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Abstract

The general kinetic description of two wave interaction in plasmas, obtained
by perturbation expansion of the kinetic equation, is discussed along with various
approximations. The general expression involves the full detail of the distribution
function perturbations, f and f?, of the two interacting waves, a and b, and is at
present numerically intractable. Replacing the general expression by a truncated
expansion in velocity space the low temperature kinetic (LTK) model is obtained.
This model, which involves only the zeroth and first moments of f2 and fP, is valid
when thermal effects are small for the scattered wave but makes no assumptions
about the interacting waves. Alternatively the LTK model may be derived from
a truncated sequence of moments equations. The effect of truncating at different
moments is discussed. To ensure that the limitations implicit in the truncated mo-
ments model apply only to the scattered wave and not to the interacting waves, it is
found that the perturbation expansion must be carried out in variables which, like
the electron flux, are linear in the distribution function, f. If the perturbation ex-
pansion is carried out in fluid velocity, which is non-linear in f, then the limitations
of the truncated model apply also to the interacting waves. This is the principal
cause of the limited range of applicability of the traditional cold fluid model of
scattering. Finally the consequences of linear dependencies and cross correlations
between fields and moments are considered.



1 Kinetic description of two wave interaction

The behavior of electromagnetic waves in plasmas are described by Maxwells equations
VxE = —atB (la)
VxB = Ho (antE + j) 5 (lb)

where ) is the plasma current,
i=a [vrip, 2)

and f = ), 6(x — x,(t)) (x = (r,p)), the microscopic distribution function, is governed
by the kinetic equation (Klimontovich, 1982, Section 24)

Lf=—F 8pf. (3)

Here

L=0+Vv 0 +q(vxB9).5,, (4)

is the linear operator representing the total derivative along unperturbed orbits in phase
space, B( is the static magnetic field and

F=g¢ (E+vx(B-BO))

is the force electromagnetic fields exert on an electron. It is assumed that there is no
static electric field. For simplicity we have only included the electron contribution to the
plasma current. Where needed the expressions are of course readily generalized to include
contributions from 1ons.

This system of equations is bilinear due to the term on the right hand side of (3), which
causes waves in plasmas to interact. The fact that the nonlinearity is limited to second
order implies that the interaction of a larger number of waves can be considered as a
sequence of two wave interactions. Integrating (3) along the characteristics of £ (the
unperturbed orbits) and inserting the resulting right hand side in (2) we find the plasma
current j expressed as a linear integral operator, o, acting on the bilinear term, F - 0p f:

Ji =0'i{F'apf}- (5)

Eliminating B from Maxwell’s equations we obtain the wave equation

—1
AGE; = —5j°
5] wc”o]' (6a)
~ k
A;j:6ij+xi]'+N2{k,‘kj—5,'j} R N:Ec, (6b)

where the susceptibility, x;;, by its relation to the coductivity, o;;, accounts for the plasma
current resulting from the fields acting on the equilibrium distribution, f(©,

—tweoxi; B = 0i;E; = oi{F - 5pf(o)} )



and the source current, ;°, is due to the interaction of the fields with the distribution
function perturbations

3 =o{F - 8p(f - FO)}. (7)

The inhomogeneous wave equation (6a) together with the expression for the source cur-
rent (7) and the kinetic equation (3) completely describe wave interactions in plasmas.
Assuming now that the bilinear interactions represented by the source current (7) are
weak we can usefully approximate the solution with a perturbation expansion. Taking
this expansion to second order we describe the bilinear interaction of two waves a and b
in the first Born approximation. The field, E®, of the resulting scattered wave s is then
given by

s —t -0
AyE; = ——Ji (8a)

il =oi{F* - 9pf° + F°- 0pf°}. (8b)
This set of equations describe the bilinear wave interaction of arbitrary waves a and b and
makes no assumptions about s other than that its amplitude must be much smaller than
those of a and b. If this is not an acceptable assumption higher order Born approximations
may be obtained by considering a sequence of bilinear interactions involving scattered
waves. Although it is straight forward to write down the expression for the operator o
(see for instance Sitenko and Kirochkin (1966) and Bindslev (1993)) it remains numerically
intractable.

2 Low Temperature Kinetic model

The complexity of the kinetic expression for the source current (8b) is connected with
the fact that it involves the full detail of the distribution function perturbations, f* and
f?, associated with the interacting waves. Its complexity can, however, be significantly
reduced by assuming that thermal effects are small at the frequency and wave vector,
(k®,w®), of the scattered wave, or more precisely that < fe f"> is significant only for values

of v which satisfy the inequalities

v vy k7 v kS
Y&l VI w1, sez; 2E«1, (9)
c w? + 8w, We

where w, = —¢.B®/m, and || and L indicate components parallel and perpendicular to

B(®. With these assumptions the expression for the source current reduces to a numeri-
cally tractable expression which involves only the zeroth and the first order moments of
the distribution perturbations associated with waves a and b (Bindslev, 1993),

a
.o T3

1
Ji = n(©) {nbE? + naEIb + €imn (EZB: +6?nBvl:) lgmz (ﬁf’nE: + U;E:) } . (10)

Here

n® = /f"dp, (11a)

Ty = /vjf"dp, a=a,b, (11b)



and ¢¢ is the cold electron conductivity at the frequency of the scattered wave, while

4 k;',c -1
Y;'mn = w—arijab(éan(sbm + 6am6bn) ’ (12)
with I‘i_j;b defined by
1 .
Phas = T gz 719 (Miabis + &iami) — 20%6ias + (1 — 20% )miam;s] (13)

+ 1_—195 [niaCjb + Ciamip — 1Q(Cialjp + fiaCjb)] + GiaGib »

and
Q=wfw, n;=26ij—bisbjz, &j=-¢€ijz, Gj=~babjs.

It is remarkable that although the low temperature kinetic (LTK) expression for the source
current (10) involves only the zeroth and first order moments of f2 and f® it nonetheless
introduces no new assumptions about the nature of the interacting waves a and b relative
to the full kinetic expression which involves the full detail of f2 and fP.

Till this point the source current expression has been symmetrical with respect the inter-
acting waves a and b. We now break this symmetry by assuming that the plasma dielectric
response is cold at the frequency and wave vector (ki,w') of one of the interacting waves,
hence forth referred to as the incident wave, i, while maintaining the generality for the
other wave which we will refer to as the fluctuations, é.

This permits us to use the cold plasma relations to express B', j' and ' all in terms of
E!. We then find that the source current is given by (Bindslev, 1993)

o
g;

.o i 1 i o1
5= n(é) El { 6]'1716 + z (5j}cmfmnan + Y:jkl;) 5(:: (14)

i

loj 1 .
+ [6jmk B} + - (6N + Yirk) Ei] } ,

e

where ¢! is the cold electron conductivity at the frequency of the incident wave and
N} = Kic/w' is the refractive index of the incident wave.

In a wide range of scattering experiments in laboratory plasmas the frequencies of the
incident and the scattered waves are sufficiently high that the plasma can be treated
as cold for these waves. The phase velocity of the observed fluctuations are, however,
typically of the same order or smaller than the thermal velocities of the electrons and
uncorrelated motion may also have to be taken into account, both of which makes it
unacceptable to regard the fluctuations as cold collective oscillations. In this case we can
make use of the low temperature kinetic model of scattering with the source current given
by (14).



3 Moments models

The fact that the low temperature kinetic expressions for the source current, (10) and
(14), involve only zeroth and first order moments of the distribution functions of the two
interacting waves suggests that the source current may be derived with the same generality
from a sequence of moments of the kinetic equation (3). The simplest set of equations
we will consider consists of the zeroth and the first moments of (3). In order to truncate
the sequence of connected moments equations we assume that the second moment of the
distribution function,

m; = /v,-vjf dp N (15)
is related to the lower moments as

ViV;

(16)

viv; =

This is in fact the cold fluid model which Sitenko and others used for deriving expressions
for the source current (see e.g. Sitenko (1967)). In these derivations the solution was
found by a perturbation expansion of the fluid velocity u; = ©;/n. The result is

. 1
37 = g (G5 E® + aGEN®) + ofeimn (uf, By + un By) (17

im,

qe

4 aza b bib, a
o (uikiu; + w k'juj) .

Replacing a and b by i and é and then using the linearized continuity equation, the lin-
earized momentum equation, ul = o}, E}/(g.n(®), and Faraday’s law, all for i, expression
(17) can be written as

- 1 i 6

1 o i i
n(—o)q—aijejkmaklElBgm (18)

1) , i i ! i i
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where w? = n(®9¢?/(meeo). This expression for the source current of the scattered field
in a magnetized plasma is identical to expression (20.3) in AKHIEZER et al. (1967) and
expression (11.5) in SITENKO (1967), except that we have used SI units. This model is ac-
curate in the limit where the two interacting waves (in the case of scattering, the incident
wave and the fluctuations) and the resulting scattered wave all are cold collective oscilla-
tions (Sitenko, 1995). In this limit the predictions of the cold fluid model coincide with
the predictions of the low temperature kinetic model. When one or both the interacting
waves are not cold collective oscillations, as in the case of scattering from thermal fluc-
tuations, then the cold fluid expressions (17) and (18) are not guaranteed to be accurate
(Bindslev 1993), indeed large errors may occur for collective scattering experiments in
fusion plasmas (Bindslev, 1995). For these situations the low temperature kinetic model

given by expressions (10) and (14) should be used instead.



In Bindslev (1993) we noted that the failure of the cold fluid model in describing the
interaction of arbitrary waves is due to the fact that the set of equations is solved by
expansion in electron fluid velocity rater than electron flux and that the sequence of
moments equations was truncated too early by assuming (16). We further showed that
if the sequence of moments equations is truncated by assuming instead that the third
moment of the distribution is zero,

VU0 = /v,-vjka dp =0 , (19)

so that the second moment v;7; is given by the second moment equation, and replacing
the expansion in fluid velocity with an expansion in flux we recover the low temperature
kinetic expressions (10) and (14).

We will now consider in turn the effect of the early truncation (16) and the expansion in
fluid velocity. Carrying out the expansion in flux but applying the early truncation (16)
we have from Bindslev (1993, equation 96)

o _ O

Ji = n(o)

{nbE;ur n*EP + €pmn (Vp B + 9% BY) — —=— (W00 + 0;0°) } . (20)

The derivation of the low temperature kinetic expression for the source current (10) is
based on an expansion in powers of velocity of the kernel of the integral operator o; (c.f.
equation (8b)). The zeroth order terms of this expansion led to the terms n®Ep +n*EP +
€imn (05, B2 + 92 BY) in (10), which we note have been recovered in (20). The first order
terms in the expansion of the kernel of o; led to the term Y7, (v5 E2 + w2 E2) /¢ which
is not recovered in (20). We thus find that the difference between (20) and (10) is of first
order in the small variables introduced in (9). Therefore, provided the conditions imposed
by the inequalities in (9) are sufficiently well satisfied that the first order terms can be
neglected the expression (20) like (10) is valid for arbitrary interacting waves a and b.
When first order terms cannot be neglected (20) and (10) coincide in the limit where a

and b are cold collective oscillations but not for arbitrary a and b.

To see the effect of expanding in fluid velocity rather than flux we turn now to comparing
(20) with the cold fluid result (17). First we note that for arbitrary fluctuations the two
expressions differ even in the lowest order terms. Making use of the relation k” = k? 4+ k®
we can rewrite (17) on the form

- of [ 1L a, b b.b b Me ( aib b | ~bja
Ji = n(0) {@(wax?k ¥t w XikE"na) + an—(T)(v?kjvj T jv;) (21)
—b pa —a b ikqme —a=—b —b—a
+ €imn (van + van) - n(JO)q (v, v, + 7 'Uj) )

where the tensor H;’j has the form
H?j = —2w06,J + wceijk-é[(c()) , ﬁ(O) — B(O)/|B(0)| . (22)

The tensor (—iw“/wg)ﬂa is the inverse of the susceptibility tensor associated with the
wave a:

wa (o3 o
ro? Hz'ijk = ik . (23)
P



In the limit where both interacting waves a and b are cold collective oscillations their
fields and fluid velocities are related as

E¢= 2 Toge, a=a,b, (24)

i 215
SQLJP

and we have

1 mm
o, a_a pa_b € —ajb-—>b Qe o - b =a_b
- WS Ern® + —=vTkv], = —— 41w b ) Von
zwg lj Jk"k qen(o) %% €ow,2,( 3] J) J
q —
= IS
Eowp
= EMP (25)

and similarly with a and b interchanged. When these relations hold, (17) and (20) co-
incide. It thus appears that the effect of expanding in fluid velocity rather than flux is
to limit the range of validity of even the lowest order terms to the interaction of cold
collective oscillations.

To understand where the difference between the two expansions arises we observe that
the flux is linearly related to the distribution perturbation f while the fluid velocity is
non-linear in f. Thus the fluid velocity perturbation, u?, with frequency and wave vector
of the scattered wave involves also the velocity distribution perturbations associated with

the interacting waves, a and b:
v vanP 4 vbp?
) (n(o))2

ua

(26)

By perturbation expansion of the first moment equation in Vv we find that the flux asso-
ciated with the scattered wave satisfies the relation

07 — ~=(n B + i3] B") (27)
= -0, 5w + ;"1— [n*EP + nPE? + e (W2BY +30BY)]

This equation can also be obtained as the first moment of
Lf° =—F -0 —F*.0,f> —F°. 9, f° (28)

which is the second order perturbation of the kinetic equation (3). When solving (27)
with (16) for the scattered wave instead of (28) we approximate the detailed behavior of
f? by the behavior of its lowest moments and thereby introduce the low temperature ap-
proximation for the scattered wave. This does not prevent us from letting the interacting
waves be governed by the first order kinetic equation

Lf*=-F*-0pf®, a=a,b. (29)

In contrast to this, when expanding in u we find that the fluid velocity perturbation with
the frequency and wave vector of the scattered wave is given by

e 4 1 a a e€ij —a a
Oyul — q—(Ef + €ijku] B,(CO)) = —— (ukarku}’ + ui’@rkui) + JeCik (v B}; +U§’Bk) (30)

Me n(0) Me d



from which the cold fluid source current is derived. Expression (30), unlike (27), does not

in general permit the interacting waves to be governed by (29). To see this we multiply
(30) by n{®, subtract (27) and make use of (16) to find

n® {(9,5? . (n(O)EEl + fijkE;B]EO))} (31)

Mme

a =] Qe —] 0
+ n {@v? - (n(O)E}’ + e,~jkv§-’B,(c ))} =0.

e

As n? and nP are independent the identity in (31) generally only holds when the contents
of the curly brackets both are identically zero,

M 9e o e
oy — . (n(O)E,- + €405 B,(co)) =0, a=a,b. (32)

(32) is the truncated first moment of (29) which holds only for cold collective oscillations.
Hence we see that expanding in u rather than ¥V has the consequence of imposing the
approximation implicit in the truncated sequence of moments equations not only on the
scattered wave, but also on the two interacting waves. It is possible to show the more
general result that if the expansion is carried out in a set of variables which is non-linear
in f and the kinetic equation is approximated e.g. by a truncated sequence of moments
then the limitations implicit in this approximation apply not only to the scattered wave
but also to the interacting waves, while the limitations apply only to the scattered wave
if the expansion is linear in f. It therefore matters which set of variables the expansion
is carried out in, except when the complete kinetic model is applied.

4 Fluctuation correlations and linear dependencies

All the low temperature expressions presented here for source currents resulting from
the interaction of a cold (high frequency) incident wave with arbitrary (low frequency)
fluctuations can be written on the form

§7 = € + CY)wt + CP B! + CPEL, (33)

which appears to suggest that the ten variables included here to characterize the fluc-
tuations are independent. This is not the case. Some of the fluctuations are linearly
dependent and all the fluctuations are correlated to some extent. As an example we note
that cross correlations between density and magnetic field fluctuations may reduce the
predicted scattered power in present microwave scattering experiments in fusion plasmas
by more than an order of magnitude (Bindslev, 1994 b).

In general the electron density and flux fluctuations are due to the collective motion and
the uncorrelated motion of electrons. The density fluctuations can of course be expressed
in terms of the flux fluctuations. The field fluctuations can be expressed in terms of the
collective electron flux but not in terms of the flux associated with the uncorrelated motion
of electrons because the effect the latter has on fields cannot be distinguished from the
effect uncorrelated ion motion has. Consequently we can only attribute the scattering



from field fluctuations to scattering from flux fluctuations when distinguishing between
scattering due to the collective motion and that due to the uncorrelated motion. The
collective motion and the uncorrelated motion are independent as part of the collective
motion is influenced by the ion motion while the uncorrelated motion of electrons is not.
This leaves us with six degrees of freedom for the set of fluctuations included in (33).
Using the continuity equation for the electron flux, expressing the transverse electric
field fluctuations in terms of magnetic field fluctuations and noting that there are no
longitudinal magnetic fluctuations we find that the source current (33) can be expressed
in terms of the six linearly independent fluctuation variables 7, ¥, B, E) where || and
L now refer to components parallel and perpendicular to k¢:

7 = C"inf 4+ CHvY, + CPYBE 4+ CVES, (34)
G = €M 4+ SRR, (35a)
Cir) = (")(5,, - k, k), (35b)
aff*) = C(B — - 61kjk£w8/k6 , (350)
oV = CPRE k5 (35d)

It is clear that we cannot unambiguously identify a certain fraction of the scattered field
as being due to scattering from fluctuations in a particular quantity. In the cold fluid
source current expression (18) it is, nonetheless, common to identify

C = (o};/n)E]

as the term which accounts for scattering from density fluctuations (Sitenko, 1967, Chap.
11, Sec. 2). Similarly one might identify

C{ = (o7, /n)E}

as the term responsible for scattering from density fluctuations in the low temperature
kinetic model (14). We compared the scattered power associated with these terms in
Bindslev (1994 a) and found that they could differ quite significantly. The scattering
associated with the longitudinal electron flux fluctuations, 7{:\]-5,- , could of course equally
well be attributed to scattering from density fluctuations, in which case we would let the
coupling term, éﬁ"’), defined in (35a), account for scattering by the density fluctuations.
Comparing 6("1) from the cold fluid model with that from the LTK model we find essen-
tially the same differences in predicted power scattiered by density fluctuations as when
C( ") were compared in Bindslev (1994 a). To reconcile the two models in the limit of cold
collective fluctuations, where both models apply, we note that in this limit the fluctuations
have only three degrees of freedom, and hence, we can entirely attribute scattering from
field fluctuations to scattering from density and transverse flux fluctuations. As density
fluctuations and transverse flux fluctuations are orthogonal (scattering from one cannot
be attributed to the other) the two models agree on the scattered power attributable to
each. Note that the fact that the quantities are orthogonal does not imply that their
fluctuations are not correlated.



5 Summary

From the microscopic kinetic equation and Maxwell’s equations a general description of
two wave interaction in the first Born approximation may be obtained. This description
places no limitations on the interacting waves nor on the scattered wave except that,
for the first Born approximation to be useful, it is assumed that the scattered wave
is much weaker than the two interacting waves. If this is not acceptable higher order
Born approximations can be obtained by considering a sequence of two wave interactions
involving scattered waves. In this general kinetic description of scattering the source
current, which drives the scattered field, involves the full detail of the distribution function
perturbations associated with the two interacting waves. At present this model of wave
interaction is numerically intractable.

The source current can be represented as an integral operator acting on the fields and
distribution function perturbations of the interacting waves. Expanding the kernel of this
operator in powers of velocity and truncating the expansion at second order we obtain the
low temperature kinetic (LTK) description of scattering. This model assumes that thermal
effects at the frequency and wave vector of the scattered wave are small. It is remarkable
that this model involves only zeroth and first order moments of the distribution function
perturbations associated with the interacting waves yet does not impose any limitations
on the nature of the interacting waves. This description is therefore useful when modelling
scattering of high frequency waves by low frequency fluctuations about which nothing is
to be assumed. This is the situation in a range of microwave scattering experiments in
fusion plasmas.

The LTK model of scattering can also be obtained by perturbation expansion of the
sequence of moments of the kinetic equation with the sequence truncated by assuming
that the third moment is zero. If the sequence is truncated by assuming a relation for the
second moment we recover those terms in the LTK model which resulted from the zeroth
order terms in the expansion of the kernel of the source current operator. Such a model
is also valid for arbitrary interacting waves but then demands that the thermal effects at
the frequency and wave vector of the scattered wave be even smaller.

In the perturbation expansion of the truncated sequence of moment equations it is im-
portant that the expansions are carried out in variables which, like the flux ¥ = [vfdp,
are linear in the distribution function. This ensures that the limitations implicit in the
truncated sequence of moments equations is imposed only on the scattered wave and not
on the two interacting waves. If, as in the traditional cold fluid approach, the expansion
is carried out in fluid velocity, u = V/n, which is non-linear in f, then the limitations of
the truncated sequence of moments equations are imposed also on the interacting waves.
This is the principal reason why the cold fluid model of scattering is valid only in the
limit of scattering from cold collective oscillations.

When attributing parts of the scattered field to fluctuations in individual quantities it
is important to take linear dependencies between variables into account and make clear
by which set of linearly independent variables the fluctuations are described. It should
also be kept in mind that fluctuations in linearly independent quantities can be strongly
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correlated and that these correlations can significantly influence the total scattered power.
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