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ABSTRACT

Two families of statistical models of increasing statistical complexity are presented which
generalize global confinement expressions to plasma profiles and local transport coefficients.
The temperature or diffusivity is parameterized as a function of the normalized flux radius, ¥,
and the engineering variables u = (Ip,Bt,ﬁ 495 )Jr The log-additive temperature model assumes
that In[T(F,u)]=f, () + fy( )ln[Ip]+ f5(¥)In[By ]+ f,,(¥)In[fi]+ f, In[q9s ] The unknown
f;(¥) are estlmated us1ng smoothing splines. The Rice selection criterion is used to determine
which terms in the log-linear model to include. A 43 profile JET Ohmic data set from the Joint
European Torus [P.H. Rebut, et al., Nuclear Fusion 25 1011, (1985)] is analyzed and its shape
dependencies are described. Our best fit has an average error of 152 eV which is 10.5 %
percent of the typical line average temperature. The average error is less than the estimated
measurement error bars. Our second class of models is log-additive diffusivity models where
ln[x(\Tr,u)]= go(W)+g1(¥ )ln[Ip]+ g8 (¥)In[B, ]+ g,(¥)In[A). These log-additive diffusivity
models are useful when the diffusivity is varied smoothly with the plasma parameters. We
describe a penalized nonlinear regression technique to estimate the g;(¥). The physics
implications of the two classes of models, additive log-temperature models and additive log-
diffusivity models, are different. The additive log-diffusivity models adjust the temperature
profile shape as the radial distribution of sinks and sources. In contrast, the additive log-
temperature model predicts that the temperature profile depends only on the global parameters
and not on the radial heat deposition.

PACS NUMBERS:02,52.55Fa, 52.55Pi, 52.65+z

I. INTRODUCTION

Global conﬁnement expressions have proven useful in understanding and predicting plasma
performance 7. These confinement expressions are straightforward to analyze statistically, but
do not address the radial variation of the plasma profiles and plasma transport coefficients. In
this article, we describe two families of empirical models which generalize global scaling
expressions to profiles and diffusivities.

We define the m vector, u, to be a vector of global engineering variables. Typically, the
components of u are the logarithms of the edge safety factor, qgs, the plasma current, I (in
MA), the toroidal magnetic field, By (in Tesla), the line average density, T, (in 10]9/m3), the
absorbed power, P (in MW), the effective ion charge, Z.ff, the isotope mixture, M, the plasma
elongation, Kk, and the major and minor radii. Other engineering variables can include the
divertor configuration, the wall type, and the type of heating. In practice, we usually work with
the logarithms of the engineering variables, and normalize the variables about their mean values
in the data set. In this notation, the standard power law for the energy confinement time, g, is



Tg = colg' B?z 7iP3 ...,,where B, are the scaling exponents. The power law can be rewritten as a
log-linear expression

In ©=Bo + By InfI, |+ By In[A}+..., (1)

In this form, the resulting scaling expression can be analyzed using linear regression.
Ordinary least squares analysis makes a number of implicit assumptions which are described in
Refs. 1 and 3.

We consider the plasma temperature as a function of the normalized radial flux variable,
V/, and the plasma control variables, u. A convenient flux variable normalization is that the
toroidal flux through a given radius, V¥, is equal to W2 times the total flux. In this section, we
neglect the random errors associated with the data and concentrate on the empirical model. By
writing T(¥,u), we are implying that the temperature is an unknown function of m+ 1
variables. Attempting to estimate an arbitrary m+1 dimensional function from the measured
tokamak data is a very ill-conditioned problem. Therefore, we restrict the class of models which
we examine to a more limited class.

Experimentalists have often observed that the Ohmic temperature profile shape varies very
little as the plasma control variables vary. This “profile resilience” motivates us to define
“profile resilient” models:

In[T(¥,u)]= fo(¥)+H(u) @)

H(u) is independent of ¥ and changes the magnitude but not the shape of the temperature
profile. In the log-linear case, H(u) = cj ln[I[J ]+ CB ln[Bt ]+ cp In[f ... We determine ()
and H(u) by fitting f(¥) with smoothing splines and using linear regression.

A more general model is to let the shape depend on qgs:

In[T(¥,u)]=fo(¥)+fq(¥)ags + H(u) 3)

where both unknown radial functions, fo(¥) and fq(V), are fit with smoothing splines.
Tang's transport models’g, based on profile consistency, is a special case of model of Eq.(3).
Tang's model requires the log-temperature profile shape to be quadratic:
(f o(¥)=co¥? and f W)= ch?‘ ), and derives H(u) from theoretical consideration.

More generally, we have the additive spline model of Refs. 10-12:

L
In[T(¥,u)]=fo(¥)+H()+ Y f4(¥)h,(u) @
=1



In Eq. (4), we have separated fo() and H(u) from the other terms to stress that these
terms are the “profile consistent” terms. If desired, additional cross-terms may be added to
Eq.(4).

In Section II, we describe our fitting procedure for estimating the free parameters in the
log-additive model of Eq. (4). In Section III, we apply our method to the Ohmic data from the
Joint European Torus!3 (JET) with h(u)= (ln[Ip],In[Bt ],ln[ﬁ],ln[qgs ]) The resulting model
can be rewritten as

T(¥)= %(W)I;I (V)sz(ﬁ)ﬁfs(V)qgg(W)’ )

where 11o(¥)=exp(fo(¥)). In place of qos in Eq. (5), we can use the geometric part of the
safety factor: Qge, =qosl, / Bi. We also find that a simpler model with “fj, f2 and
f3=constant” fits the data to reasonable precision.

In Sections IV and V, we introduce a second family of models for the log-diffusivity. We
summarize our results in Sec. VI. The Appendix describes our model selection criteria; i.e. how

we use the data to determine which log-linear model is most appropriate.

II. PROFILE ESTIMATION AND MODEL SELECTION

To estimate the unknown functions, f,(¥) in the additive log-temperature models, we expand
each of the functions in B-splines: f,(¥)= ZE: &xBk (%), where the By () are the cubic
B-spline functions. The .y are free parameters which need to be estimated. In Refs. 10-12,
we describe how estimation of the unknown functions in the log-additive temperature model
can be formulated as a large linear regression problem. In Ref. 12, we show how a smoothness
penalty function can be used to advantage in the spline fit to the additive log-temperature model.
We denote the fitted response function by T(¥,ulfy,....,f; ). The algorithm of Ref. 12 is
simply: Minimize with respect to the B-spline coefficients of fqo(¥),...,f (¥) of Eq. (4), the
weighted least squares problem:

n@)-i@alto ) &
- | + D he| [ (W) 26¥, ©)
£=0

>

J

where Ti(W}) is the jth radial measurement of the ith measured temperature profile and o; ; is
the associated error. The second term is the smoothness penalty which damps artificial
oscillations in the estimated f,(). The smoothing parameter, A,, controls the smoothness of
the estimate of f,(). The Appendix describes how we determine A, empirically.

There are two types of systematic error: model error (since the additive model is only an
approximation), and smoothing error from the smoothness penalty function. Simplifying the



physical model causes bias error, but can often reduce the variance of the fitted model. This
variance reduction occurs because the simplified model usually has fewer free parameters than
a more complete model does.

We wish to choose the additive model which minimizes the error in predicting the
temperature of a new profile. Unfortunately, the prediction error depends on the unknown
“true” temperature function. To select the best model and smoothing parameters, the expected

average square error (EASE) is estimated empiricallym’15

. We use a generalization of the
estimate of the EASE given by the Rice criterion. (See the Appendix.) This EASE estimate
includes the bias error associated with the incomplete model, i.e. we admit that our additive
model is systematically wrong, and we estimate the size of this error.

From this estimate of the EASE, we then select the additive model which minimizes the
Rice criterion. Similarly, we choose the smoothing parameters, A,, to minimize this empirical
estimate of the expected error. The Rice criterion estimates the fit error for new data while the

2”

older “y“ ” statistic considers the fit quality for the existing data set. The Rice criterion is more

selective than the x2 statistic in the sense that it prefers simpler, lower order models.

III. JET OHMIC TEMPERATURE PROFILE PARAMETERIZATION
a) Single Profile Analysis

We consider a 43 profile data set from the Joint European Torus!3. The electron temperature
and density profiles are measured by the JET LIDAR Thomson scattering diagnostic. Each
profile is measured at approximately 50 radial locations along the plasma mid-plane. Table 1
summarizes the global parameters of the data. The data contains discharges with the edge safety
factor, qos as high as 12.

The JET discharges were produced between 1989-90 and 1991-92. During this time, JET
operated with carbon tiles, with carbon tile and beryllium evaporation, and with beryllium tiles.
Most of the discharges in the database have the plasma boundary formed by the outer wall
limiter with beryllium tiles.

The JET LIDAR Thomson scattering diagnostic is described in Ref. 16. A number of the
profiles have an artificial increase in the measured temperature near the inner wall. This
problem occurs because the laser light from the LIDAR diagnostic is partially reflected near the
plasma wall and stimulates radiation emission near the plasma edge. To prevent these spurious
data from influencing the profile fit, we delete measurements in the outer ten percent of the
plasma which have the temperature increasing near the wall.

Near the inboard wall, there are only rarely usable measurements. To be able to estimate
the temperature for ¥ <-0.87, we reflect the temperature for ¥ > +0.87. In our model selection
criterion, we use the number of measured data points and not the number of augmented data.



Var mean min max std dev
n 2.29 1.32 3.90 0.75
995 5.48 2.88 12.6 2.86
Ip 2.80 0.97 5.25 1.13
B 2.76 1.30 3.22 0.46
K 1.44 1.30 1.75 0.122
a 1.16 1.05 1.19 0.040
R 2.92 2.83 3.01 0.047
Vioop -.35 -1.12 914 0.66
Zeff.1 1.88 1.07 3.10 0.55
Zetf2 2.10 1.20 3.35 0.60

Table I: Database Summary: Average, minimum, maximum and standard
deviation of each of the engineering variables.

Neither the fitted functions, f,(), nor the measured data are symmetric with respect to
. The measured profiles are clearly hotter and broader at the inboard side (negative ). Our
fitted profiles allow asymmetry and reproduce this trend. Since the LIDAR measurements near
the inner wall tend to be less accurate than those on the outboard side, we prefer to fit the data
with an asymmetric profile. If a symmetric fit is desired, we recommend using our fit restricted
toy 0. It is unclear if this asymmetry is due to a systematic error in the flux map or in the
LIDAR measurements or has an unknown physical cause.

Our fitted profiles allow asymmetry and reproduce this asymmetry. We do test each f,
separately for symmetry. Making f;(¥)...f4(¥) symmetric in ¥ while keeping fo(V¥)
asymmetric in our best fit model raises the fit error only slightly from 150 to 152 eV. If we
force fo() to be symmetric, the difference in the residual fit error is noticeable.

In our spline fits, we use 20 knots. To reduce the ill-conditioning of the fit near the plasma
edge, we decrease the density of knots near the edge. Our profile fits depend only very weakly
on the knot spacing due to the smoothness penalty term. In contrast, if no smoothness penalty
is used (as in the original algorithm of Refs. 10-11), the fit is strongly influenced by knot
selection. Our data fit gives an accurate fit to the data which is nearly independent of the knot
positions. The smoothing spline yields accurate representation of the solution with fewer
artificial oscillations than the methodology of Ref. 10.

Fitting each profile separately gives a root mean square error (RMSE) of .171 on the
logarithmic scale, which corresponds to a relative fit error of 17.1 % . On the linear scale the
average fit error is 152 eV which is 10.5 % percent of the typical line average temperature
(1.454 KeV). The root mean square error (RMSE) is much larger (187 eV) than the mean
absolute error, indicating that a small percentage of the data points are very poorly. For the



individual fits, the Rice criterion selects a relatively small amount of smoothing and the fit tends
to follow the small scale oscillations in the data.

b) Model Selection
We begin by considering the profile consistency model of Eq. (2):

In[T]=fo(¥)+cy In[I, |+ cg In[B, ]+ ¢, In[A] + ¢, Inic]+ c, Infa}. )

This profile consistency model has a Rice criterion value of 1.26. This is 42% larger than
our final nonparametric fit in Eq. (8). Thus, the spatial dependencies ln[Ip],ln[Bt] and In[f]
are significant. We now consider nonparametric models which include spatial variation in the
control variable dependencies.

To select our log-linear model, we use a selection procedure based on the Rice criterion.
Our list of candidate variables is ln[Ip], In[B,] In[f]} In[qgs} In[k] Zegs, Vioops a R, 4,
and time. At the £-th stages, we try all possible combinations of the best model at the (£—1)-th
stage plus one additional variable. We choose the model which reduces the Rice criterion the
most.

Table 2 summarizes the reduction in the Rice criterion at each stage. ln[Ip] is clearly the
most important control variable. This result contrasts with earlier profile consistency

studieslz’17

which found that the edge safety factor, qgs, is the most important variable in
determining the temperature profile shape. This difference occurs because we are fitting the
unnormalized temperature and Ip is much more important than qgs in determining the
magnitude of the temperature.

At the second stage of the sequential selection procedure, the pair (ln[Ip], ln[Bt ])
minimizes the Rice criterion. In the second column of Table 2, we compare the two control
variable model: using f1(¥)In[I, |+ f5(¥)In[B, ] with the two control variable model and
using f] (W)ln[lp ]+ fq (¥)In[qgs ], and we show that the Rice criterion is lower when I, and By
are used’ The same result holds when In[fi] is added to both models. At the third stage,
(ln[lp], In[B, } ln[ﬁ]) has the lowest value of the Rice criterion.

At the fourth stage, ln[q 95] had the lowest value of the Rice criterion when paired with the
“seed variables”, (ln[lp], In[B,} ln[ﬁ]). Initially, we had difficulty accepting this result
because the Ip and By dependencies of g5 were already accounted for in the model and the
geometric parameters, K, a and R vary very little. To test if this result were real, we explicitly
removed the I, and B, dependencies from qos by defining §ge =Qqgslp / B,. We found that
adding ln[c]geo] resulted in an even smaller value of the Rice criterion than adding In[qgs]-
This occurs because f dgeo (W) varies less than fags (¥). As a result, we use fewer effective
degrees of freedom to represent fy geo (¥).



Sequential Selection Using Rice Criterion

Vars in model 1 Var 2 Var 3 Var 4 Var 5 Var
In[{77] 4.64 1.73 1.12 seed seed
In[qos] 3.04 1.78 1.36 .885 seed
In[I,] 1.93 seed seed seed seed
Vicop 4.63 1.92 1.53 1.10 861
In[B; ] 3.96 1.58 seed seed seed
In[K] 4.30 1.94 1.56 1.10 875
4; 4.21 1.63 1.48 1.05 875
a 4.60 1.91 1.58 1.11 .865
R 4.47 1.88 1.58 1.06 .869
Zeoff 1 4.01 1.91 1.55 1.06 872
Zeff 2 4.37 1.79 1.57 1.11 .850
Time 4.58 1.87 1.52 .923 .793

Table 2: Rice criterion as a function of the variables in the model. “Seed variables” are
included in each run in that column. We then add the variable that reduces the criterion
the most.

In general, adding a fifth variable resulted in little reduction in the Rice criterion and the
new function, f5(), would be nearly constant with large error bars. As a result, we stopped
the log-linear expansion with four control variables. Our final model is

In[T] = £o(¥)+f1(¥)in[I, / Io |+ f5(¥)In[B, / B, ]

®
+Ho ()[R no ]+ £4(F)In[dgeo / 8}

where c"]geo = qgslp / By, Ip = 2.552, Bo = 2.710, np = 2.171, and q= 4.150. Table 3 evaluates
fo(¥)...f 4(¥) at equi-spaced intervals. At the cost of increasing the fit error by 6 % (from 150
to 159 eV), we can replace the model of Eq. (8) with the simpler model

In[T]= £o(¥)+fq(¥)in[qes / 4.537]+ cyIn[L, / I, |

€))
+cgIn[By / By ]+ ¢, In[fi/ ny ]

where cj, cg and c; are independent of . The best fit values are ¢j=0.69, cg=0.49, cp=-.37 and
fq(¥)=~-0.2 for [7|<0.66 and decreasing to -.37 at the edge. This simpler model may be more
robust than the best fit model of Eq. (8). Table 4 evaluates the coefficients in this model.



¢) Fit Results

Figure 1 plots (fo(¥)) and the f,(¥).
exp (fo(\|7)) is the predicted temperature at
Ip=Io, Br=By etc. f1(¥) shows that the
temperature broadens and becomes
somewhat hollow with increasing current,
while fg(¥) shows the same effect with
decreasing toroidal magnetic fields. If
fg(¥)=c-f1(¥), then the shape of the
profile would depend only on the ratio,
Bt /Ip. Thus the shape depends primarily, but
not exclusively on B/l . fg(¥) is more
peaked than f{(¥) is hollow, which shows
that a relative change in B¢ changes the shape
more than the corresponding change in Ip.
The sequential selection procedure selected I
over By in the first step because I, varied
more than B. Thus using I, reduced the fit
error more. fg (W) is less peaked than
either fg(¥) or fi(¥), and therefore
changing qg5 by changing the geometry (a, R
and k) only weakly changes the profile
shape.

f,(¥) and geo (¥) are roughly
constant, which means that il and g, have

Fig.1: Mean profile, no(¥), and control variable
profiles of the log-linear model: f, (W) through and
f4(¥) in Eq. (8). £1(V¥) and fg(V¥) show that the
temperature broadens and becomes somewhat hollow
with increasing current or decreasing toroidal
magnetic fields. Both f5(¥) and fﬁgeo (¥) are
constant within the error bars of our estimate
indicating that n and Qseo have no significant
influence on the shape of the temperature profile
given the shape modifications of Ip and By.

little effect on the shape of the temperature profile. When f,, () and f geo (¥) are replaced by
constants, the mean absolute residual fit error increases from 150 eV to 156 eV. These
constants are also plotted in Figure 1. Figure 2a plots the fitted temperature versus ¥ and I at
fixed values of the other parameters. Figure 2b shows how the fitted temperature varies with

B..

Our results differ from earlier “profile consistency” results because we fit both the

temperature shape and magnitude simultaneously; i.e. we do not normalize the data. The

sequential selection procedure shows that the total plasma current is more important than the
edge safety factor in determining the JET Ohmic temperature profile. From the shape of the
f,(¥), we see that the polynomial models of the radial dependence poorly approximate the

actual shape
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Fig.2a: Surface plot of the predicted Ohmic Fig.2b: Surface plot of the predicted Ohmic
temperature profile versus Iy, evaluated at By=2.710  temperature profile versus By evaluated at 1p=2.552,
T, i = 24712x10", and Gy, = 4273, Bo=2.710, T=2.1712x10", and Gge, = 4.273.
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Fig.2c: Response surface of the Ohmic temperature  Fig.2d: Response surface of the Ohmic temperature
profile versus 0 profile versus q95 Ip / By

Figure 3 plots a number of the fitted profiles to illustrate the goodness of fit. Our fitted
curve is generally inside the experimental error bars. The combined fit to Eq. (8) gives a mean
absolute error (RMSE) of 152 eV. Since the mean line averaged temperature is 1.454 KeV, this



is a 10.5 % typical error. On the logarithmic scale, the RMSE is .171, which corresponds to a
relative fit error of 17.1 %.
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Fig.3a: Log-linear fit to the temperature profile of Fig.3b: Log-linear fit of discharge 27835, time=49.0s.
discharge 25252, time=46.9s, using the the model of

Eq.(8).

The mean square error is relevant when the errors have a Gaussian distribution. In our fit, a
small percentage of the data has much larger residual errors than is typical. Averaging the
square error instead of averaging the absolute error inflates the influence of poorly fitting points.
We believe that the mean absolute residual is a more relevant description of the quality of fit.

The Rice criterion value of 0.88 usually means that the expected square error in predicting
new data is 0.88 times larger than the experimental variance. For independent errors, the Rice
value should be greater than one. Due to the oversampling of the LIDAR diagnostic, the
measurement errors are autocorrelated, and we are able to fit the data with smaller residual fit
error. In the Appendix, we derive a correction for the autocorrelation. Nevertheless, we ascribe
the smallness of our Rice value to the spatial autocorrelation and possibly to uncertainties in the
experimental error bars. The Rice value of 0.88 is surprisingly small, given the simplicity of
our model and the diverse set of plasma conditions in the database. Thus, we consider this
small enhancement to be a major success.

A surprising result of our analysis is that ¢; is not particularly useful in estimating the
temperature. £; is the measured value of the second moment of the poloidal magnetic field. If
we assume that the current distribution is given by Spitzer resistivity (with a constant spatially,
uniform Zeff profile) then ¢; can be related to a spatially weighted moment of the temperature
distribution. Thus we would expect that larger values of ¢;, corresponding to peaked current
profiles, would correlate with peaked temperature profiles. Our empirical observation of only a
weak dependence of the temperature shape on £; shows that the current and temperature profile

10



shapes are partially decoupled. This could be due to variation in Zgr or due to the empirical
resistivity differing from the Spitzer value.

At the fifth stage, “time”, as measured from the beginning of the discharge, is the next
most important variable. We would like to restrict our analysis to time points in the flat-top.
However, there are time points in the early phase of the current ramp down. Adding a time
variable to our regression analysis corresponds to the In[TXW,t) ~ fo(¥)+f,(¥)t—t). Our
estimate of f,() shows that earlier times tend to be more peaked and later times are flatter.
More specifically, f;ne (W) strongly resembles f(i), which indicates that the profile shape is
influenced by the time history of the plasma current. Although our log-additive model is
designed for the steady state part of the discharge, most of these discharges have a similar time
history. This explains why a nonphysical variable like “time” could reduce the fit error. One of
the principal disadvantages of our log-linear temperature models is that the profile shape does
not adjust in a physical manner when different time evolution scenarios are used. Thus, f ()
is an artefact of the standard time history scenario in JET, and we reject using time as a control
variable.

The electron temperature tends to be hotter with carbon tiles than with beryllium tiles on
the limiter. Our empirical fit given in Eq.(8) fits both classes of discharges, but the fit
parameters were basically determined by the 37 beryllium discharges. Given a larger data set,
we could quantify the systematic differences between carbon and beryllium. There are three
divertor discharges in our database. The other 40 profiles are limited by the outer wall. Thus the
free functions in our empirical fit of Eq.(8) are determined primarily by the limiter discharges.
We caution that our results are based on a limited database of 43 JET profiles and that other
subsets of the JET data could show different dependencies.

IV. SEMIPARAMETRIC MODELS OF THE DIFFUSIVITY

Much effort has been devoted to determining the anomalous heat diffusivity as a function of the
local variables. Hundreds of anomalous transport models have been proposed, none of which is
widely accepted. In contrast, there is a consensus of what the “stereotypical” heat diffusity
looks like: the heat diffusivity is usually flat in the inner half of the plasma radius and then
increases parabolically in the outer half of the plasma. Furthermore, the radial variation of the
heat diffusivity profile appears to depend only weakly on the plasma parameters. There are
exceptions to this general assertion, but we believe that broad characterization of the heat
diffusivity profile has been supported by many empirical studies.

In constructing empirical models of the anomalous heat diffusivity, our basic hypothesis is
that the single most important variable for plasma transport analysis is the normalized flux
radius. In other words, normalized flux radius is a more important control variable than more
physical variables such as the poloidal gyro-radius. This assertion is difficult to prove or

11



disprove, so we content ourselves with describing a family of models which are based on this
hypothesis. We also wish to parameterize the observed heat diffusivity as a function of the
engineering variables in order to influence design studies.

Thus, we propose a second class of models which is similar to the temperature models
except that we model the log-diffusivity. A “diffusivity consistent” model is:

In[x(¥,u)]= go(¥)+H(u). (10)

Equation (10) implies that as a result the shape of % depends solely on radius and that the
shape of diffusivity is independent of both the local and global plasma parameters including the
temperature gradient. Thus, the model is Bohm-like for radial variation. We believe that models
similar to Eq. (10) approximate the experimental data fairly well in the sense that the diffusivity
tends to be flat out to ¥ =.6, and then increases parabolically. We have not yet modelled
plasma discharges by parameterizing the diffusivity, but similar models have been used in
plasma modelling19.

In general, the radial variation of ln[x] can be represented as a slowly varying function of
flux radius and the engineering variables. Therefore, we generalize Eq. (10) to all log-additive
models of diffusivity

L

In[X(¥.u)]= g0(¥)+ Y_g¢(W)hy(u) €3))
£=1

The inward density pinch can be included with a similar linear model. As in Eq. (4), we
assume that the h,(u) are known and are typically ln[Ip], In[fi] and In[B, ]. The g,() are
usually given by other smoothing splines or low order polynomials.

The physics implications of the two classes of models - additive log-temperature models
and additive log-diffusivity models - are different. The additive log-diffusivity models adjust
the temperature profile shape as the radial distribution of sinks and sources. In contrast, the
additive log-diffusivity model predicts that the temperature profile shape does not depend only
on the global parameters and not on the radial distribution of sinks and sources.

Profile resilience can be interpreted as the observation that the truth is somewhere between
these two viewpoints. In other words, the temperature profile shape adjusts less than one would
expect from a diffusive model'®. In future work, we hope to compare the two classes of
models to see whether additive shape models better describe the temperature on the diffusivity.

We can add additional variables to the control variable vector, u, such as the beam
penetration depth normalized to the minor radius, which partially specify the heating profile. In
this way, we can have additive log-temperature models adjust to heating profiles and additive
log-diffusivity models be more profile resilient.

In the next section, we discuss the underlying difficulties in parameterizing the diffusivity.

12



V. ESTIMATION OF THE ADDITIVE LOG-DIFFUSIVITY MODEL

To estimate the B-spline coefficients for the additive log-diffusivity model, we minimize Eq.(5)
as well. For the additive log-temperature model, the predicted values, T(Ty’fi,uilg ¢ ), are a linear
function of the spline coefficients and the resulting functional is quadratic. In contrast, in the
additive log-diffusivity model, 'T(W,ul g/ ), is a nonlinear function of the unknown spline
coefficient and each evaluation of T(\'F,ulgg ), in the minimization of Eq.(6) requires the
solution of the transport equation using a code such as SNAP?® or TRANSP. The sinks and
sources may be calculated for each discharge separately prior to beginning the least squares fit
for the additive log-diffusivity model. Thus the evaluation of ’T‘(W,ul g [), requires only the
inversion of a heat transport equation with fixed sinks and sources at each step of the
minimization of Eq.(6).

We are unaware of any local j/heat flux regression study that has attempted to use ¥ and
the global engineering variables with a model similar to Eq. (11). Instead, researchers have tried
to determine the dependencies of the diffusivity on heat flux by regressing the point estimates
of % or xVT versus local quantities. Previous local y/heat flux regressions have ignored
and have concentrated on local quantities such as the poloidal gyro-radius. This approach has
several disadvantages relative to the additive log-diffusivity approach with a global
minimization. First, we believe that the most useful variable in fitting the diffusivity shapes is
the normalized plasma radius, ¥ . Second, we believe that usually In[y] has a simple and
smoothly varying radial dependence. Third, the errors in estimates of the plasma gradients are
often comparable to the errors in % and larger than the errors in the heat flux. When the
dependent variables have errors, linear regression is an inconsistent estimator of the parameters.
Even worse, the errors of the dependent and independent variables are strongly correlated. Our
pers?nﬁ} experience is that when % is regressed against VT, the most likely result is that
y ~ -2 100P This result is strikingly similar to the definition of % . Note the similarity of this
expresrslion and the Coppi-Gruber-Mazzucato formula?’.

In the last paragraph, we described the problems in regressing the local heat flux/% versus
the local plasma parameters instead of radius and the global plasma parameters. We now
describe a second set of disadvantages which persist even when the independent variables are
¥ and u. First, by fitting with Eq. (10), we force %(¥,u) to be a smoothly varying function. If
the estimated 7 is regressed at each radial point separately, ¥ will usually have spurious spatial
oscillations. Another severe disadvantage of regressing the local heat flux/ directly is that the
heat flux is measured and not inferred. Changing (%, u) at one spatial location will modify the
predicted temperature, T, at all radial locations. Thus to attain a self-consistent estimation of X
we are forced to fit all radial locations simultaneously. Finally, estimates of the variance of the
point estimate of )A(,(\Tt}) are difficult to obtain, and this makes a pointwise weighted least
squares analysis usually infeasible.
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For all these reasons, we prefer the global minimization approach of Eq.(5) with the
simple additive model of Eq.(11). Nevertheless, the computational and programming effort to
fit the log-additive x model of Eq.(11) is considerable and we have not yet applied it to JET
data.

VI. SUMMARY

Profile resilience and diffusivity profile resilience strongly suggest that the appropriate empirical
models for local profile dependencies are the additive log-temperature model and additive log-
diffusivity model. We therefore distinguish four classes of empirical transport models:

1) Global confinement models: tg(engineering variables) as typified by Eq. (1);
2) Semiparametric profile models: T(f, engineering variables) as typified by Eq. (8);
3) Semiparametric diffusivity models: ¥ (¥, engineering variables) as typified by Eq. (11);

4) First principles transport models: T(physics variables), possibly given by a theoretical
expression.

The huge multiplicity of transport theories and the relative lack of success in applying
theory based models motivates us to consider the semiparametric models of classes 2) and 3).
We hope to use these same models to predict the profile peakedness factor for Deuterium-
Tritium (D-T) discharges in JET and the Tokamak Fusion Test Reactor??2 (TFTR) and for
extrapolating performance to International Thermonuclear Experimental Reactor 23 (ITER).

We have accurately parameterized the JET Ohmic temperature profiles using a log-linear
temperature model (Class 2). We have not yet fitted log-additive diffusivity models to the JET
data (Class 3). In both cases, the smoothing spline coefficients are best determined by
minimizing the residual fit error over all measured profiles simultaneously.

Our parameterized temperature model Eq.(8) fits our JET data set with a mean absoulte
error of 47 eV which is 3.2 % percent of the typical line average temperature. We recommend
using this parameterization for transport analyses and most other applications.

Is the database big enough to make these conclusions? Some of our conclusion will
depend on the choice of data. If the database were to contain only discharges from a specialized
scan on one or two consecutive days, we would probably be able to fit the data better, including
detailed profile features. Because our database is taken over a diverse set of discharge
conditions, we average over the small scale features which depend on the particular discharge
conditions. As a result, the fit is worse, but the results are more robust because they reflect
many different types of discharges.
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The Rice criterion measures the expected error in predicting new data, normalized to the
variance of the measurements for independent errors. Our Rice value of 0.88 means that our
predictions are theoretically more accurate than the experimental measurements. This small
value of the Rice criterion is probably due to the spatial autocorrelation from oversampling and
possibly to uncertainties in the experimental error bars. We consider this small value of the
predictive error to be a major success given the diverse set of plasma conditions in the database
and the simplicity of our model.

Fitted Functions for Eq. (8)

v @) | 1@ | ) | L) | figel¥)
-1.0 0.2376 0.5057 0.0776 -0.3013 -0.3879
-0.9 0.4267 0.6679 0.0900 -0.2332 -0.3755
0.8 0.7972 0.7728 0.1320 -0.2710 -0.3370
-0.7 1.1884 0.8231 0.2037 -0.3479 -0.2902
-0.6 1.4813 0.8236 0.3046 -0.3746 -0.2484
-0.5 1.7071 0.7827 0.4317 -0.3449 -0.2161
-0.4 1.8869 0.7131 0.5771 -0.3294 -0.1891
-0.3 1.9517 0.6316 0.7261 -0.3658 -0.1631

-0.2 1.9528 0.5561 | 0.8577 |-0.4384 |-0.1397
-0.1 1.9785 0.5029 ] 0.9491 -0.5021 -0.1236
0.0 2.0271 0.4838 [ 0.9820 | -0.5261 -0.1179
0.1 2.0257 0.5029 | 0.9491 -0.5021 -0.1236

0.2 1.9588 0.5561 |0.8577 |-0.4384 |-0.1397
0.3 1.8611 0.6316 | 0.7261 -0.3658 | -0.1631
0.4 1.7285 0.7131 | 0.5771 -0.3294 | -0.1891
0.5 1.5236 0.7827 ]0.4317 |-0.3449 |-0.2161
0.6 1.2578 0.8236 | 0.3046 | -0.3746 | -0.2484
0.7 0.9711 0.8231 | 0.2037 -0.3479 | -0.2902
0.8 0.6821 0.7728 10.1320 |-0.2710 | -0.3370
0.9 0.4173 0.6679 | 0.0900 |-0.2332 | -0.3755
1.0 0.2243 0.5057 | 0.0776 |-0.3013 | -0.3879

Table 3: Evaluation of the radial spline functions in Eq. (8) for the JET data.

Our sequential selection procedure shows that the current is the most important control
variable in determining the temperature profile. Previous studies, which have considered the
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normalized temperature, have found that the edge safety factor is the most important control
variable. Increasing the plasma current results in broader, often hollow profiles. Fig.1 shows
that the current and the magnetic field modify the profile shape in different ways. Thus, the
temperature shape does not depend exclusively on qos.

The profile parameterization in Eq. (8) is only for time-independent profiles. The log-linear
diffusivity model may be more relevant to modelling time evolution. Since our database consist
almost exclusively of limiter discharges, we are unable to determine if the temperature profile is
modified when a divertor is used.

Fitted Functions for Eq. (9)

v @) | £ | 1) | @) | fu(¥)
-1.0 0.2326 -0.3729 0.6868 0.4900 -0.3652
-0.9 0.4279 -0.3364 0.6868 0.4900 -0.3652
-0.8 0.8015 -0.2822 0.6868 0.4900 -0.3652
0.7 1.1914 -0.2298 0.6868 0.4900 -0.3652
-0.6 1.4827 -0.1951 0.6868 0.4900 -0.3652
0.5 1.7092 -0.1836 0.6868 0.4900 -0.3652
-0.4 1.8890 -0.1885 0.6868 0.4900 -0.3652
0.3 1.9514 -0.1995 0.6868 0.4900 -0.3652
-0.2 1.9505 -0.2105 0.6868 0.4900 -0.3652
-0.1 1.9750 -0.2186 0.6868 0.4900 -0.3652
0.0 2.0194 -0.2215 0.6868 0.4900 -0.3652
0.1 2.0154 -0.2186 0.6868 0.4900 -0.3652
0.2 1.9511 -0.2105 0.6868 0.4900 -0.3652
0.3 1.8579 -0.1995 0.6868 0.4900 -0.3652
0.4 1.7298 -0.1885 0.6868 0.4900 -0.3652
0.5 1.5275 -0.1836 0.6868 0.4900 -0.3652
0.6 1.2613 -0.1951 0.6868 0.4900 -0.3652
0.7 0.9729 -0.2298 0.6868 0.4900 -0.3652
0.8 0.6841 -0.2822 0.6868 0.4900 -0.3652
0.9 0.4194 -0.3364 0.6868 0.4900 -0.3652
1.0 0.2208 -0.3729 0.6868 0.4900 -0.3652

Table 4: Evaluation of the radial spline functions in Eq. (9) for the JET data.
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APPENDIX:
RISK ESTIMATION AND MODEL SELECTION

The estimation of risk/expected error is critical to our analysis because we use this estimate to
select which terms to include in our analysis. We represent the “true” log-temperature values
by the vector | and the measured log-temperature by y = i+ €. We present the generalized
cross-validation (GCV) estimate of the expected average square error (EASE) as well as the
Rice criterion correction. We consider the linear regression model:

y=p+eg, w=Xa, (A1)

where y is the measurement vector, X is the data matrix, o is the parameter vector and € is a
vector of random errors with covariance matrix X. We define D to be a diagonal matrix which
contains the inverses of the variances of the measurements: D, ; = 2::8, j- Presently, we do
not include the off-diagonal terms in X in the minimization, but do compensate for this in our
model selection criterion.

By p:= Xa, we mean that we model p by Xa, but that we admit that p= Xa is not exact
andthat this model has a systematic error. We estimate o using the penalized least squares
estimate:

&, = arg min{(y-Xa)'D(y - Xa)+2a'Sa}, (A2)
a

where S is the penalty matrix. Equation (A2) is an abstract matrix formulation of Eq.(4). For
brevity, we denote z'Dz by ||z||%), where z is an arbitrary n-vector.

The subscript A on @) denotes the dependence on the smoothing parameter. Equation
(A2) can be rewritten as

N 1
&, =[x'DX +28] x'Dy =G, XDy, (A3)
t 1 . A
where G = [X DX+XST . The covariance Q, is
COV[&)\'&‘{ ] = G)"KG)“ (A4)

where K = X'DEDX. In addition to the variance, Eq. (A3) has a bias/systematic error:
E[u— Xdl]. The dominant source of bias error in our analysis is due to model error in the
additive model. The expected average square error (EASE) in the fit is

EASE = E[“u - Xdy,

|‘I’-) ] = Bias” + Variance = [E[n— X4, ]|; +trace[CG, KG, ], (AS5)
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where C = X'DX and trace [CG,KG;, J-trace [DX Covéy 6] Jx']

We wish to minimize the EASE. However, it is unknown and needs to be estimated. We
denote the average square residual of the empirical fit by &2(A)= ly - Xét;\"2 / N. The
expectation of the square residual error is

E["y ~Xé, ] = Bias” + {trace[ZD] - 2 trace[KG,, | + trace[CG,KG, [}..  (A6)

Note trace [ED]= N. Equation (A5) computes the error relative to the true, unmeasured
values while Eq. (A6) uses the measured residuals. As a result, Equation (AS) can be easily
estimated from the data by computing the MSE of the fit using the measured temperature. In
contrast, Eq. (AS) involves the unknown, “true” temperature. The Craven-Wahba estimate of
the EASE uses Eq. (A6) to estimate Eq. (AS):

B[l - Xéa |~ Iy - Xt Jf, - { - 2 trace[K G, ] A7)

Equation (A7) is particularly valuable because it includes the systematic error in directions
which are orthogonal to the column space of X i.e. the bias from not including all possible
terms in the additive model. At A=0, trace [CG;\] equals the number of fit parameters and
decreases monotonically with A. Using K in place of C compensate for the autocorrelation of
the measurements.

The minimum of Eq. (A7) with respect to A satisfies:

9,62 + %ax trace [KG; |=0 (A8)

2

Equation (A8) is useful when 0 is known. We now consider the case where the

covariance of the measurements is known up to an arbitrary constant: Cov[ny]=022,

2

where 6 is unknown and is known. We continue to define D; ; = Z,‘,18, j and keep the

2

same definitions for G,, , C and K. When 0° is unknown, we can estimate it using the

Craven-Wahba estimate of 02:

L on2
oi ___ly-X[D
W (N - tracc[KG;» ])

(A9)

In penalized regression, “N —trace[KG;\ ]” is referred to as the effective number of
degrees of freedom.
The empirical estimate of Eq. (A8) using the estimate o%w is

18



262

9,63 + 9, trace [KG, ]=0, A10
AZA N—tracc[KG;»] A ace[ }‘] (A10)
which implies
52
EN A =0 (Al1)

2
(1~ trace[KG, |/ V)
Thus, we define the generalized cross-validation statistic as

2
lv-Xé,|D

GCV = 5 -
(N - trace[KGx ] )

(Al12)

Minimizing the GCV criterion of Eq. (A12) sometimes undersmoothes and tends to pick
models with too many free parametersls. We refer the reader to Ref.15 for an empirical
comparison of the Rice criterion and the GCV criterion. Therefore, we replace Eq. (A10) with a
modified loss estimator based on the Rice criterion:

2
__|y-x6,D
R (N —2trace [KG;» ])

(A13)

CR has also been normalized to the standard error per data point. Cr differs from Eq. (A12) by
terms of O(trace[KG;\ ]/ N ) In our analysis, we minimize Eq. (A13) with respect to both the
choice of control variables in the additive model and the smoothing parameters in a given
model. In Ref. 24, a somewhat different autocorrelation correction is derived.

Iy - X6, "
N -2trace [KG, | °

per degree of freedom. The xz statistic is useful in optimizing the fit to existing data while the

An older statistic is x2 = which corresponds to the mean square error

Rice criterion and generalized crossvalidation are useful in minimizing the predictive error for
new data. The factor of two in the denominator of CR results in smoother models and fewer
variables in the model.
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