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Abstract:

Diluted impurity transport is analyzed in the presence of both neoclassical and turbulent
transport processes. Comparison with impurity injection experiments in JET is carried
out, with good qualitative agreement.
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I. Introduction.

Various kinds of impurities are present in plasmas generated in magnetic confinement
devices. When occurring in large concentration, impurities have detrimental effects on
the machine performance. For a given electron density, whose upper value is
determined by the machine operational limits, impurities replace the main ion species,
thus reducing the fusion reactivity. Moreover impurities increase the radiation losses,
causing a degradation of the energy confinement.

On the other hand, a small concentration of a selected impurity species is a useful
investigation tool of the plasma transport properties. Provided that the concentration is
sufficiently low, the impurity dynamics do not affect the bulk plasma evolution. In this
conditions impurities can be considered as test particles, and their dynamics can be
derived directly from the knowledge of local plasma properties. Conversely,
measurements of the impurity motion gives indirect information on the local plasma
properties.

The precise meaning of "low concentration" depends on the physics under study. For
collisionless (collective) processes, such as plasma turbulence, the condition is simply



that the total impurity charge is much less than the total electron charge. Instead, for
collisional processes, such as neoclassical transport, the stricter condition that the
increment of the effective charge is much less than unity must be used, as discussed in
the next sections.

It is the scope of this work to analyze the dynamics of diluted impurities in the presence
of various types of both collisional and collisionless effects. It will be shown that the
emerging picture is consistent with the experimental observations in various regimes of
machine operations.

This work is organized as follows. In Sec. II the classic Hasegawa-Mima model for
electrostatic turbulence is extended to accommodate an impurity species. In this way
one can show that, at sufficient dilution, impurities behave as test particles. An
important consequence is that their turbulent diffusivity can be much higher than the
bulk particle diffusivity. In Sec. III the scaling laws of test particle diffusivity is briefly
reviewed. The structure of the transport matrix in the more general case when
neoclassical effects are included is discussed in Sec. IV. The complementarity of the
additional turbulent effects with those proposed by Stringer is emphasized. Sec. V is
devoted to the comparison with the experimental findings. Qualitative agreement with
the analysis of Sec. IV is found. Final considerations and conclusions are drawn in Sec.
VI

II. The Hasegawa-Mima model with an impurity species.

In order to clarify the differences between transport of bulk particles and transport of
diluted impurities we consider the extension of the well-known paradigm for
electrostatic turbulence, the Hasegawa-Mima equation[1], when a small amount of
impurities is included.

As it is customary, one starts from the Braginskii equations[2], assuming cold ions,
adiabatic electrons and restricting the ion dynamics to the plane perpendicular to the
equilibrium magnetic field. Two ion species are considered, a hydrogenoid main ion



species and an impurity species of charge Z, whose densities are denoted as #, and n,,
respectively. The continuity equations are therefore

on+V-(nv)=0 )]
om +V-(nv;)=0 (2

Since the electrons are assumed adiabatic, the quasineutrality constraint takes the form:
n+Zn =n(l+ep/T) 3)

where n, is the equilibrium density, ¢ the electrostatic potential and 7, the electron
temperature. Eqs. (1-3) are closed by an expression for the drifts v, and v, obtained
from a low frequency expansion of the perpendicular momentum equations. Here we
include the electric drift v, =cExB/B*=(c/ B)f)xV(p and the polarization drifts
v, =(1/0)bx(dv,/dt) and v, =(1/0,)bx (dv; /dt) only:

V,=Vp+v, @)

V=V +V, &)

Here o, and o, are the ion cyclotron frequencies and b is the direction of the
equilibrium magnetic field. The convective derivative is defined as d/dt =9, +v,-V.
An equation for ¢ is obtained by adding Eq. (1) to Eq. (2) multiplied by Z and
employing Eqs. (3-5):

n0,(e@/L)+V-(nyvg)+V [(n+A4n)v,]=0 (©)

where the impurity polarization drift has been eliminated in favour of v, (4 is the
atomic mass number). For diluted impurities, 4n,/n, ~Zn,/n <<1 and the impurity
density drops out of Eq. (6), to the leading order. The impurity dynamics is then given
by Eq. (2) where the electric potential can be considered prescribed since its dynamics
obeys other processes independent of the impurity dynamics. In the present simple
example n, = n,(1+ep/T) because the plasma is almost pure, and ¢ obeys the familiar
Hasegawa-Mima equation, as one can derive from Eq. (6):



0,(e9/ T)+v;-(Vn, In) +V-v,, =0 o

In two-dimensional models, collisional transport is associated with perpendicular
friction which induces F x B radial flows. The leading collisional effect is the friction
due to the differential diamagnetic velocities of the two ion species. This amounts to the
addition of the following drifts to Eqs. (4-5):

vy =—(v,;/0,)(cI /eB)Vn /n—-Vn, |/ Zn,) 8
vy =—(v,;/o,)cT /eB)Vn,/Zn,—Vn/n) )]

where v, =(Z’n,/n)v, and v,=(Z’m,/m,)v, are ion-impurity and impurity-ion
collision frequencies and v, is the standard ion-ion collision frequency (heavy
impurities such that m, /m, <<1 are assumed). In deriving Eq. (8-9) the ion and electron
temperatures are taken equal and constant.

The fluxes associated with the drifts (8-9) are automatically ambipolar,

nvg+Znyvg =0, (10)

which implies that Eq. (7), which governs turbulence, is unaffected by the inclusion of
the frictional drifts.

In order to make progress we now assume that the correlation length of electrostatic
turbulence A, is much smaller than the system size a. Then, at intermediate
scalelengths / such that A, <</ <<a, the turbulent transport is diffusive. One can then
average the turbulent impurity flux over the small scale fluctuations:

(mvi™)==D,¥(n) (11)
where v}” is the noncollisional part of the impurity drift and D, is the turbulent
diffusivity, which is a functional of the fluctuation statistics. The (large scale) impurity
transport equation (2) then becomes (the average symbol (-) is omitted)



on, +V-(=D,,Vn)~V-[(v;/o,)cT,/eB)(Vn, 1 Z~nVn/n)]=0 (12)
Similarly, one can derive an equation for the main ion species. In this case, one cannot
use an equation like (11), because the evolution of the electric potential is not
independent of the dynamics of the main ion density. In fact, ¢ is strongly correlated
with n, through Eq. (3). Solving for n and recognizing that the electric drift is
dominant one obtains

(nv;")=ZD,,9(n) (13)
and

o,n +V-(ZD,

s V1) = V- [(vy 1 0 )(cT, / eB)(Vn,—nVn, | Zn;)]=0 (14)
In Eq. (12,14) one can recognize the collisional diffusive fluxes (the diagonal terms in
the transport matrix) and the pinch terms. One can also note that while the turbulent
impurity diffusive flux can be substantial, there is no similar term in Eq. (14). The only
turbulent contribution to Eq. (14) is a small pinch term which is needed to maintain the
overall ambipolarity. Clearly this occurs because electrons are assumed adiabatic: no
overall particle transport is allowed in this example, but only ambipolarity-preserving
relative motion between the main ion species and the impurity.

This example is interesting because it proves the principle that impurities can
experience effective diffusivities which differ from those of the main ion, although the
basic dynamics is the same, E x B drift. Conversely, when analyzing experimental data
on trace impurity diffusivity, no direct inference about bulk density transport can be
made.

II1. Brief review of test particle transport in two-dimensional E x B turbulence.
We now review some results about the test particle diffusivity. We limit the discussion

to the evaluation of the diffusivity due to ExB (incompressible) turbulence, which is
the dominant effect.



Eq. (2) can be formally solved with the method of characteristics and then averaged
over the fluctuation ensemble. One can conveniently write the result in the form:

(n) = [ g(x—x' 1), (x)elx’ (15)

where

g(x—x',t) =(8[x~x' ~v(1)]) (16)

is the particle propagator (v(f) is the instantaneous particle velocity) and n, (x) the
initial distribution. The goal of the theory is to compute the propagator or at least some
of its moments. The result will in general depend on the details of turbulence.
However, at sufficiently long scalelengths, />> A, and timescales, ¢ >>1_ , where T,
is the turbulence correlation time, the Central Limit Theorem ensures that the
propagator is Gaussian:

g(x—x',t) cexp(-|x~x'f'/D,4t) a7
where D, ,, is the turbulent diffusivity. Indeed inserting Eq. (17) in Eq. (15) and taking

the time derivative one recovers a standard diffusion equation for the average density,
with a flux of the form (11).

D,,, is in general a functional of the turbulence features, i.e. A,, t, and the r.m.s.
velocity vg. Upon introducing a dimensionless parameter, the Kubo number
K =vgt /A, one can write:

l)lurb = VE)“cf(K) (18)

The various asymptotic forms of the function f(X) found in the literature have been
assessed numerically in Ref. [3] (see Fig. 1).

Not surprisingly, in the quasilinear regime, when K <<1, the diffusivity is found to
agree with the analytic prediction, f(X)~ K. In the large Kubo number regime XK >>1
the work of Gruzinov et al.[4] predicts a power law:



fK)~K®,  K>>1 o a9)

where o =3/10. The numerical assessment[3] shows qualitative agreement with Ref.
[4], in the sense that the diffusion is found to be dominated by a small population of
particles wandering in fractal-like trajectories over many turbulence correlation lengths.
However the measured exponents turns out somewhat smaller o =0.2+0.04. (The
error corresponds to three standard deviations). It is not clear what is the origin of the
discrepancy.

One possibility is that the value a=3/10 is not universal. Indeed the exponent
computed in Ref. [4] is obtained by constructing a model of the turbulent velocity field
and showing that the statistical problem posed by the diffusion in that specific field
belongs to the same universality class as certain percolation problems. The authors are
therefore able to compute the exponent o from the (exactly known) exponents of the
percolation problem. However, in order to show that a=3/10 is universal one must
also show that the chosen model of the velocity field is representative of the general
class of two-dimensional turbulent fields. Although plausible, this connection is not
clear from the analysis of Ref. [4].

Another possibility is that oo =3/10 is universal, but that there are corrections to
scaling not small enough when evaluated at the Kubo numbers used in the simulations.
This possibility is difficult to assess in the absence of a more detailed analytic theory.

In any case, the experimental data seem to suggest that the Kubo number is not much
bigger than unity. For the purpose of estimating the role of the various terms occurring
in the transport matrix it is therefore sufficient to compute the turbulent diffusivity at
the upper bound given by Eq. (18), by taking f(K)=/f(X,)=1 and
D,,, = Vgh, = ¢/ B. By assuming adiabatic electrons, e¢ /T, ~ /i/n,, one can relate, at
least qualitatively, the test particle turbulent diffusivity to the density fluctuations

Dy~ (cT,/eB)(7/n,) 20)



The density fluctuation level 7i/n, is commonly measured in various machines. It
usually grows from less than 1% at the center to up to 50% at the plasma edge. For
most of the plasma radius, this increase is only partially compensated by the decrease
of the temperature towards the edge. Thus the turbulent diffusivity increases with minor
radius.

IV. Extension to neoclassical theory.

Unlike, the classical transport discussed in Sec. II, which is due to the perpendicular
friction, neoclassical transport is linked to the friction parallel to the magnetic field.
Detailed calculations, which in certain regimes require the use of kinetic theory, are
beyond the scope of this work. Here we maintain the same assumption as in the
previous sections, that the plasma is composed by two ion species, one of which is a
trace impurity, and that the electrostatic turbulence is governed by an autonomous
equation and is small scale.

Following the Stringer viewpoint[5], we allow for an explicit dependence of the fluxes
on the radial electric field, which is determined by the overall ambipolarity constraint.
Assuming again constant temperatures, the radial particle fluxes possess the following
general structure:

I, =nD[~(1/n)(dn,/dr)+eE, | T1+ ZD;"*(dn, / dr) — Dty (dn, / dr) 1)
I, =n,D,[~(1/n,)(dn, / dr)+ ZeE, | T.]- D}"*(dn, / dr)
(22)
I, =nD[-(1/n)(dn,/dr)—eE,/T]- D (dn,/dr)+ %
(23)

The form of the neoclassical transport coefficients can be taken as D, = 4,,plv, , with
a=i, I or e, where p, is the Larmor radius, v, is the collision frequency and 4, is
a neoclassical enhancement factor which depends on the collisionality regime.

As in Stringer, we have allowed for a possible intrinsically non ambipolar electron flux
I"® due to magnetic fluctuations or occasional strong magnetic events (such as
ELMs). We have also included a contributions from the electrostatic turbulence, one
for the impurities, with diffusivity Dj"* and one for the bulk with diffusivity D%, . As



urbh

we have seen in Sec. II, D* and D}’ need not be equal or even of the same order,
although both are due to the same kind of turbulence. Note also that the poloidal flow
has been set to zero, since its role is simply additive to the electric field, without
affecting the fluxes. The Ware pinch has also been ignored.

The intrinsic ambipolarity of the turbulent terms in Egs. (21-23) implies that the radial
electric field is determined by the same mechanism as in Stringer. In particular, in the
absence of magnetic effects, the impurity pinch is neoclassical. Ignoring the electron
collisional contribution (D,—>0) and eliminating the electric field using the
ambipolarity condition I, + ZT', =T, one obtains:

I, = n,D,Z;l[—(l In))(dn,/dr)y+(Z/n)(dn /dr)+ ZT*" | (n.D,)] - D;""'(dn, /dr) (24)

where Z, =1+ Z’n,D, /(n,D,) is a coefficient of order one. Note that Z, — 1 when the
incremental effective charge 67, = Z%n,/n, is much less than unity. In this limit the
selected impurity species behaves as a test particle even in respect of collisional theory.
Indeed in this limit the radial electric field is determined by the ambipolarity condition
involving only the bulk species.

In Eq. (24), the three terms in the square bracket are proportional to the neoclassical
impurity diffusivity, the neoclassical impurity pinch and the outward "anomalous"
pinch due to the magnetic events. All these terms are present in Stringer's work. The
last term is the test particle flux due to electrostatic turbulence.

In addition one could introduce a turbulent pinch if the nature of electrostatic turbulence
allows it. Mechanisms for the anomalous impurity pinch, relying on compressibility
effects, have been proposed by Cowley[6] and Isichenko et al. [7]. Smolyakov and
Yushmanov[8] have considered modifications to D}"* due to drift orbits effects. These
modifications would not alter the form of Eq. (24). Moreover the regimes considered in
Ref. 8 are unlikely to occur in usual experiments.

The relative importance of the various terms occurring in Eq. (24) is discussed in the
next section, for typical machine operation regimes.



V. Interpretation of the experiments.

In laser blow-off experiments, a small amount of impurities is injected in the plasma
and the evolution of the initial distribution is followed with spectroscopic techniques[9].
In order to discuss the various scenarios, it is convenient to introduce a pinch parameter
P:

P=-—al.

pinch

/D @5)

where a is the minor radius, V.,

pinc|

, is the total pinch velocity:

V. . =V _+V. =DZN(ZIn)dn/dr)+ZT™ [ (nD)] (26)

pinch neo magn

and D is the total diffusivity:
D=Dnco+Dmrb=DIZ;'l+D;u’b * (27)

From Eq. (18) one can see that in steady state (I', = 0) the pinch parameter is the ratio
of the minor radius to the impurity profile scalelength:

P=-a(l/n))dn,/dr (in steady state) (28)

Since a is also a measure of the equilibrium density scale length, P is also a local
measure of the relative peaking of the impurity profile in steady state:
P~(dlnn,/dr)/(dInn;/dr).

We first estimate the various contributions to Eq. (25) coming from Eq. (24) in a good
H-mode discharge. We start noting that the neoclassical impurity diffusivity is of the
order of the bulk ion neoclassical thermal conductivity. In a good H-mode, the latter is
not much smaller than the actual (anomalous) conductivity and diffusivity. One can
therefore assume D, /D, =2+5. Also, we neglect magnetic activity, I')"*" = 0. This
leads to:
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Py ~(0.2+0.5)Za(d nn, / dr) (29)

In Ni injection experiments in JET[9] P~10% at the edge (see Fig. 2). This is
consistent with Eq. (29), since typically the ionization number is Z=~20 and
a(dlnn;/dr)>10, because of the density pedestal. Thus one can see how Eq. (29)
predicts strong impurity accumulation in quiescent H-mode plasmas.

In Ohmic and L-mode operations, the turbulent diffusivity greatly exceeds the
collisional one, D,,/D,, >>1, especially at the edge where the fluctuation level is
measured to be ep /T, =7i/n~0.1+0.5. Moreover the density scalelength is of order of
the minor radius, which implies that the pinch velocity is an order of magnitude lower
than in the H-mode. One therefore obtains

E.,-mode ~ ZDneo / Dturb ~ 1 (30)

Therefore there is little or no impurity accumulation in L-mode plasmas on the basis of
Egs. (28,30). This results is also consistent with the experimental findings[9].

Finally, during occasional strong magnetic activity (ELM's), ["*" is not negligible.

The direction of the electric field can be reversed and the high Z impurities are
pumped out as discussed in Stringer[5].

V1. Conclusions.

The transport of diluted impurities has been revisited, including both collisional
(classical or neoclassical) effects and collisionless/turbulence effects.

A key ingredient of the theory is the fact that turbulent test particle diffusivity is
independent of the bulk particle transport properties, and usually much larger than the
bulk (electron) diffusivity. This has been shown explicitly in Sec. II, where an extreme
model with zero electron transport but finite test particle transport has been
constructed.

The fact that impurities have a higher turbulent diffusivity implies that they would
normally diffuse out, where it not for the presence of a pinch. In this work only

11



collisional pinches have been considered, although mechanisms for anomalous pinches
are theoretically possible and have been indeed proposed. The reason of this limitation
is that it does not seem strictly necessary to invoke an anomalous pinch to explain the
observations. The neoclassical impurity pinch velocity can be very high because it is
proportional to the charge number and to the bulk gradients which in certain regimes
can be very high (edge plasmas in H-mode discharges).

The comparison with the experiments is mainly limited by the uncertainties in the direct
experimental knowledge of the turbulence parameters. We had therefore to employ
quantities inferred from other measurements, such as ratios of bulk diffusivities or
thermal conductivities. Therefore, at this stage, the comparison is regarded as only
"qualitative", but the results are encouraging.
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