1 <¢, <1.4 in Fig. 8d).

27



28

The r.h.s. of Eq. (38) can be written as

b 0dy =-[alow) - ad@w) o)

y=0"
The first integral at the right hand side can be evaluated exactly:

[Tl o,w) | =8uy -8y, —(8yk ~dy})/2d’ @1)

Xx=

The second integral is bounded to 6(k*A), which is subdominant both in the linear
and in the nonlinear phase.
Using an interpolation formula between the linear and early nonlinear limits of

the r.h.s. of (40), we obtain an equation for the evolution of A(f) = INQICE
PR =+ e

where f=y,t and c,~1/16c,c, can be taken constant. The solution is

i(?)z[(l—a)/(l—oce”)]wei, where o =B—(p?-1)", B=1+5/c,, and we have

chosen the time origin so that A(0)=1. Thus, once the early nonlinear regime is
entered, A(r) accelerates and reaches a macroscopic size over a fraction ~ ln(ofl'/3 )
of the linear growth time. This explains the acceleration is clearly visible in Fig.
10. Detailed comparison of the prediction of Eq. (42) and the result of the
numerical experiment is however made difficult by the resolution which limits »

to A=1In(d/s,_ )~3.7.

This explosive growth will eventually turn into a slower growth as A
approaches the macroscopic scale length. It is interesting to ask whether there is a
bound on the growth of A. In this model there is an overall bound to the maximum

attainable velocity set by the energy conservation law (Eq. 30c). This means that,

asymptotically, A cannot grow faster than linearly in time. Note that in this range A



would cease to be the displacement as it would grow bigger than the macroscopic
length. In reality, new physics will come into play much earlier, as discussed later.

We conclude this section with a discussion of the consistency of the ansatz (32).

The surface integral that has led to Eq. (42) has allowed the annihilation of the
vorticity nonlinearity. However, pointwise, the vorticity term is dominant in the
nonlinear regime. In order to do show that this is the case, we estimate u(x,y,t)
directly from the equation of motion (Eq. 1) using the expressions of y and J
obtained with the ansatz (32). We then show that the resulting expression for
u(x,y,t) satisfies the assumed ordering.

In the region & <x<d the vorticity nonlinearity is approximated by
(@00 » 4], since, by assumption, [u,8u] is subdominant. In a strip around the x-
axis we can approximate u(x,y,t)~ w(x,t)y. Upon using the piecewise expression
for ¢.. Iintroduced below Eq. (33), and the asymptotic expression
[J,w]=0,(8J)8,(dy) ~ ~X'y/(dx), which is valid in the nonlinear regime, one is

led to an equation for w:

0,8w -+ (d\/ dt)(1/ d)(&w— xBw) ~ =\ / (dx) (43)

From Eq. (42) one gets dA/dt ~N"/d"?. The leading contribution to w is

then

w=xd In(x/d)(A/d)". (44)

One can immediately verify that the ansatz (32) as well as the other
assumptions that Jled to Eq. (44) are satisfied. In  particular
O W/ 08 Q. <(d/L)<<1 in the range 8 <x <d. Note also that d,w is subdominant
in Eq. (43). Thus the vorticity nonlinearity is a dominant term of Eq. (1) in the
reconnection region. Indeed the vorticity can diverges as 1/x for x - & without

invalidating the ansatz.
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VII. NUMERICAL RESULTS WITH DISSIPATION.

The nonlinear, time-dependent microscale &(f) obtained in the previous
sections becomes rapidly small. One therefore expects that it will be replaced by
some cutoff when additional physics is taken into account. In this section we
analyze how dissipation can modify the previous phenomenology. We will also
discuss the question whether the evolution can proceed at a fast rate even in the
presence of the additional physics. This is especially relevant in order to address the
experimental findings.

We first discuss the role of resistivity. It is interesting, to compare the results
of a family of simulations possessing the same linear behavior, but differing in the
nonlinear stage. This is made possible by the fact that linear theory is unaffected by
a change of the pair of values of (1,d) if the growth rate and the quantity n+d’y
are held constant, and initial conditions are the same.

A purely resistive case which matches the previously studied collisionless case
corresponds to n=3.x10" when d =0. The nonlinear stage is however completely
different from the collisionless case, as seen from Fig. 13. In particular the
development of the current sheet proceeds in a much slower fashion. In the purely
resistive case the system is expected to follow the Sweet-Parker behavior[9-10]. A
detailed analysis of the pure resistive case is outside the scope of this work.

In contrast with the purely resistive case, a "balanced" case
(n=15x10"d= 1/4+/2), when resistivity and electron inertia contribute equally
to the linear phase, behaves essentially in a collisionless fashion (Fig. 14). This
behavior is understood by inspecting Ohm's law (2) using the expressions for the
flux function and for the current given by Eqgs. (36-37). One can see that the
resistive term in the spike region is bounded to 8(nA*/d*) which is smaller than the
1.h.s. of Eq. (2) (which is G(Ad\/df) = 6(y,,.A’)) for small values of n. In other

words the resistive term is a regular perturbation (the order of the differential



operator is too low) and does not introduce a small scale cut-off. This situation
persists as long as N <7,,,d", or 1"’ <d, which is also the condition to neglect
resistivity in the linear theory. When this condition applies we speak of collisionless
regime.

Consider now the effect of electron viscosity (one does not necessarily think of
a true (collisional) viscosity at this point: any process acting as a current
hyperdiffusivity would be equivalent). Inspection of Ohm's law reveals that the
electron viscosity term is 6[u (A /d)(1/x*)] at a distance x from the X-point. Thus,
sufficiently close to it, any nonzero viscosity can balance the leading collisionless
terms. The viscosity operator is-a singular perturbation. This idea has been
confirmed by running simulations with p, in the range 4.x107 <p_<6.4x10°. See
Fig. 14.

When resistivity is large enough that d <mn"”’, it cannot be treated
perturbatively. In the linear phase the electron inertia terms are negligible and the
displacement grows with v, ~n"’ until the displacement it becomes of the order

'3 A detailed numerical investigation of

of the width of the linear layer A = § .. = n
the nonlinear regimes would require simulations with small enough values of the
resistivity, to discriminate between the various scaling laws. In our system, this is
not possible without violating the large A condition. Here we present our
conjectures about the expected behavior in these regimes.

In the nonlinear stage the behavior initially follows the Sweet-Parker scenario

with the layer width shrinking as & ~(n/A)"* while the displacement grows as

nonlinear

a power law A=zxnt’. If d <n"® (strong collisionality regime) the displacement
reaches the macroscopic size A=1 when &, .. ~(M)". In this case the

reconnection proceeds in a purely resistive fashion on a timescale of the order of the

characteristic Sweet-Parker-Kadomtsev[9,10,35] time Tgy N & (T ptvenTResistive)

/3

When the skin depth falls in the intermediate range n'"* <d <n"? (moderate
collisionality) a new regime occurs[36]. In this case the inertia terms become

important when & ~d. This occurs at some value of the displacement

nonlinear
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A ~mn/d’ after a time ' ~d™'. Afterwards we expect that the reconnection proceeds
essentially in a collisionless fashion until A ~ 1. The reconnection time is therefore
controlled by the electron inertia, T, ~d™~' << Tep » throughout the collisionless and
the moderate collisionality regimes.

This behavior can be summarized by the phenomenological equation for

éE?&/nm:

~ Ay 172
where 7 =1’ and d =d /n". The numerical solution of Eq. (45) is shown in Fig.
15. The growth eventually saturates when the displacement reaches a macroscopic
size, A~ L.

The typical JET experiments shown in Fig. 1 belong to the borderline between
the collisionless and moderate collisionality regimes: here the reconnection time
turns out at least an order of magnitude shorter than the Sweet-Parker-Kadomtsev

time: 1, /tg &M <107, This ratio is further reduced when Larmor radius

effects are included.
VIII. DISCUSSION AND CONCLUSIONS.

The applicability of a fluid model to the study of collisionless magnetic
reconnection will depend, of course, on the plasma parameters that one considers. It
can be argued that a fluid model is appropriate as long as the instability has a non-
oscillatory character, which excludes regimes where diamagnetic frequency effects
are important. Then wave-particle effects are not significant and the bulk of the
fluid is involved in the instability process. The problem is to identify the

appropriate closure to the moment hierarchy.



When p; ~p, <d, one can show that the adiabatic equation of state is the
appropriate closure for both electrons and ions throughout the linear and nonlinear
phases[4]. Pressure effects are never dominant in this regime and one can
equivalently assume p =0 to the leading order.

The linear theory in the opposite regime, p, ~p, >d,, is complicated by the
presence of two nested layers around the reconnecting surface[4]. It can be shown
that linear theory can be consistently developed within the fluid approximation
using the isothermal equation of state for the electrons and a Pade approximation for
the kinetic ion response . Strictly speaking the isothermal approximation breaks

down inside the inner layer, |x|<9d, , but the eigenfunctions do not exhibit any

significant structure over this distance[4].

The validity of fluid theory in the nonlinear regime when p, ~p, >d, is more
delicate. The point is that the development of a nonlinear scalelength 8(¢) <8, is
expected on general grounds (Sec. IV). Thus no equation of state can be used
uniformly in this regime, and a kinetic treatment, even in the absence of resonances
seems unavoidable[17].

The nonlinear evolution of the dissipationless model (1,2) is characterized by a
rapidly decreasing microscale. When the displacement has become few times the
skin depth, this microscale has decreased to values comparable to the Debye length
or to the electron Larmor radius. It is therefore relevant to ask what are the physical
mechanisms which could slow down the process of the current spike formation.
More importantly, to understand the experimental findings, it is necessary to verify
whether the fast growth of the displacement can be sustained even in the presence of
spike cut-off mechanisms.

As far as the actual cut-off mechanisms, we have discussed the possible role of
dissipation in the previous section. It has been shown that a small amount of
resistivity does not provide an effective cutoff, as the resistive diffusion operator is
a regular perturbation. An effective cutoff may be introduced by electron viscosity

or by a hyperresistivity term simulating the effect of magnetic microturbulence.
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Other possibilities to be explored include instabilities of the current sheet[12].
Note that our calculation assumes a well defined parity in the initial conditions.
When this constrained is relaxed, secondary instabilities of different parity can
occur. Another possible current instability (not treatable within our model) is two-
stream instability associated with the distortion of the electron velocity distribution
function[8]. Finally we note that stochasticity associated with three-dimensional
geometry can also be effective, especially since fast electrons are generated.

Concerning the question of whether the reconnection rate is affected by the
spike cut-off mechanism, we first recall that the faster-than-exponential nonlinear
stage is caused by a JxB nonlinearity associated with the X-point/O-point
asymmetry. Since the current is distributed over the width of the linear layer 6, ,
this nonlinearity should be little affected by the presence of a cutoff which alters the

current profile mainly in the inner region x <4_, + <<9, . Thus we expect a robust

lin*
nonlinear drive to the reconnection process, qualitatively similar to the one
described in this paper. Now, we note that the total reconnection time is controlled
by the longest of characteristic timescales associated with the various reconnection
stages. When the system experiences a faster than exponential nonlinear phase, an
upper bound to the reconnection time is given by the linear timescale.

Finite Larmor radius effects may further enhance the reconnection rate, When
considering the m=1 internal kink in JET, the reconnection timescale falls in the
range of 30 to 100us, in line with the observed sawtooth crash time([4,27].

Single helicity simulations of equations similar to (1-2) have been recently
carried out in cylindrical geometry[38]. Numerical simulations of fluid models
including some finite Larmor radius effects had been carried out earlier by
Aydemir[13] and more recently by Drake et al.[39]. In all these cases, fast
reconnection rates, qualitatively of the same type as discussed in the present paper,

are obtained. It would be interesting to see how the phenomenology is changed by a

full kinetic treatment of the electron dynamics.



To summarize, we have carried out a thorough investigation of a simple model
of magnetic reconnection in collisionless of weakly collisional regimes. In spite of a
number of limitations, our analysis led us to believe that the occurrence of a rapid
nonlinear stage, when the system evolves faster than Sweet-Parker-Kadomtsev
timescale, is a fairly general phenomenon in weakly collisional systems

characterized by large values of the A parameter.
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Fig. 1. Evolution of the position of the peak of the soft X-ray emissivity during

a fast sawtooth crash in JET.
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