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ABSTRACT

Theoretical estimates of the electron thermal diffusivity, driven by different
instabilities to which tokamak plasmas are prone, are surveyed and their regions
of validity specified. For those that are applicable, the prediction for a typical set of
JET profiles is compared with the experimental local diffusivity. The predicted
and experimental scalings of the thermal diffusivity with key parameters are also
compared. Although no one model reproduces the magnitude, radial variation,
and parameter scalings of the experimental thermal diffusivity, several models
correctly predict some of the experimental behaviour.

1. INTRODUCTION

In a companion paper (CONNOR et al. (1993)) we have reviewed theoretical
models for anomalous ion energy transport due to ion temperature gradient
instabilities, and compared their predictions with the experimental plasma
behaviour as observed in JET. Here we discuss results of a similar investigation
carried out for models of electron energy transport. The objective is to identify
theories that are compatible with data inferred from JET measurements, and may
therefore be relevant to the understanding of energy transport in tokamaks. This
work should be regarded as a first step towards an exhaustive assessment of such
theories, which will require detailed simulations of the observed plasma
behaviour in various regions of parameter space.

As in CONNOR et al. (1993), for each theory we will first examine the assumptions
made in the original derivation and the applicability to plasma conditions
obtained in JET. For those models that are applicable, the expected transport
coefficients or heat fluxes will then be compared with those inferred from
experimental observations.

The assessment is made in terms of local parameters, using the results of power
balance analyses of JET plasmas based on measurements of density, temperature,
etc. which are resolved both spatially and in time. The techniques adopted for the
local transport analysis, together with the inherent uncertainties and the main
observed trends, are discussed in detail in Section 2 of CONNOR et al. (1993). Here
we shall only mention that the experimental determination of the specific
electron (as opposed to total) heat transport properties is possible in practice only
for a limited set of JET plasmas. Therefore one generally has to refer to observed



local transport for the plasma regarded as a single fluid; the experimental
quantity used here for the comparisons with theory is an "effective” thermal

conductivity defined as 55" = —(qe + Qi )oonq / (2MeVTe), which corresponds to an

assumption of equal ion and electron heat losses (qj being here the local heat flux
for species j).

Since losses through the ion channel are often dominant in JET plasmas, as
discussed in CONNOR et al. (1993), xggépshould be regarded as an upper bound on
the actual electron thermal conductivity, which will however be of the same
order of magnitude. The parametric dependences of the "true" e need of course
not be exactly the same as those of xg‘f)f(P, since )i and e may scale differently. We
shall however assume that a good theoretical model for y. ought to predict

scalings that are not opposite to those observed for ng)f(P.

The theories assessed in this paper consider different instabilities as possible
causes for anomalous transport. Models based on drift wave turbulence, electro-
magnetic fluctuations, resistive fluid turbulence and magnetic islands will be
examined in Sections 2, 3, 4 and 5 respectively. The "critical electron temperature
gradient” model has been compared with JET data in depth elsewhere (REBUT et
al. (1991)) and will not be discussed here. A discussion of the overall results, and
conclusions, will be given in Section 6.

Definitions of all non-standard symbols used in this paper are given in the
Appendix.

2. ELECTRON DRIFT WAVE TRANSPORT

In this section we consider the electron drift wave with a frequency ® ~ @ue,
where ., ~k pscg / Ly, is the electron drift frequency, which provides a possible
mechanism for the anomalous electron energy transport. The simplest
description of the electron drift wave is in slab geometry, where it is found that,
to overcome the damping effect of the magnetic shear, it is necessary to consider a
nonlinear theory. Such an analysis is discussed in the next subsection. We then
consider the effects of introducing toroidal geometry. One then finds that
toroidicity tends to reduce the shear damping and thus drive the mode more
unstable. Toroidal geometry also introduces trapped particles and in the third
subsection we consider instabilities that are induced by a trapped electron
population. These modes have been studied extensively in the literature using a



variety of models, so we find it convenient to categorise these trapped electron
modes according to the method of analysis. We then consider the effects of
inverted density profiles and finally look at a trapped electron mode which has
been derived in the limit of short perpendicular wavelength.

2.1 Circulating Electron Drift Wave in a Slab/Cylinder

The collisionless electron drift wave gives rise to a mode (the 'universal
mode’') which, in slab or cylindrical geometry, is always unstable in the
absence of (magnetic) shear. When shear is present the mode is found to be
stable (ROSS and MAHAJAN (1978), TSANG et al. (1978)) as a result of
'radiative’ or shear damping (PEARLSTEIN and BERK (1969)).

However, HIRSHMAN and MOLVIG (1979) consider the effects of electrostatic
turbulence on the mode. They argue that the effect of stochastic diffusion of
the electron orbits due to this turbulence will be such as to destabilise the
mode. The nonlinear effects are studied through an E x B term in the drift
equation. From this a 'nonlinear’ dispersion relation is derived which
demonstrates that quite low levels of turbulence (typically below those
expected to exist in tokamaks) are required to drive the mode unstable.
Solving the dispersion relation at marginal stability (i.e. when the driving of
the mode due to the action of the turbulence on the electrons is balanced by
shear damping) then determines the diffusion coefficient D and
N ~2:§A3/215/2[1+r}_9/2 cp?
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In a subsequent paper, MOLVIG et al. (1979) investigate the effects of
turbulence on the electro-magnetic electron drift wave in slab geometry.

(D

with

Using similar techniques to those employed in their electrostatic theory,
they find that the electro-magnetic version is important when the ratio of
electron thermal pressure to the magnetic pressure, Be, exceeds the electron-
ion mass ratio, i.e. Be > (Mme/mj) (Pe = 2uope/82, where the units are SI).
This condition is usually satisfied in JET plasmas, except in the proximity of
the outer boundary. The diffusion coefficient is then given by
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To compare these predictions with the experimentally observed behaviour
of JET plasmas, we examine first the magnitude and radial dependence of
transport coefficients for one representative set of discharge parameters
(Fig. 1a), and then put this in context by showing the effect, at a fixed radial

position, of a wide range of variation in the main plasma parameters

(Fig. 1b).

Figure la shows predicted and observed transport for a typical L-mode JET
discharge; the experimental data were described in detail in Section 2 of the
companion paper. xgH from the electro-magnetic theory is clearly much too
low, while the transport due to electrostatic turbulence accounts for a
fraction of the observed yeff. Interestingly, in spite of their strong
temperature dependence, both theoretical predictions increase sharply near
the plasma edge, towards realistic values, mostly as a result of the rapid
decrease of the density scale length in that region.

Figure 1b, based on a set of data corresponding to sawtooth-free JET plasmas
obtained in various operating conditions, shows a similar picture across a
wide range of parameter variation. The further decrease of xgH at high
density is due mainly to a flattening of the density profile, i.e. it is again a
reflection of the strong Ly-dependence.

Slab-like Drift Wave in a Tokamak

In a slab/cylinder we have seen that stability depends on the competition
between electron drive (Landau resonance in the collisionless regime and
collisional drive at higher collision frequency) and shear damping and that,
in fact, the mode is linearly stable. In a tokamak passing particles continue to
provide Landau or collisional drive as appropriate, but shear damping can
be cancelled by toroidal effects (TAYLOR (1977)). Thus one can use D ~ v/ ki
estimates of the diffusion where the only contribution to y is the electron
drive (i.e. the shear damping part is dropped). WALTZ et al. (1987) present
v/ ki estimates of the transport due to drift waves. Taking k| ps ~ 1 they

give the following result for the collisionless diffusion coefficient, which
they claim to be applicable in the region ve/wte < 1:
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Waltz et al. also give an expression which is valid in the collisional regime.

This is
2 1/2
Yo ~D= SS‘)_S(&] (_ni] [le_] )
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for ve/wte > 1. Here, ve is the electron collision frequency and wte = vte/(RQq)
is the electron transit frequency.

Figure 2 shows that in JET plasmas the collisionless expression applies,
across the entire cross-section, even in the high density regime; this reflects
the high observed electron temperatures. Furthermore these modes are
always unstable.

The heat transport predicted by WALTZ et al. (1987) is one order of
magnitude less than that observed (Fig. 3); note that this discrepancy would
be removed if kj ps ~ 0.3 (rather than ~ 1). The dependences on q and L, in

Eq. (4) are sufficient to reverse the unfavourable radial variation which

TH

would result from the temperature scaling of the "leading term" in 7,

The remarks made above (Fig. 1b) concerning the density dependence also
apply to this model. In addition the g-dependence introduces a favourable
scaling of confinement with current, as observed experimentally. This
feature was less prominent in Eqgs. (1) and (3) because L is in practice less
sensitive to changes in the plasma current.

Trapped Electron Induced Modes

In low collisionality machines such as JET, trapped electron effects become
important. They provide new mechanisms for destabilising the drift waves.
The resulting instabilities are the trapped electron modes (TEMs), which can
be sub-divided into dissipative and collisionless modes, depending on
whether ©+5 Vo where Vo = Vo /€ is the effective collision frequency for
detrapping the trapped electrons. This section reviews the extensive
literature on the transport that might be expected to result from such modes.



Numerous approaches have been developed and the theories have been

categorised according to the type of approach that was adopted.

(i)

(ii)

Marginal Stability Approach

This is applied to 'slab-like’ trapped particle modes for which shear
damping persists. It is based on the assumption that the instability-
driven transport is so large that the temperature gradient cannot
increase far above marginal stability. In a calculation by MANHEIMER et
al. (1976) for the case of the dissipative trapped electron mode, an
analytic stability criterion was derived which balances the drive due to
collisional detrapping against shear damping appropriate to a slab
geometry (a justification for this treatment can be found in CONNOR,
TAYLOR and WILSON (1993)). Taking the large aspect ratio limit and
assuming ni = 1 they derive:

N L
a1+ 85 =T 6)
Te Lsel/Z

as the condition for marginal stability. Instability occurs when the left
hand side is less than unity. The neglect of the collisionless electron
magnetic drifts requires €, < 1.

Figure 4a compares for a single shot the measured temperature scale
length with that corresponding to marginal stability. Bearing in mind
that uncertainties affect the estimate of both quantities, the core region
of maximum temperature gradient (0.2 < p < 0.4) might be interpreted
as marginally stable. On the other hand, in the outer region where
global confinement is mostly determined, the plasma appears to be
stable. This indication is confirmed, on a broader statistical basis, by the
data shown in Fig. 4b.

D~y/ki and Mixing Length Estimates

The v/ k3 models employ the argument that at saturation the
destabilising mechanism (usually taken to be proportional to the linear
growth rate) is balanced by turbulent diffusion (i.e. k3 D). Alternatively
they correspond to drift wave transport associated with fluctuations



whose magnitude is given by the mixing length estimate
ep/T~1/(k Ly). The value of k| is to some extent a free parameter.
The spectrum is expected to peak at k| ps ~ 0.3 where the linear growth
is a maximum and experimental observation is consistent with this.
DOMINGUEZ and WALTZ (1987) used this argument to derive the
electron and ion thermal conductivities that would be caused by
circulating electron drift modes (both collisional and collisionless) and
the trapped electron modes. Their simplified treatment of the electron
modes has a switch from the collisional to collisionless mode as a
collisionality threshold is crossed. (In reality an intermediate
collisionality might involve both modes, see HORTON (1976)). The
expressions they give are, for the trapped electron mode (collisionless
or dissipative):

N _ o1/2Wxe W+e
Dte =& k2 {l "y } 7)
1 eff ) min

The suggested choice of k] is to take k] ps = 0.3. This transport
coefficient is then combined with the expressions for the circulating
modes given earlier (Eqs. (4) and (5)), with adjustable coefficients of
order unity, to give a total electron thermal diffusivity. PERKINS (1984)
derives identical expressions for the thermal conductivities, by
considering a random walk argument for the diffusion in terms of
'step sizes' and the frequency of such a step. The calculations in this
section apply to modes for which shear damping is suppressed so they
are always unstable.

An alternative vy / ki estimate of the electron thermal transport due to
trapped electron drift modes, given by ROMANELLI et al. (1986), is

éel/z (’)*ew:{e 1

Xe = (8)

where the function of V.. = Veg / Ope has been included to allow a
smooth transition from a collisionless to a collisional region. The
frequency w;re = TeW4e In this expression yields a factor n, times the

results presented above.



Figure 5 shows that for the trapped electron mode the dissipative
regime of Dominguez and Waltz generally applies in JET over most of
the plasma cross-section except at the lowest densities. As illustrated in
Fig. 6a, an increase of xTH with radius in the "confinement zone" is
prevented by the strong temperature dependence (~T2/2 in the

dissipative limit). Additional transport near the plasma boundary
would be provided by the addition of the circulating mode contribution
(Fig. 3), as proposed by Dominguez and Waltz.

The magnitude of yTH(TEM) tends to exceed that of ¥5§¥, especially if
Eq. (8) is used (v, £ 0.1, and Mg >1). A comparison with Eq. (7) on a
statistical basis is given in Fig. 6b, where local values of the thermal
conductivity are plotted as functions of the average input power per
particle. All instances with yTH < yEXP correspond here to high-density
plasmas, in which the diamagnetic frequency is strongly reduced by flat
density profiles.

TANG (1986) circumvented the discrepancy in the radial variation of e
by imposing the experimental radial variation on his transport model.
Over a wide range of parameters and heating profiles, the experimental
temperature profiles usually tend towards a "consistent” shape, which
can be approximated by the form (j = e, i)

Ti(r) =T, exp[—(xT(r / a)z] 9)

where Tang chose aT = (2/3)(qedge + 0.5). He assumed that in the
confinement region, between q = 1 and 2, the transport results from the
microinstabilities considered here and in CONNOR et al. (1993), while
outside this region some other mechanism, as yet unknown, becomes
dominant. Writing xj(r) = ijF(r), the radial variation F(r) required to
produce the consistent profile shape can be evaluated from the energy
balance equation. Hence only its magnitude yj, remains to be
determined. This is done by equating a weighted mean value of ¥;F(r)
and the predicted y;(r) over the region where 1 <q < 2. The aim of this
transport model is to predict Tjo, the magnitude of the consistent
temperature profile, for specified density and heating profiles. Its
scaling should follow that for whichever instability occurs in the

confinement region.



(iii)

In the case of the trapped electron mode, for which Tang adopts an
expression similar to Eq. (8), it is apparent from Fig. 6 that, in addition
to the radial "rearrangement” for xTH, a sizeable reduction in
magnitude is required to match the JET data.

Weak Turbulence Estimates

GANG et al. (1991) present a weak turbulence calculation of the
transport expected from the trapped electron driven drift wave. The
mode structure is that of the sheared slab and two collisionality
regimes are considered: collisionless ®>wye > Vogr and dissipative
Veff >0 >Wge, where g =(kgps)cs /R =€, 0+ is the magnetic
drift frequency and o is the mode frequency. The trapped electrons are
constrained to satisfy

(Veff, Wde,®) < Ope (10)

where wpe is the trapped electron bounce frequency. A kinetic
treatment is employed whereby the ions are described by the nonlinear
gyrokinetic equation, the trapped electrons by the nonlinear bounce-
kinetic equation and the untrapped electrons are assumed to be
adiabatic. Ion and electron temperature gradients are neglected. The
fluctuation spectrum is derived by balancing the linear growth rate, the
shear damping and the non-linear energy transfer due to non-linear
ion Landau damping. From this spectrum it is possible to derive the
following transport coefficient

1/2 2
_ -372( Ln 1Y T c\PsCs
Ye = 0.81 (sz (Aeg) H(kg ) (11)

— n ,L
AL = 8(Ln/Ls)]/zlm [S _L_s keps]/
n

the variable ¥ is a measure of the linear electron drive given by

where

n

_ {83 /2¢71/en collisionless
g =

¢s/ (Vegr Ln) dissipative



and H (Eg) is a function of the cut-off in the wave number spectrum
due to shear damping, obtained by solving the equation which matches
the linear electron drive of the mode to the shear damping (i.e. the
nonlinear transfer rate is neglected). Stable JET discharges would thus
be excluded.

As discussed above, only the dissipative limit is in practice relevant for
JET plasmas (where normally £, < 1). We have also shown that the
constraint Eq. (10) is easily satisfied. The model Eq. (11) is applicable
where the argument of the logarithm in Aé is greater than unity i.e.
52 L, /L, >1; this generally excludes the low-shear plasma core. In the
case shown in Fig. 7a, this condition is only satisfied for p=0.4. In this
region, the complicated functional dependences in the model by Gang
et al. lead to a non-monotonic Y which, as anticipated by the authors,
is lower than the predictions of the mixing length theories. The
correlation with JET data is not particularly good. As an example, Fig.
7b illustrates the strong decrease in xgH with increasing density, due to
the dependences on L and veff in Eq. (11).

A similar theory is given by ROGISTER (1989) who finds the following
form for the electron heat flux qe

2 T :
= -os3 iT—;r [G(r -1)] Keps (12)

where pe is the electron pressure and G is an unspecified function of

(F*—l), which increases sufficiently fast that the plasma adopts

'marginal stability’ profiles corresponding to I'* =1. For §2 Lg/Ly>1,
which is the limit relevant to the confinement region of JET plasmas,
the instability is present when

*

1/
r' =&

lee _[ﬁ_
Kops Ly

WVeff
((1)2 + Vgﬂ:)

>1 (13)

U |

10



(iv)

where A is an adjustable numerical coefficient and

W / Vege = 8.86-1013 ¢T?2 /[Ail/ann(l+ Zeff)]. (An expression for I'" in the

opposite limit of very low shear is given in ROGISTER et al. (1988)).

The difference between this result and that presented by GANG et al.
(1991) is due to the fact that GANG et al. neglect the electron
temperature gradient; also, they treat the trapped electrons nonlinearly,
but the resulting effects are found to be small.

Figure 8 shows that, for typical plasma conditions in JET, the stability
parameter I'* has a strong radial variation; the outer part of the plasma
column, where global confinement is mostly determined, is generally
found to be stable. In fact, given the uncertainties in determining I'*
itself using experimental data, one might even interpret Figure 8b as
indicating that at p = 0.8 the plasma is being kept at marginal stability.
This appears however to be unlikely since, even leaving aside the
I'*-dependent factors, Eq. (12) gives in this region a very low level of

transport (xgH < 0.1 m? /s, and decreasing with radius, for kgpg ~ 1).
Toroidal Mode Structure

When the toroidal magnetic drifts are taken into account there exists
an extra, toroidicity induced, branch of the drift wave [CHEN and
CHENG (1980)]. Of course, the original slab-like mode still exists, though
it will be modified slightly. SIMILON and DIAMOND (1984) suggest that it
is the toroidal branch of drift modes which is important and always
unstable. They develop the non-linear theory of these modes and apply
it in particular to the trapped electron driven drift waves. They
consider a linear electron response which is taken to be in two parts: an
adiabatic part and a nonadiabatic part which is modelled by an 'id’
prescription representing trapped electron drive. The ions are described
using the nonlinear gyro-kinetic equation. Calculation of the
fluctuation levels and spectrum (in a strong turbulence regime) leads
to the following forms for the test particle diffusion coefficients. For the
untrapped electrons,

11
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Xe ~ Dy = 0.2 Ll A£7')/3 (V P (14)
Wte 5 Veff

where  vi=w+,/kg=T,/eBL,. For the trapped electrons, two

collisionality regimes are considered. In the dissipative regime veff >
28, Wye

(15)

where an upper bound on the collisionality, Ve < ®pe, 1S imposed

due to the form chosen for 8. In the collisionless regime veff < ®de

2
Xe ~ D¢ ~ (28)2 27— (16)
TS Wye

A comparison with JET data (Fig. 9) shows that all three diffusion
coefficients exhibit an incorrect radial behaviour (the unfavourable
shear scaling adding to the usual temperature dependence), with a
correspondingly large excursion in magnitude. The disagreement is
similar to that characterizing many VTj-driven turbulence theories of

anomalous ion heat transport, discussed in detail in CONNOR et al.
(1993).

A weak turbulence calculation of the transport due to the toroidal
collisionless trapped electron mode has been performed by HAHM and
TANG (1991). The work which we have described above considered only
the ions to have a nonlinear response and the electrons were treated
linearly. Hahm and Tang treat both the ions and the trapped electrons
nonlinearly (the circulating electrons are assumed to have a
Boltzmann response), describing the trapped electrons by a bounce-
averaged drift-kinetic equation and the ions through the gyro-kinetic
equation. They argue that the most relevant collisionality regime is the
collisionless case, which leads to the ordering;:

Voff <Wpe < Wxe , Op <O <Ope (17)

12
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where ®wpe is an orbit-averaged precession drift frequency. The
constraint w>wp;j allows the effects of trapped ions to be neglected.

Using weak turbulence theory to calculate the fluctuation spectrum,
Hahm and Tang derive an electron thermal conductivity given by:

27¢) (1q® ( 5 j—l \paC
~ | == |2 1[1+3n| F (g, §)E=== (18
Xe (]5:]{§2] i (&n S)LTe )

RV R YW R 3 2R
F =|— —-— 1 exp| - ,
L) |\cL, ) laL, 2 GL.

where (TANG (1990)) G(5)=0.64 § + 0.57.

with

For the small set of low density JET plasmas to which the model is
applicable (see Eq. (17) and Figure 5b), the predicted ). is found to be

more than one order of magnitude larger than the observed x}ezf)f(P.

Transport Stabilisation

KAW (1982) considers the effects that the anomalous thermal transport
itself has on the stability of the collisionless trapped electron mode. He
finds that for values of ye which are sufficiently high, the transport has
a stabilising influence on the mode, i.e. the instability becomes self-
stabilising. Kaw illustrates the idea with a relatively simple model of
the trapped electron mode. He considers vxe <1 and a fluid description
of the ions, with the passing electrons taken to be Boltzmann-like. The
response for the trapped electrons is calculated from a model equation
which includes the effect of transport on the trapped electron
distribution function. This leads to a growth rate for the resulting
mode of the form:

2
Wxe

k3 %e

'Y~

It can be seen that e plays a similar role to that played by the effective

collision frequency in the dissipative trapped electron mode. The level
at which ye saturates is then assumed to be given by marginal stability,

13
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i.e. this growth of the mode is balanced by the shear damping, leading
to the following expression for the electron thermal diffusivity:

(X81/2

5 (1+kip§ )2 Lre

Wie L

(19)

Xe

where Kaw suggests that k| ps~1. The parameter a is an 0(1) number

describing an averaging over the velocity distribution.

In Fig. 10, Eq. (19) has been used with a = k; ps = 1. The predicted
transport has the right order of magnitude, and for high-density
plasmas remains at all radii within a factor ~ 3 of the observations. At
low density there is a more serious overestimate in the hot core region.
As for previously discussed results, with a leading term XEH ~ cspg /L
(with L = Ly, Lt or Lg) an additional effective 1/L-dependence would be
required here in order to produce the desirable radial increase of
transport.

Inverted Gradient Profile Effects

Inverted gradient profiles (i.e. negative ne, ni) have different effects on
plasma stability depending on whether the mode under consideration is the
circulating electron mode or the trapped electron mode. The circulating
mode is destabilised relative to the positive nj e case, whereas the trapped
mode is stabilised (TANG et al. (1975)). Thus there is a competition between
the two types of mode and we might expect the overall result to be
stabilising when the collisionality is low (and trapped electron effects are
important) and destabilising for higher collisionality (when they are
negligible).

HORTON (1976) investigates this effect by constructing a dispersion relation
which describes all three modes (i.e. collisional and collisionless circulating
modes and the trapped mode). He finds that for nj.e <0 there is a gain in
stability (over the positive Mje case) when vxe < 0.3 and a destabilisation
when vse > 1. These linear results are then used to derive a quasi linear
estimate of the transport that might be expected from a plasma in which all
three instabilities exist. The resulting expressions for the particle and heat
fluxes are rather complicated. Considering the dissipative mode BISHOP and

14
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CONNOR (1990) simplify Horton's expression to derive the electron thermal
conductivity

1/2
1 q (L |m pic »
- S [~ S S 15
Xe 8Vm e v. [L ]{m] L ( R ) (20)

n

The data base of JET plasmas with negative me is essentially limited to
medium- or high-density H-mode discharges. For the example shown in
Fig. 11a, Vne > 0 from the magnetic axis up to p ~ 0.8, while v«e approaches
or exceeds unity and Mg < — 1 throughout that region. Fig. 11b shows that

Eq. (20) does not adequately describe the transport observed in this regime.
Short Wavelength Trapped Electron Mode

An analysis of the short wavelength trapped electron temperature gradient
driven mode is given by DIAMOND et al. (1990). This short wavelength limit
allows the ions to be treated as Boltzmann (imposing the restriction kgps
> 1). An upper bound on kg is obtained by requiring that trapped electron
effects are important, i.e. Or < Wpe, where wr is the real part of the mode
frequency. The mode frequency is of the order w+e so that we are concerned
with the wavelength range:

1/2 . 1/2
1 < kops < —2 (m—J (21a)
q

me
Collisions are neglected, which leads to the constraint:

—_ke‘l’;cs > Vefs (21b)

A linear dispersion relation is derived where the passing electrons are
treated as Boltzmann-like and the trapped electrons are described by a
bounce-average of the drift-kinetic equation. From this dispersion relation, a
criterion for instability, the mode frequency, oy = F (g, T)wgq and the growth
rate, ¥ =G(g, 1,67 )Jog are derived. These are then used in the 'mixing length’

expression for the electron thermal conductivity:

15
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As we have discussed earlier, the collisionless limit Eq. (21b) generally does
not apply in JET. However, a linear analysis of the short wavelength limit of
the dissipative trapped electron instability was performed by
MIKHAILOVSKII (1976). The limit considered is such that the wavelength of
perturbations is small in comparison with the ion Larmor radius, i.e.
k ps >>1. Again, there presumably exists an upper bound (i.e. Eq. (21a))
which is derived from assuming that the trapped electron effects are
important. The growth-rate which he derives leads to the instability
criterion M, >1.52, which is generally satisfied in JET across most of the

plasma cross-section.

No expression for the transport is given in this work, but using the mixing
length expression of Eq. (22), with the values of growth rate and mode
frequency derived by Mikhailovskii, we obtain the result shown in Fig. 12.

Upper and lower limits on xgH correspond here to the extremes of Eq. (21a).
3. ELECTRO-MAGNETIC FLUCTUATIONS

Transport theories which involve electro-magnetic fluctuations on the
collisionless skin-depth scale c/wpe are attractive because they can reproduce the
linear scaling of the confinement time with density observed in the Alcator
tokamak (OHKAWA (1978)). This Section summarises the models which fall into
this class of (c/wpe)-type turbulence. In the next subsection we describe theories
in which no specific source for the electro-magnetic fluctuations is given. Instead
the fluctuations are merely assumed to exist and to be sufficiently large that the
plasma is strongly turbulent; it is shown that such a system exhibits transport due
to stochastic motion that is insensitive to details of the source of the fluctuations.
We then discuss the possibility that it could be an electron temperature gradient
driven mode that is responsible for these magnetic fluctuations.

3.1 General Electro-magnetic Fluctuations
Provided the fluctuations are sufficiently large it is possible to get stochastic

transport of particles. HORTON (1985), PARAIL and YUSHMANOV (1985) and
HORTON et al. (1987) derive the requirements for stochastic motion and the
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implications such a motion has for transport levels. Without specifying the
source of the electro-magnetic fluctuations (but postulating that they could
originate from electron drift waves) they assume that a state of strong non-
linearity exists and that the system is describable in terms of a chaotic
distribution of vortical flows. The equations of motion of particles under the
influence of a model spectrum of electro-magnetic fluctuations are solved
numerically and a diffusion coefficient D is calculated. It is found that D is

relatively insensitive to properties of the fluctuation spectrum.

In a random walk estimate of the diffusion coefficient arising from the
electro-static part of the fluctuation spectrum of a highly turbulent plasma of
the type discussed above, the relevant frequency is the circulation (or E x B
trapping) frequency QE and the step-length is kll. The dominant
contribution to the transport is through the trapped electrons, because they
do not experience the whole variation of the perturbation along B, so that

172 Qg
Xe ~ E 2
k1

In his analysis, HORTON (1985) showed that a condition for stochasticity is
Qg ~ Aw where Aw is the spread in frequency of the driving instability at a

given wave number. For electron drift waves

C
Aw ~ Wy = kpg L_S
n

and the corresponding wavelength is k,ps ~ 1,s0 that

1/2 .2 C5

(1)
Xe ~ E sLn

(23)

Although there may be some modification to this through the details of the
fluctuation spectrum, the numerical study which was described above
suggests that their effect will be small.

The regime considered by PARAIL and YUSHMANOV (1985) corresponds to
shorter wavelength (electro-magnetic) modes, with k; ~ wpe/c. They

consider that stochasticity occurs when QE ~ wpe, where wpe is the bounce

frequency of trapped electrons, which leads to a test particle diffusion rate of
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X(eZ) _ 81/2[ c ]mbe‘ (24)

(L)pe

Assuming that both parts of the fluctuation spectrum will be present with
sufficient amplitude to produce stochastic diffusion allows a total diffusion
rate to be written as

1/2) 2 ¢ = c
Ye = € gf— Dl(a)+[

2
- J WpeDa(at) (25)
n pe

where D; ,(a) represent slowly varying functions of the parameter set {a}
which defines the fluctuation spectrum. IA)L (@) can be treated as adjustable
constants of order unity when comparing this formula with experiment.
However, there does exist a significant variation with the magnetic shear
and KESNER (1989) has obtained the following fit:

D1 2(a)e<(0.05 + 0.65¢7') (26)

where sy is the local shear on the outside of the torus.

Figure 13a indicates a good level of agreement between the theoretical
coefficients of Eqs. (23) and (24) and the observed yeff, over much of the
plasma cross-section, both in magnitude and in radial dependence. A linear
combination such as Eq. (25) could thus provide an acceptable description of
the data in this case. (Note, however, that inclusion of the shear dependence
of Eq. (26) would make the agreement worse near the plasma edge). An in-
depth assessment of xe(l) and xe(z) will be given below, but first we discuss

briefly the possible additional effect of collisions on the predicted transport.

The work described so far considered a collisionless plasma and assumed
that the trapped electron diffusion is dominant over the passing electrons. If
the collisions of electrons with ions are included, then trapped electrons are
converted to passing ones at a rate which is proportional to the effective
collision frequency of the electrons. KIM et al. (1990) generalise the results of
HORTON et al. to the following form:
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Xe = E/ psﬁDl(a)+[
n pe
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The third term is expected to be important at the edge of tokamak plasmas,
where the collisionality can be high. In fact, Figure 13b shows that JET
plasmas are too collisionless for this term to contribute significantly to
transport, even near the plasma edge. Some other mechanism (for example
a strong local ion energy transport) must therefore be invoked to account for

the increase in ng)fa) towards the outer boundary.

New effects can arise when the influence of collisions on trapped electrons
in the presence of time varying fluctuations is considered. Using a random
walk argument, CONNOR and HASTIE (1993) consider the response of trapped
electrons to a wave with o ~w, >V [with v=v/8& where & is the width of
the appropriate collisional boundary between trapped and passing electrons].
The decorrelation frequency is given by v, leading to

2
2 .~ {e
Xe~81/ Ve[T_(p] L%x

e

which is maximised by choosing the minimum value of & consistent with
the assumption v=v/8 <®. Combining this with a mixing length estimate
ep/Toe~1/k L, and assuming k; is set by the ion Landau damping
condition ® ~ v /Rq.

V.C V2 2[ Rq 2
o] (i) @)

This upper limit on X now largely exceeds the observed transport in the
confinement region, as can be seen from Figure 13b. An alternative
assumption is that the fluctuations have slab-like drift wave structures
(PEARLSTEIN and BERK (1969)), which would suggest k| ~kt ~(Ly, /L )ps"

and hence

v 1/2 L
Xe ~ (——QCS] pl ==, (28b)
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This heat diffusivity, while preserving the main parametric scalings of
Eq. (28a), would have a magnitude closer to the experimental x.¢ (Fig. 13b).

We now investigate in more detail the properties of the first two terms in
Eq. (27). For Figs. 14 and 15 we have selected JET deuterium L-mode data for
one particular value of the plasma current (I = 3 MA). Figure 14 shows the
density dependence of local transport at constant input power. The decrease
in XEE?P with increasing <n> reflects a favourable scaling of the global
thermal tg with plasma density; in regression analyses of the total energy
replacement time measured by magnetic diagnostics, this trend is usually
masked by the presence of energetic particles (more important at low
density). The overall behaviour is well described both by xg) (whose
decrease is mostly due to copeocn}e/z) and by x(e]) (och’/z/Ln, where Te
decreases and Ly, tends to increase with increasing density). The discrepancy
discussed above concerning the radial variation of ¥ remains throughout

this set of data, as can be seen by comparing the magnitude of y at p = 0.5 and
p = 0.8 in Fig. 14.

In Fig. 15, data at constant plasma density are examined to identify the
dependence of transport on input power (i.e. plasma temperature). The
increase in XeEf)f(P reflects the global degradation of confinement with

increasing additional heating power. This is mimicked by xg), because of its

strong temperature dependence, while the increase in Xff)(oc TV 2) is clearly

less marked.

The comparisons of Figs. 14 and 15 thus confirm that a linear combination
such as Eq. (25), with appropriately adjusted constant coefficients of order
unity, can lead to a good description of important features of local heat
transport in the L-mode regime at JET. (It should be noted that linear scales
have been used in Figs. 14 and 15, as opposed to the logarithmic scales of
earlier graphs).

It has to be said that there are also aspects of the observed local confinement
that clearly cannot be described in a general way by the model Eq. (25). A
notable example of these is the transition from Ohmic to additional heating,
which in limiter discharges invariably leads to an increase in local heat
transport. This transition is often accompanied by an increase in plasma
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density. In the illustrative example chosen for Fig. 16, this increase is such
that the plasma temperature actually remains the same in both regimes. As

should be expected, in such a case the increase in ng)f(l) is in stark contrast
(1

o would decrease somewhat due

with the large decrease in xg) (and also ¥
to the flattening of the density profile). This problem was already recognised
by PARAIL and YUSHMANOV (1985) who suggested the existence of an
additional "heat pinch" term in the energy balance to explain the

confinement degradation.

Another shortcoming of model Eq. (25) is its inability to describe the well-
established phenomenological improvement of confinement with
increasing plasma current. In fact, the q-1 dependence of xff) would tend to

lead to the opposite effect.

To return now to the review of theoretical treatments, PARAIL and POGUTSE
(1980) derive an upper bound to the electron thermal diffusivity due to
electro-magnetic turbulence, which is assumed to exist on the length scale of
the collisionless skin depth c¢/wpe. Two expressions for the thermal
conductivity are given for odd and even modes respectively (where 'odd'
and 'even' refer to the parity of the electro-static potential about a resonant
surface). For the odd modes,

2
(o) C VieS
~—| == (29)
e [“’PJ qR

For even modes toroidal coupling to sidebands needs to be taken into

5 2
X ~ (i) [ - ] ~te (30)
R Wpe | 9qR

Parail and Pogutse claim that the even modes will, as a rule, be excited

account, leading to

before the odd modes and thus x&e) will be the relevant expression.

Noting that x(ee) ~€ xéz), it is clear from the discussion above that Eq. (30)

will have a radial dependence now similar to that of the observed yxe¢¢, but
will need a numerical coefficient O(10) to match the experimental

magnitude. Conversely, since the local shear § increases with radius and is
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of order unity in the confinement region, one would expect xéo) to provide
an even better model than XE?Z)- Indeed, with a numerical coefficient 0.5 in

Eq. (29), Figures 14d and 15d show good agreement with the experimental
data.

Finally we consider the work of ZHANG and MAHAJAN (1988), who consider
the modes that satisfy w > kyvi to be important. The precise form of the

mode which might be responsible for driving the turbulence is not
addressed, but it is assumed to be such that o scales like ®©.,, where

- ) 1 a
pe

Dye = — + —

e 3 [ - ] PsCs (LTe Ln]

i.e. a linear combination of the diamagnetic drift frequency due to both the

3.2

temperature and density gradients with the perpendicular wavelength being
~ ¢/ wpe. Little is said about the constants a and €, which must be assumed to
be parameters of the model to be fixed by comparison with experiment. The
length scale is taken to be the collisionless skin depth, thus leading to the
following form for the heat diffusivity:

c 1 o
Yo = & PsC (——— + ——] (31)
© ((‘)pe] e L1e Ly

This expression has parametric dependences that lie between those of x(e”

and xg) examined above. A comparison with JET L-mode data yields results
similar to Figs. 14b, ¢ and 15b, ¢, albeit with a less satisfactory radial
dependence in xgH. We find that € = 1 is acceptable for a = 0, but £ = 0.2 - 0.3
would be required if o = 1 (i.e. if an additional factor (1 + nel) is included in
xe .

Electron Temperature Gradient Turbulence

The above work considers the transport due to electro-magnetic fluctuations
without specification of their source. GUZDAR et al. (1986) suggest that high
frequency drift waves driven by electron temperature gradients could be
responsible for the magnetic fluctuations (and therefore anomalous
transport) that are observed in tokamaks. The theory of the mode in a
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sheared slab geometry and its implications for the electron transport are
described in the work of LEE et al. (1987). Perhaps a more relevant work as far
as tokamaks are concerned is HORTON et al. (1988), in which the nonlinear
properties of this electron temperature gradient driven mode are studied in
a toroidal geometry. In this section we shall discuss these two theories in
more detail.

Let us start with the slab treatment of LEE et al. (1987) which is a more
complete description of their original work. Kinetic theory is used in a
sheared slab geometry to describe the collisionless electro-magnetic electron
temperature gradient driven mode. The equation is solved numerically to
analyse the stability. The principal result is that the most unstable mode has
a critical ne ~ 1 for instability which is consistent with the shorter
wavelength result of HORTON et al. (1988) below. Using quasi-linear theory,
they derive the following expression for the electron thermal diffusivity:

2
Yo ~ 0.13 (:05—] :*f;‘ Ne(1 + Me) (32)
pe

The factor ne (1 + ne) originates from a numerical fitting of the variation of
the maximum value of the mode frequency as a function of ne, but is

restricted to the region ne(1 + me)< —6—9 When comparing with JET data,
1

for which this latter constraint is generally satisfied, we find that Eq. (32)
does not fare as well as Eq. (29). The additional ne-dependent factor
introduces much unwanted scatter in the theoretical prediction, and makes
the radial dependence of xeTH worse again, since Te tends to decrease at the

plasma edge. Also, the transport coefficient Eq. (32) is on average larger than
the experimental ye¢f by a factor of 2.

The theory of HORTON et al. (1988) mainly makes use of hydrodynamic
equations and a tokamak with a circular cross-section is considered.
Hydrodynamic theory predicts that there exists a critical value for ne ~ 2/3

above which there is an instability; inclusion of FLR effects raises this value
to T]e, c= 1.

The linear theory indicates that the most important ne driven modes are

those with short wavelength and are electrostatic in nature. Under the
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restrictions for validity of the hydrodynamic treatment, ®w>>kjvi i.e.
§/q < 1/(2£Te)l/2
profile be sufficiently peaked ( ), Horton et al. derive the following

, the toroidal regime (5 < 2q)and that the density

mixing length estimate for this short wavelength mode:

¥ 2
Xe:(&] (Eﬂ) n BsSs (33)
1

m; S L,

In the limit of flat density gradient (i.e. ne >1) they give

1/2 2 )
Yo © (&J (_j (27c)"* B (34)

As shown in Fig. 17, the level of transport predicted in the confinement
region is too low. Due to their temperature scaling, not sufficiently
mitigated by the other parametric dependences, the heat diffusivities of Egs.
(33, 34) display the wrong radial behaviour, similarly to many of the drift
wave models discussed in Section 2.

However, the longer wavelength part of the spectrum possesses an electro-
magnetic component, which can give rise to substantial transport when the
motion becomes stochastic in nature (HORTON et al. (1987)). Linear theory
indicates that in the case of the ne driven mode there is marginal stability in
this long wavelength limit. However, in the non-linear theory a long
wavelength mode can be driven unstable through an interaction with two
shorter wavelength modes, and the resulting stochastic diffusion leads to
two scalings for the transport coefficient, corresponding to the two regimes
where stochastic diffusion occurs. For the regime where the circulation
frequency of the vortices QF is comparable to the mode frequency,

v - [_C_Jc_p_
®Wpe | LTe

where the typical scale length for the turbulence has been taken to be the
skin depth c¢/wpe rather than ps as was used in deriving Eq. (23). The

behaviour of this transport coefficient has been discussed in Section 3.1 (see
Eqg. (31)). In the other regime, where the circulation frequency is comparable
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to the bounce frequency of the trapped electrons, the thermal conductivity

ng) of Eq. (24) is recovered.

4. RESISTIVE FLUID TURBULENCE

In this section we consider the instabilities of a plasma described as a resistive
fluid and indicate the level of transport expected from such instabilities. We shall
see that transport can occur from two sources: turbulent convection and a
'stochastic’ radial diffusion. The latter is a consequence of the magnetic
fluctuations which are predicted to arise because of the instability. These can
interact to make the magnetic field stochastic, and induce a subsequent radial
transport by parallel motion. In the following subsections we shall consider two
types of resistive fluid instability: pressure gradient driven modes and resistivity
gradient driven modes.

4.1 Resistive Pressure Gradient Driven Transport

In this subsection we consider the transport which would result because of
instability to a resistive ballooning pressure-gradient driven modes of the
type considered by CARRERAS et al (1983), not those discussed by DRAKE
and ANTONSEN (1985).

The equations describing a plasma as a resistive fluid are invariant under
certain sets of scaling transformations of various plasma parameters. This
invariance can be sufficient to determine the dependence of the diffusivity
on these parameters (CONNOR and TAYLOR (1984)). Consider first the
convective loss from fluctuations with toroidal mode number n in the
following limit:

S>1 , n’/S«1 |, Bq2/£<1

where S = TR/TA with the resistive diffusion time TR and the poloidal
Alfvén time 1A defined by TR = por2/m and A = (opm)1/2R0q/Bo,
B =2uop/B2,n is the plasma resistivity and pm is the mass density.
Assuming that the diffusion coefficient scales as the square of a radial step
size to a time step, the invariance transformations lead to the following
result for the convective diffusion coefficient:
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n (a
D. = — = 35
C gO uo ( é ) ( )
where g is a constant and
2 qu dp
O = - 20— (36)
B dr

As can be inferred from the typical profiles shown in Fig. 18, Eq. (35) gives a
very small diffusion coefficient, barely reaching ~ 0.1 m2/s at the very edge
of the plasma.

We now consider the radial transport due to paralilel diffusion along the
stochastic magnetic field lines (RECHESTER and ROSENBLUTH (1978)). It can be
shown that invariance arguments determine

2 2 5/2

v £ (64

D, = —te —(—) (37)
! &1 Ve qZS S

in the collisional limit Apng, <L¢, where Lc is the parallel correlation length

of the turbulence. In the collisionless case, Lc > Amfp,

ReZv (xf/z
D, = — “te | = 38
2 g2 s (é (38)

We note that earlier mixing length expressions (CARRERAS et al. (1983)) are
largely in agreement with these diffusion coefficients. With numerical
coefficients of order unity, both Dj and D are < 0.1 m2/s in the confinement
region of typical JET plasma, and so cannot account for any significant part
of the observed transport.

Work by CARRERAS et al. (1987) considers the non-linear calculation of the
diffusion resulting from the resistive interchange mode. Although such a
mode is stable in tokamaks, it is closely related to the resistive ballooning
mode and therefore might be expected to show similar characteristics.
Comparison with the results of CONNOR and TAYLOR (1984) for this resistive
interchange mode enables us to predict how one might expect the
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ballooning mode driven diffusion (as described above) to be altered if a
similar analysis were applied to the equations which describe this mode.

The equations are similar to those considered by Connor and Taylor, apart
from two extra terms appearing in the pressure and vorticity evolution
equations which are included in order to model an anomalous viscosity p
and cross-field diffusion | . The equations are then renormalised and the
magnitude of the resulting turbulent viscosity and diffusivity are chosen to
make the non-linear dispersion relation marginally stable. The effect is to
enhance the diffusivity Eq. (35) by a logarithmic factor:

1/2

4 2 242

D= 2 n (} 64r [<m >] Hps 39)
S

4 2.2 2 2.2
m q Ta m gon a

This expression is weakly dependent on the poloidal mode number m
(<m2>1/2 is its rms value) and a value for this must be chosen. Numerical
simulation by CARRERAS et al. (1987) indicates that the most important m
value (i.e. the most unstable m = mg) is such that mg = <m2>1/2 and that
<m?2>1/2 varies with the parameter B/(2¢2):

B/(2€2) <m2>1/2
0.0025 12

0.0050 6

0.0075 3

0.0100 3

0.0125 3

The saturation at <m2>1/2 ~ 3 may represent a cascade to long wavelengths
(n ~ 1) with <m2>1/2 determined by the geometry (ie.n=1,q=3 and m =
nqg) in which case <m2>1/2 could be assumed to vary like q.

By choosing mg = 3, we find that the logarithmic factor in Eq. (39) is typically
O(10). As shown in Fig. 19, this leaves us with a transport coefficient which
has the correct radial variation, but negligible magnitude as compared to the
measured thermal conductivity.

The heat transport due to stochastic magnetic fields produced by instability
to resistive pressure-gradient-driven turbulence is analysed by CARRERAS
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and DIAMOND (1989) in the collisionless case, who derive an electron
thermal diffusivity given by:

1 1 1 a?[.R 473 2
_ q Ko Viel
Xe = 1376 2173 G273 & [B J (40)

Here <n2>1/2 represents an rms average of the toroidal mode number for
the instability; if it is close to unity, then Eq. (40) yields a transport coefficient
that is approximately radially uniform, and within an average factor ~3 of
the observed ng’ﬁ". The temperature scaling of xgH is compatible with JET
L-mode data (compare Figure. 20b with 15a), but the B-dependence in Eq. (40)
brings about an unfavourable density scaling (Figure 20c) which is at odds
with the clear trend in Figure 14a.

So far we have described the pressure-gradient-driven turbulence through
the resistive MHD equations, which are strictly valid only in the short mean
free path (Pfirsch-Schliiter) regime. At lower collisionalities (in banana or
plateau regimes) trapped particle effects can become important and
instability is possible, even in the absence of curvature, due to the bootstrap
current and neoclassical viscous damping (CONNOR and CHEN (1985);
CALLEN and SHAING (1985)). Because of its role in the driving mechanism,
this mode is sometimes referred to as the 'bootstrap current mode'. The
non-linear theory and resulting transport has been investigated by KWON et
al. (1990) using the same set of neoclassical fluid MHD equations as Callen
and Shaing and the techniques of CARRERAS et al. (1987). This leads to the
pressure diffusivity:

D, =

L
p Bp —TI— -]-_i F (81 vel V*e) (41)

1k
8t q 7 Ho

where F is an algebraic function of aspect ratio and collisionality. This

'neoclassical' instability also gives rise to stochasticity of the magnetic field,
and to enhanced electron heat transport:

Xo|Eq. (40)
Xe:—E[e—ZzﬁT_] G(e, Ve, Vi) (42)
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where G is a complicated function which turns out to be approximately
constant in radius and of order unity.

Fig. 20a shows that Kwon et al.'s Eq. (41) yields very low transport, while the
thermal diffusivity Eq. (42) is significantly larger than the measured one
(even when m, > 3 is taken into account).

The expressions (35)-(42) are controlled by collisional resistivity, even if neo-
classical effects are invoked. A high temperature plasma may be better
described by an Ohm's law in which electron inertial effects replace
collisional friction. ITOH et al. (1993) have obtained a form for the 'fluid'
thermal diffusivity:

2
_val ¢ (13/2
X qQR | ©pe h(s)

which can be considered as an analogue of the work of DIAMOND and
CARRERAS (1987) for a collisionless fluid rather than a resistive fluid
(CONNOR (1993)). Here vp =B/ \/ﬁ;m—ln is the Alfvén velocity, o is given by
Eq. (36) and h(0) = 1.7, h(§ > 0.7) = 2.55 . A corresponding expression for the
effect of electron transport due to the associated stochastic magnetic
fluctuations has also been given by Connor, using invariance techniques,

2
Vie C az
Xe=— | — | = -
QR wpe | 5

These forms are valid for 'cold' electrons with o > mjB./me and are not
applicable to JET plasma conditions. (However, it is interesting to note that
the Itoh expression does have a promising radial profile, rising at the edge,
but would require a multiplicative factor ~ 30.) In the opposite limit a <
miBe/ me a kinetic model for the electrons is more appropriate.
Nevertheless an effective 'collisionless resistivity' for this situation can still
be modelled and forms for ) obtained. Corresponding to the above two
equations, Connor has obtained

2
Ye = V_t[ = ] a (43a)




4.2

and

3/2
Vie|] © |
=& —_— 43b)
Xe Rq [mpe] g172 Ps (

for the effects of turbulent electrostatic and magnetic fluctuations
respectively.

The thermal conductivity of Eq. (43a) is xgz)-(%), where a:O(lO_l)

increases modestly with radius in the confinement region (Figure 18). As
shown in Figure 21, therefore, this xgH is smaller in magnitude, has a less
favourable radial dependence, but scales more similarly to the data with the
input power, owing to the linear dependence on the pressure gradient in o .
In addition, importantly, XgH from Eq. (43a) will lead to an improvement in
confinement with increasing plasma current (since a~q2), thus
reproducing another experimentally observed trend. Conversely, the
dependences of Eq. (43b) on shear and temperature (with the gyroradius

Ps ~ T/ replacing a collisionless skin depth %a ~n""2) lead to a radial
pe

behaviour at odds with observations, as can be seen in Figure 21a.
Resistivity Gradient Driven Transport

Resistivity gradient driven turbulence can result from two sources: a
gradient in the electron temperature or a gradient in Zeff (i.e. an impurity
density gradient). The instability caused by an electron temperature gradient
resulting in a radial variation of the resistivity is often called the rippling
mode. This mode has a resistive MHD nature and is driven by a radial
gradient in the current, which exists as a consequence of the resistivity
gradient. A high electron collisionality is necessary in order to overcome the
stabilising influence of the parallel electron thermal conduction.

Numerical calculation (HASSAM and DRAKE (1983)) indicates that the
rippling mode is unstable for

4[R2 2/3
3.08 x 10* | B2Ly, ( L,
Te < 273 | 1372 R
(kyLTe) TOe do
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with kyLT ~ m, the poloidal mode number. Here, the units are SI except for
temperature which is measured in eV. The subscript zero indicates the
parameter measured at the plasma centre. For JET parameters this critical
temperature is of the order of 10 eV and therefore the mode will only exist
right at the plasma edge (if at all). The transport due to turbulence induced
by the rippling mode has been analysed by GARCIA et al. (1985).

As mentioned earlier, a radial variation in the impurity concentration can
also give rise to a resistivity gradient and thus affect transport due to the
rippling mode. Impurities were included in the analysis of HAHM et al.
(1987) and THAYER and DIAMOND (1987) where it was found that their effect
is to give an additive contribution to the total transport due to resistivity
gradient driven turbulence. The general lack of accurate measurements of
the local impurity distribution in JET plasmas prevents us from carrying out
quantitative assessments of these theories.

The above analyses of the resistivity-gradient-driven mode employ the
reduced resistive MHD equations which are strictly only valid in the Pfirsch-
Schliiter collisionality regime. KWON et al. (1989) perform a calculation of
the transport due to the mode using neoclassical equations, which are
relevant for a description of a plasma in the banana/plateau collisionality
regimes. The principal difference between this calculation and those of
reduced MHD is that the resistivity in the banana regime becomes
dependent on the plasma density as well as the temperature, and thus the
rippling mode (which, as described earlier, is driven by a resistivity gradient)
is now able to tap the free energy source of the density gradient. Impurity
gradient effects and the effects of radiative cooling are not included. Also, it
should be noted that diamagnetic w«e terms are dropped. One-point

renormalisation theory is used to derive

4/3
3 E,L ' 1/3
Xe = [(_2‘ Ne + Cn(l - 21’]e )j[C_B—In:fﬂ [Xllk IIZT (44)

where x|| is the electron parallel thermal conductivity and Cn is a function
of the plasma collisionality. This turbulent energy transport is absolutely
negligible in plasma conditions of practical interest for JET (where
X1~ 101 %5, neoct)-
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TRANSPORT INDUCED BY MAGNETIC ISLANDS

If microscopic magnetic islands of width wp, exist on rational surfaces
m = nq, they can produce stochastic magnetic fields if islands on adjacent
rational surfaces overlap. This then leads to rapid electron thermal transport
as the electrons follow the stochastic field lines (RECHESTER and
ROSENBLUTH, 1978). It is possible to express the resulting diffusivity in terms
of N, the number of toroidal modes whose sum contributes to the
stochasticity condition (WHITE and ROMANELLI, 1989).

2 3
8(ef(3) .
Xe q3§2 (R N (45)

where as ~ 1 is the stochasticity parameter. This expression requires N ~ 102
to give the correct order of magnitude for xgH at p=0.5, and even then

features an extremely strong unfavourable radial variation, with unhelpful
dependences on both q and the shear.

Equation (45) is generic, independent of the mechanism producing the
islands. Tokamaks tend to be linearly stable to the micro-tearing modes that
would lead to such islands, but a number of non-linear theories have been
developed that provide an explanation for their presence. These theories
balance island drive due to currents associated with the presence of the
islands against the natural stability from A' at high m, to yield expressions
of the form

_Iwg

W = (46a)

m
Different expressions for the dimensionless quantity w, are given below.

One can then estimate an electron thermal diffusivity from the Rechester-
Rosenbluth formula.

3
~Yte MWm

e
Ly r

(46b)

where m > 10% is a typical mode number. One possible mechanism is the
bootstrap current driven island (CARRERA et al., (1986)) for which

32



2 R
wy = 1.2(1—81/2) 83/2[?L (47)
sL,

where we use a finite aspect ratio value for the neoclassical resistivity
(WESSON, 1987). Another source of magnetic island drive arises from the
currents associated with finite ion Larmor radius effects (SMOLYAKOV (1989);
SAMAIN (1984); REBUT and HUGON (1991)). Smolyakov considers the
electrons to be described by Braginskii equations and finds

L2
Wo = st ne(ne_l) (48)
Lx

for islands with m ~ r/pj. Samain finds for similar m values

2
w, = 0.3%n0(1+%j. (49)

Rebut and Hugon obtain the same scaling as eqn. (49) but have a coefficient
4.

By combining Eqs.(47-49) with Eqgs. (46), we find thermal diffusivities having
very large values in the plasma core and vanishing towards the edge (Figure
22), mostly as a result of the B-dependence of wy.

SMOLYAKOV and HIROSE (1993) have also considered the collisionless case
when electron inertia replaces resistivity in the Ohm's law. The theory
assumes fluid electrons and leads to magnetic islands of width

w

W~£ ¢ J(1+ne/2)%

The condition that the electrons are fluid (1)>>k|‘|w Vie requires

BeLzS/L%1 >>1. The resulting expression for transport due to stochastic

magnetic fields is

“vie (147 /2)
S| Vel Ne/2) e (50)
v [ ]qR i
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This thermal conductivity is very similar to that of Eq. (29) derived by
PARAIL and POGUSTE (1980) in the case of electro-magnetic turbulence. As
was discussed in Section 3.1 (see Figures 14d and 15d), it can reproduce some
important features of L-mode transport, although not the favourable scaling
with current. In addition, the m,-dependence in Eq. (50) provides a desirable
factor that increases towards the edge (where m, generally falls below 1).

Unfortunately, the assumption of fluid electrons is not warranted for JET
plasmas, where Bo(Lg /L, )2 ~107!, and the applicability of Eq. (50) remains

to be proven.

KADOMTSEV (1991) has considered the transfer of energy from ions to
magnetic islands with w << pj, as they pass through them. He finds the ions
can pump the islands if these are 'slanted' relative to the magnetic surfaces
in a torus. Balancing this pumping against the electron dissipation
associated with electron inertia yields a saturated island width. Kadomtsev

distinguishes two situations: at low levels of heating

2
% Vie C
Yo ~ €2 18| —_ (1)
¢ gR [wpe J
while for higher heating powers
Xe~C —§ o (52)

where C is a small constant.

In Eq. (61), XgH =g/ xgz), where ng) has properties that were assessed in

Section 3.1 by comparison with JET L-mode data. Here it is proposed to apply
the expression to the case of Ohmic heating only; Figures 23a, b show that
Eq. (51) yields the correct magnitude for %,, and a density scaling which is

compatible with observations. The unfavourable current scaling of xgH is,

however, in contrast with the experimental evidence.

Expression (52) also gives the correct magnitude for ¥,, when compared
with JET data in the presence of auxiliary heating. An assessment such as
that carried out in Figures 14 and 15 for previously discussed models shows
that the observed power degradation of confinement is acceptably
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reproduced, while at constant power xgH is practically independent of the
plasma density (which may still be compatible with the data in Figure 14a,
bearing in mind the difference between ¢ and %,). The linear dependence
of xgH on Bg in Eq. (52) implies a decrease in transport near the plasma edge
(in spite of the strong scaling with minor radius), but at the same time yields
the desirable improvement in confinement with plasma current, as
illustrated in Figure 24.

Transport due to micro-tearing mode has been considered by GARBET et al.
(1990). In the collisionless regime these modes are linearly stable but can be
non-linearly destabilised by radial diffusion, allowing a self-consistent
solution with turbulent diffusion. A typical upper bound to the resulting
thermal diffusivity is

Yo < 0.05 p?lte. (53)
LS

This is similar to XS) that was discussed in Section 3.1, except for the shear

length replacing the density scale length and for the missing factor 2. As a
result, Eq. (53) yields a weaker radial dependence, a weaker density scaling
than in Figure 14b and, inappropriately, a current scaling opposite to what is
commonly observed.

6. DISCUSSION AND CONCLUSIONS

Theoretical expressions for the electron thermal diffusivity 7y, published in the

plasma physics literature have been systematically compared with values of a one
fluid effective thermal diffusivity Xef taken from JET data. Before discussing the

results, we comment on some points concerning the technique used for

comparing theoretical models with experimental data.

()

The use of a one-fluid "effective" experimental thermal conductivity makes
any assessment of a theoretical model for electron heat transport
approximate, in the sense that one should not expect xgH to reproduce
exactly the same trends and magnitude as xggf(P. On the other hand, it seems
reasonable to assume that trends in xgH should not systematically

contradict those observed for xgép ; nor should the predicted magnitude of

35



(ii)

(iii)

Xe be largely in excess of that of ng)f(P. Indeed, theoretical models often
predict similar scalings for %, and %;. (When the predicted electron heat
diffusivity is negligible as compared to XEEEP , then the theory may be valid,
but does not help understanding anomalous transport in JET). These
disadvantages are offset to some extent by the fact that the uncertainty in the

determination of XE{.?{.(P is usually much lower than that affecting separate

estimates of xEXP and xFXP (which are only rarely possible, anyway, as

discussed in CONNOR et al. (1993)). We have found that for many theoretical
models xgH << ng)fq) in the outer plasma region. It is of course possible that
ion heat transport systematically dominates near the edge. However, the
study in Part I comparing models for the ion heat transport (CONNOR et al.
(1993)) did not find any convincing theoretical model which could

reproduce the experimental heat flux.

The JET experimental data used for most comparisons refer to standard
L-mode discharges. These are the most common type of plasma, and the
ones for which the widest portion of parameter space is explored. We have
assumed that any good model must be able to reproduce basic properties of
such L-mode plasmas, before one can consider application to more special
confinement regimes.

All models have been examined (when found to be applicable) in the
following fashion: first, by a local comparison with one representative set of
plasma conditions, to assess the magnitude and radial trends of xgH ; then, if
this test leads to plausible results, by comparing variations with respect to
one or more of the relevant parameters, such as density or power. Such tests
are clearly not exhaustive; even in those cases where acceptable agreement
was found, one would still require validation of the theoretical modes by
transport code simulations, with comparisons between predicted and
measured plasma profiles. This is especially relevant for the (many) models
that involve nonlinear relationships between fluxes and driving gradients.

We now draw some general conclusions from the detailed comparisons we have

made. Concerning the specific "ingredients" that can make theoretical
expressions for ¥, more appealing candidates for the description of the observed

transport we note that:
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(i)

(ii)

Any model of the pure gyro-reduced Bohm type, with x, ~ cp2/L, given
by a number of the drift wave models, will tend to yield the correct
degradation of confinement with power. A radial dependence ~T% is
however in disagreement with observations, and we find that even having
L=L,, or L1, both of which decrease with radius, generally is not

sufficient.

An additional radially increasing factor is required, and models that have ¥,
proportional to q or g2 fare best because they simultaneously introduce a
favourable dependence on the plasma current. (), ~ Ls does not help with
the radial dependence of course, but it does give some current scaling, and a
dependence on the local shear compatible with results of "current ramp"
experiments). However, any strong inverse dependence of %, on Ly leads,
for ordinary L-modes, to a stronger decrease in transport with increasing
density than that observed (the density profiles tend to flatten at high
density). Furthermore, it would imply worse confinement in peaked-density
regimes, contrary to what is observed e.g. in the JET "PEP mode" (HUGON et
al. (1992)).

A dependence ¥, ~ 1/Lt, on the other hand, has the appealing feature of
replacing (part of) the temperature dependence with a VT-dependence,
which guarantees a degree of "profile resiliency”, is compatible with low
heat transport inside H-mode plasmas with strong edge temperature
"pedestals”, and yields fast heat pulse propagation. It may also help make
gyro-Bohm-type models compatible with results of p.-scaling experiments
in JET (TARONI et al. (1993)).

Dissipative trapped electron modes have stronger dependencies on T than
the pure gyro-reduced Bohm form, leading to too strong a degradation with
power and even poorer radial profiles.

Models based on electro-magnetic fluctuations where the step size involves
the collisionless skin depth introduce a favourable density dependence of
thermal energy confinement, which is also present in the data. (This
observation is worth emphasising because empirical L-mode scalings which
are based on magnetic measurements of 1, including non-thermal

contributions, do not show this density dependence).
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(iii)

(iv)

On the other hand, such models often fail to predict the observed
degradation of confinement with input power. Also a %, proportional to
transit or bounce frequency will tend to have the wrong radial dependence
and to yield the wrong scaling with current. Again, an inverse dependence
on the shear length will help with radial dependence, but conflict with
evidence from current ramp experiments. As an example, a suitable "mix of
ingredients” seems to be present in Zhang and Mahajan's expression (31).

At first sight resistive fluid turbulence models would seem to be very
promising: the resistivity n increases strongly towards the edge, B or the
pressure gradient provide the degradation of confinement with power, and
the predictions possess the correct shear dependence. Unfortunately, the
magnitude of the predicted transport is often incorrect, as is in some cases
the current scaling. Even the models that compare best with the
experimental evidence, often leave something to be desired, e.g. Eq. (40)
yields a density dependence at odds with observations. Equation (43a)
represents the best all round performance.

A similar problem affects the best amongst the models for transport induced
by magnetic islands (we exclude the "critical VT" model because it has been
assessed in depth elsewhere, see REBUT et al. (1991)). Kadomtsev's Eq. (52)
yields good radial profiles for . (except near the very edge), and clearly
provides a good local counterpart for the global Goldston scaling g g ~ B;l.

It even provides theoretical support for a positive dependence of
confinement on ion mass. However, just like the quoted global scaling, it

cannot match the observed favourable dependence on the plasma density.
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APPENDIX

We list here the definitions of all non-standard variables used in this paper and
not explicitly defined in the text. All parameters are averaged over magnetic flux
surfaces (for example the local inverse aspect ratio is € = <r >/< R >). Units are SI
with temperatures in eV.

flux surface coordinate P=+WVn

Y, = normalized poloidal flux
temperature ratio 1=T. /T4

thermal velocity (species j)

sound speed Ce=T"“vy

gyroradii o - pitl/z
profile scale lengths (a = n,T) L,=-a/Va , g =L,/R
Me =Ln, /LT,
magnetic shear §=€eR Vq/q
shear length Ly=Rq/s
electron plasma frequency Wpe = (4nnee2 / me)l/2 =56.4 nel/ 2
collision frequencies Vei = 2.9-10_12neZeffAcTe‘3/2

vi = 4.8-1074n,Z,4A m; V21,7372
with A =31-0.5log(n,)+log(T.)

Veff = Vei / €
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mode frequency

bounce frequency (species j)

magnetic drift frequencies

transit frequency (species j)

diamagnetic frequencies

collisionality parameter

ratio thermal/magnetic pressure
S number

resistive diffusion time

poloidal Alfvén time

o =€V, /qR
0gi = —kepivy; / (RV2), g, = -t0g;
Wy = Vy /qR

W+ = —KgPiVy /(Lnx@), We, = —TO;
Ve = Vi / (E0 )

B=2u,p/B’

S=1r /1A

TR = £2R2p.0 /M

Ta = (tonim;)*Rq / B

withn = electrical resistivity

W, = 4mn- 10_7henry /m

43



(a)
10§-
°
erf?‘F; f
) ®
Nﬁ 1 v v i v
- r Eq.(1)v V v V o
0.1+ 0 _
o o o o © Eq.(3) é
N J L 1 N 1 N | o §
0 0.2 04 0.6 0.8 1.0

p

Figure 1. (a) Local effective thermal diffusivity for a typical JET L-mode plasma
compared with theoretical models Eq. (1) by HIRSHMAN and MOLVIG (1979) and
Eq. (3) by MOLVIG et al. (1979). Details of experimental profiles and power balance
for this discharge (pulse #19699, B,=3T, I,= 3MA, (ng)~3- 1019 m 3
Pngi1 + Picrp = 10MW) can be found in Figure 1 of CONNOR et al. (1993).
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(b) Experimental and predicted thermal diffusivity at normalized minor radius
p = 0.7 versus average plasma density for a set of approximately 100 sawtooth-free
JET (mostly L-mode) discharges, at various levels of plasma current, toroidal
magnetic field and auxiliary input power.
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Figure 2. Electron transit frequency and electron-ion collision frequency at
different radial positions, for the same set of data used in Figure 1b.
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Figure 3. Comparison between the measured thermal diffusivity and that
predicted in the collisionless regime, Eq. (4), by WALTZ et al. (1987), for the same
plasma conditions as in Figure 1a.
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Figure 4. (a) Radial variation of the temperature scale length L., Eq. (6), expected
by MANHEIMER et al. (1976) at marginal stability, compared with the measured
one for the JET discharge of Figure 1a.
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(b) Ratio between measured and critical Ly, at different radial locations, plotted
as a function of plasma density for the data set of Figure 1b.
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Figure 5. (a) Radial variation of the characteristic frequencies that determine the
transition from collisionless to dissipative regime according to DOMINGUEZ and
WALTZ (1987), for the JET discharge of Figure 1a.
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(b) Ratio of effective collision frequency to electron diamagnetic frequency at two
different radii, as a function of plasma density, for the data set of Figure 1b.
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Figure 6. (a) Thermal diffusivities for trapped electron modes according to
DOMINGUEZ and WALTZ (1987) and ROMANELLI et al. (1986), compared with the
measured profile of Figure 1a.
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plotted versus the average input power per particle for the data set of Figure 1b.
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Figure 7. (a) Snapshot radial comparison between the weak turbulence electron

thermal diffusivity of Eq. (11) by GANG et al. (1991) and that inferred from
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Figure 11. (a) Density and temperature profile measured in a high-density JET
H-mode discharge (pulse # 21024 - B; =2.2T, I, =3.IMA, double-null X-point,
PNBI ~ 7.5MW).
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(b) Effective y inferred from experimental data for the discharge of Figure 11a,
compared with the prediction of Eq. (20) by BISHOP and CONNOR (1990).
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MIKHAILOVSKII (1976) and DIAMOND et al. (1990), compared with the measured
Xefs for the case of Figure 1la.
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Figure 13. Snapshot comparison between the experimental thermal diffusivity of
Figure la and a) the collisionless transport coefficients of HORTON(1985) and
PARAIL and YUSHMANOV (1985), not including the shear dependence of Eq. (26),
and b) the collisional expressions of KiM et al. (1990) and CONNOR and HASTIE
(1993).
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Figure 14. Density dependence of local energy transport: a) measured one-fluid
heat diffusivity compared with predictions by b) Eq. (23) ¢) Eq. (24) and d) Eq. (29).
The data correspond to JET limiter discharges at 3MA in deuterium, with
auxiliary power Ppapyx =101 MW.
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Figure 15. Dependence of local energy transport on input power-at constant
density (i.e. on plasma temperature). (a, b, ¢, d) are as in Figure 14. The data
correspond to JET limiter discharges at 3BMA in deuterium, with average electron
density (ng)=(2.0£0.2)-10"m™.
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Figure 16. Ohmic and auxiliary-heated conditions may correspond to
approximately the same temperature in a tokamak, if the density increases
sufficiently in the L-regime. Figures (a) and (c) illustrate such a case from JET. It
can be seen from (b) and (d) that x(ez) varies in the opposite way to the measured

Xeff-
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Figure 17. Transport predicted by the short wavelength mode theory of HORTON

et al. (1988) compared with ng)f(P of Figure 1la.
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Figure 18. Radial profiles of parameters relevant to resistive fluid turbulence
theories, based on typical JET L-mode data (see Figure 1 of CONNOR et al. (1993)).
S is the ratio of resistive diffusion time to poloidal Alfvén time, § is the
magnetic shear, o is the normalised pressure gradient of Eq. (36), N/ is the
leading term in the diffusion coefficient of Eq. (35).
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Figure 19. Transport coefficient based on the resistive interchange mode theory of
CARRERAS et al. (1987), here with gg = 1, mg = 3, compared with ng)f(P of Figure 1a.
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Figure 20. (a) As Figure 19, but using the work of CARRERAS and DIAMOND (1989)
(without assumptions on the toroidal wavenumber) and of KWON et al. (1990)
(assuming mg = 3).
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(b/c) Variation of xgH from Eq. (40) with plasma density/temperature,
to be compared with the experimental data in Figures 14a and 15a.
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Figure 21. (a) Magnitude and radial variation of X, predicted by CONNOR (1993),
compared with the measured transport coefficient.
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(b/c) Variation of xgH from Eq. (43a) with plasma density/temperature,
to be compared with the experimental data in Figures 14a/15a.
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Figure 22. Theoretical heat diffusivities evaluated using the prescriptions for the

magnetic island width given by CARRERA et al. (1986), SMOLYAKOV (1989) and
REBUT and HUGON (1991).
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Figure 23. The "slanted island" model by KADOMTSEV (1991) in the limit of weak
island overlap, Eq. (51), is used to estimate the heat transport to be expected at low
heating power levels: a) measured thermal diffusivity in JET Ohmic discharges
(for different values of the plasma current, and at a radius well outside the
sawtooth region) as a function of the plasma density. b) corresponding yi !
predicted by Eq. (51).
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Figure 24. (a) Magnitude and radial variation of . predicted by Kadomtsev's
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