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ABSTRACT

This paper is devoted to a summary of previous and new theoretical results
concerning the behaviour of plasmas outside the separatrix i.e. in the region
where the magnetic field lines do not form closed magnetic surfaces.

The resistive interchange model is used to describe selfconsistently the
generation of poloidal (or toroidal) flow and the onset of ELMs, which appear as
bubbles of increased density (or higher temperature). In addition, the decrease of
the turbulent transport processes as the velocity of the flow increases and its
connection with the L-H transition are discussed. The linear theory of stability is
applied and complemented by a full numerical simulation of the two-
dimensional nonlinear equations. Analytic solutions for asymptotically small
parameters in the nonlinear model are derived and used for the explanation of
the numerical results. Semi-phenomological turbulence balance equations for
the resistive interchange convection are presented as well. Finally, these results
are applied for the explanation of existing experiments.

1. INTRODUCTION

In recent tokamak experiments specific MHD activity was observed at the plasma
periphery [1]-[3]. More detailed investigations have shown that these oscillations
(so-called edge localised modes ELMs) sometimes look like dumping of density
and temperature filaments into the scrape-off layer, which leads to the quasi-
periodical oscillations of the particle and energy fluxes. ELMs are observed during
H-mode discharges in JET [4] with widely varying amplitudes and repetition
rates. Some of the ELMs are similar to the ELMs in DIII-D [5] and ASDEX [3]. Data
from ASDEX show, that the edge turbulence is essentially two-dimensional and
perpendicular to the magnetic field. Flute-like instabilities lead to the convection
of flux-bundles at the edge [1]. In similar cases the TFTR data [2] demonstrate the
dumping of electrons, namely radially localised electron temperature
perturbations appear at the plasma edge and move radially outwards. Prior to
these singular ELMs in JET, the pressure gradients near the edge plasma are
found to be well below the ideal ballooning stability limit, while resistive
ballooning modes can become unstable.

To elucidate the nature of the ELMs the following model was proposed in our
previous papers [6]: The dissipative flute-like resistive interchange instability at



the plasma edge is considered, where the parallel dissipation along the magnetic
field lines is taken into account for the flux-tube with the ends at the divertor
plates or at the limiter. In contrast to the resistive instability inside the separatrix,
which has the character of a three-dimensional resistive ballooning mode, the
instability in the SOL is basically two-dimensional. This strongly simplifies its
examination. This is mainly a mathematical aspect. From the physical point of
view the lack of closed magnetic surfaces near the plasma edge permits the
manifestation of instabilities which are forbidden in the bulk plasma. In this case
the flute-like instability in the SOL region of tokamaks has the characteristic
feature of flute-like instabilities in open systems. The first major point is that the
effect of the magnetic field line curvature is not averaged over a flux surface,
which implies that the contribution to the instability is of first order in the
inverse aspect ratio € = r/R (r and R are the minor and major tokamak radii. This
makes it different from the €2 effect appearing in the usual ballooning mode
model. This clearly is a destabilizing effect. The inclusion of longitudinal
conductivity leads to a stabilising effect and the final result is determined by the
competition of these two tendencies defining the characteristic perpendicular
dimension of the perturbations. This plays an important role in the discussion.
The second major point is that due to the open end region the perturbations can
be chosen with good accuracy in two-dimensional form.

The outline of this work is as follows. In Section 2 the general equations for
resistive interchange are introduced; in Section 3 the linear theory of these
equations is discussed; in Section 4 results of the two-dimensional numerical
simulation are analysed. In Section 5 the properties of two simplified
phenomenological and more elaborated low-mode number systems are
discussed, which help us to reproduce qualitatively the main nonlinear results
and which form the basis for our model of the anomalous transport. In Section 6
the results of the resistive interchange theory are compared with the

experiments.
2. PHYSICAL MODEL

As a typical example of a tokamak with a separatrix we chose an ASDEX-like
geometry (Fig. 1). In the limit of a strong magnetic field, the system is described by
the following equations:



The vortex equation:

cMngy dA ¢ [ 1} 1= o\ cMng 2
— —=2 + |VPxV=] = =(b-V)j, + ——= A5 . 1
B2 dt BJ, C( )Jz B2 n, Ao (1
Here i —i+ v, -V, where v, is expressed as
dt ot Lt =L P
C
v, = E[Qz x Vol )

P is the total pressure P = Pe + P;. M denotes the mass of the ions, c the velocity of
light and p, the transverse viscosity coefficient; n is the density.

The magnetic field is expressed by a vector potential with the following

notations:
B=B«b=B,*&, —[e,xVA,] B, =By*(1-x/R), x=R-Ry, 3)
with
j,=—c/4n*A A,. (@)

Then the parallel component of the electron equation of motion yields:

A,
ot

+ db-V)p = - ngz + % (b- V)P, 5)

with o the conductivity.

The continuity equation reads:

) 1 7 o)
a—I: + (VJ_-V)II = E (bV)]Z + D”A”n + DLALI‘L (6)

Dy, D, are the longitudinal and transverse diffusion coefficients.

Instead of the energy equation we use the condition T, = const. We also have
investigated the case when the energy equation has been used and the condition
n = const has been applied leading to qualitatively the same results.



For the resistive interchange instability we get in the electrostatic limit:

jz == 0%V, (‘D - :—Zﬁ]- 7)

Thus, we can use two equations in this case instead of three. In dimensionless
form, these read:

A on ;
L2+ [V x Vao], + gp* £ +opVi [0-Exi]=Api4,9, ®)

aa—‘: +[Vo x VA], + g %‘1 +0yxVf [0 - Exd]=DyWVia+V, D, Via. (9

y
Here the density is decomposed into its initial value and fluctuating nonlinear
component, i.e.

n=np+n.

After averaging along the field lines, these equations take the following form:

oA on = = =

——aiq) +[Vo x VAD], + 8B 51;- + Op* [¢ - ¢-Ex(h- n)] =ApAe, (10
on . dd = A _n
— +[Vox VA] +gn = =02%[¢ - ¢ —Ex (i —n)|+

1/'("* (ﬁ—;)"}‘ VLD_LV_I_ﬁ-

Since the operator V| does only act on the part of the perturbation which depends
on y, the average values of ¢ and n, where 5(x)=§a(x,y) dy, need to be

subtracted in Egs. (10) and (11).

Here we introduce the following dimensionless parameters:

* 0
g, Egn(x)z_xL ng(x) is a function of order unity, ng the characteristic
g X

density, x¢ the characteristic scale length for the density, for example: the linear

profile: ny (x)=ngp*(1 - x/xg) has g, =1. gg = % where R, is a typical length.



If we chose the characteristic time ty = (xg*Rg)/ Cg as the typical time for the

interchange instability then with pg = (T, / M)y2 / wg;; we have

1/2 3/2
g = ps*RQ/ /x()/ ;

) 1/2
o1 = (ts/Ta)*B 1/2*(X8*Ro) /1§

0, = (IS /TA) *C*X()/((DpiLﬁ) = O1*pPg /(XORo)l/z;

1, = 41 o x5 /c%;
ta=x0/ca; & = Bex§/(c*tg) *¢; A = i/ ng;

2 2
1 = Lf/(Dytg); my = myxtg/x3; Dy =Dty /xE.

The order of magnitude of the dimensionless parameters is best demonstrated for
typical ASDEX parameters:

B =3T, T=100eV, R=1m, ng=1013cm™3, x; =0.01m, Z =3,
Ly =cy*n*q*R,, where c1 = 1. For these values:

tp = 10_65, P = 3*10_2cm,

E =0.3,

Ty = 5*10_53, TA = 10_95,

o1 ~8/ clz,

oy = 2.4+¥1072 / c1? << o1,

Dg = x3 / tg ~106cm? /s,

T =Qq *10_45.



Here c1 is the coefficient in the relation Lj=cy*n*q*R,. It can be somewhat larger
by a factor 2 to 3 depending on the separatrix geometry. For the case of the
toroidal diaphragm c; = 1.

The most important parameters in these equations are oj and &. If £ = 1 then the
drift waves play the important role and the resistive interchange instabilities are
less important. The coefficient 61 introduces the intrinsic spatial scale length (see
next Section 3), and strongly influences the turbulent transport.

3. LINEAR THEORY AND DIMENSIONAL ESTIMATES

For linear perturbations the well known dispersion relation follows from the
initial equations (1) - (6):

2.(12 /12
ws*lk /kJ_ kz*CZ
[VH&*HL]—— 8 ( y ~ ) + ||2 A __g (12)
[y+1/t”+kl*DL] [’Y+kL*DM]
2 2 2
where ®2 To * dng = Cs 1 _ dng 2 __Bp _ ¢

8" RM ngdx xgR' xg mpdx 4nMny’ M 4no’

Let us review the main properties of this equation. For the dissipativeless case it
assumes the form:

2

k
v’ =g *—% — ki*C3, (13)
k1

i.e. it describes the mixture of flute and Alfven modes. The last term gives a
stabilisation due to the end conditions. If we estimate k; as 1/L;, where L; is the

length of the interchange localisation, then the condition of stability for the ideal
case can be written as: C2 /(xgR) < C3 /13. For Ly ~ m*q*R this can be expressed

as follows:
B<s/(n*q)2. (14)

This condition is usually fulfilled at the boundary of the plasma.



If we now take into account the dissipation, slower dissipative instabilities can
occur despite Eq. (14). These instabilities exist if

Y << k_2L*DM. (15)
It immediately follows that DRy < Dpm where DRy = v/ kﬁ_ denotes the diffusion
coefficient of the resistive interchange and Dm = ¢2/ (4n0), the so-called

pseudoclassical coefficient of diffusion.

In this electrostatic limit the dispersion, Eq. (12), relation has the form:

2,2 k2
2 ki *Ca 2 2, 5y
Y+ ki*p, + 2| x|y+1/ 1+ k{*D | |=w5* —-. (16)
1 BL ki*DM:I [ 1 1 L] g ki
. kf*C%
The main dissipative term here is 2D which describes charge losses at the
1*Pm

end plates.

From (16) it follows, that the maximum growth rate is yg~wg=1/1tp and the

characteristic wave number is

kj =Ca /(Li*Dyroy ) (17)
Small terms connected with pn,, D, 1/ 1 are negligible for these estimates. The
relation (17) separates the pure hydrodynamical model (kg*xq <1) from the

plasma model (kg*xg > 1); this boundary also coincides with the condition o7 = 1.

In the plasma case we have the following independent parameters:
Yo, ko, X0, w, My, Dy (18)

If we suppose that p; ~D| and are defined selfconsistently by the resistive

interchange turbulence, then from dimensional considerations we can write:

np~Dy ~ (Yo /k(z)) *F(yo*t), ko*xo)~ (Yo /k(%) *f(yo*), (19)



where f is some dimensionless function of order unity. The last proportionality
in Eq. (19) follows from the assumed weak dependence of the function F on
(ko*XO).

This result is correct only for fully developed turbulence, when the viscosity and

thermal conductivity are sufficiently small, i.e. ui/(yo/k%)<<l,

DL/(yo/k%)<<l. For the experimental conditions and especially for our

numerical modeling this asumption is not a very good approximation (for

example if D / (70 / k(z)) ~ 0.01 then we have only in the order of ten harmonics

in the spectrum of the potential). Therefore, a general expression for turbulent
diffusion should look as follows:

p turb _p turb (Yo / k%) *F(DL / (yo / k(z)), Yo* Ty, ko*xo), (20)

where the function F, can be obtained from numerical experiments. Analogous
expressions for other quantities can be given, for example, the average velocity
Vo has the form:

Vo ~ (Y0 / ko) *FI(DL /Yo /k(z)), Yo*T1, ko*Xg), (1)

where Fp is the other dimensionless function. The numerical simulations yield
Fi=1

4. NUMERICAL SIMULATION

The system of equations (10)-(11) is solved numerically (for o2 = 0) for rigid wall

(¢ =0, it =0) and for free-slip (A¢p = 0) boundary conditions at the planes x = 0,
x =1 and with periodicity in the y direction. The numerical scheme is based on
two-dimensional finite differences with second order accuracy. Typically, a 32 x 32
grid is used. For the time stepping the second order accurate Lax-Wendroff
scheme is applied. The conservation laws are checked and yield a criterion for the
accuracy and for the stability of the calculations. The main parameters of this
problem are gg (gn = 1), the transverse viscosity p;, and diffusivity D; and the
longitudinal conductivity o. As typical output values we take two-dimensional

pictures of the convective flow, of the average (over y) poloidal velocity V(x,t)
and of the density n(x,t), the value of the particle flux on the



. T
boundary qy (t)=—Dl*Z—n, and its time average Q = L‘Swl * _[ qx(t)dt. Here
X T
0
the bar denotes the average with respect to y.

The results of the numerical simulations show the strong effect of the sheared
flow generation by convective cells due to the Raleigh-Taylor instability. As far as
we know this effect has not been observed in the Boussinesq equations
previously (our equations (10) - (11) coincide with the Boussinesq equations if
o1, 02 are equal to zero and 1, = =), because the Raleigh-Taylor convection has
been usually studied, both experimentally and theoretically, for the bounded
model with respect to the y-direction. For the tokamak edge plasma the
periodicity constraint in the y-direction and the free-slip rigid planes at x = 0, 1
appear to be more adequate boundary conditions. The effect of the spontaneous
generation of the flow is very effective: the value of the flow velocity in
dimensionless parameters is of order unity.

When the system is far above the stability threshold
(ui /(yo/k%)<< 1, D /(’yo /k(z))<< l), the velocity profile is close to sinoidal

form and the shear, V’, experiences quasiperiodical oscillations in time
corresponding to the spikes of the density (or heat) flux at the boundary, which
can be interpreted as ELMs. Let us now describe the results of the numerical
calculations in more detail. If gg is sufficiently large, gg > = 5, and the typical

values of the parameters p /(yo/k%) and Dl/(yo/k%) in subsequent

calculations are chosen in the order of 0.1, a clear quasiperiodical behaviour of
the instability takes place (see Fig. 2). At first the fluctuations of the potential
grow and this effect causes the flux on the edge of the plasma to increase. When
the fluctuations become sufficiently large an average velocity sets in, it grows up
to order unity and then the velocity begins to suppress the fluctuations. After the
fluctuations have disappeared the average velocity also disappears and the
process repeats itself.

On Fig. 3 the amplitude of the mean velocity and the amplitude of the flux on
the boundary are plotted as a function of o1. The quantities are averaged over a
period of five spikes. For the interval 0 < o1 < 1, the dependence is weak.
Therefore, it is more interesting to study larger values of o7.



The dependence of these quantities on u; (D =p ) is plotted on Fig. 4. Here the
picture displays more detail. The shear velocity decreases monotonously with
increasing u, and drops approximately by a factor of three with p, increasing
twenty times. The period between spikes becomes shorter. The flux increases at
lower values, assumes a maximum at p, ~ 0.1 and then suddently drops. This
dependence is explained by the change of the character of the instability. With
increasing p, the instability changes from quasiperiodical to purely oscillatory
behaviour with increasing frequency and then the oscillations dampen out. It
should be noted that, when the oscillations of the shear velocity experience
damping, the average value of V does not vanish. The particle flux on the
boundary becomes constant.

All these results were obtained with a value for gg = 10. In this case the process is
quasiperiodical (excluding the case of large pn; when the oscillations are absent).
The numerical simulations of the system (10) - (11) for different gg allowed us to
study the effect of strong suppression of the flux on the boundary which can be
considered as a model of the L-H transition. On Fig. 5 the flux gqx is plotted in
dependence of gg for different values of o;. For gg < 0.05, which is lower than the
threshold of the instability, the flux does not change. With increasing gg
convective flow sets in, the flux qx is constant in time but increases with gg.
Further increase of gp leads first to oscillations in qx and then, for gg > 5, to
quasiperiodical spikes (ELMs). With the appearance of oscillations the particle (or
heat) flux drops and, as ELMs appear, the flux approaches a constant level. This
transition is very sensitive to o1. This transition manifests itself for o1 values in
the narrow interval 0.05 < o1 < 0.3, where the flux drops by a factor of 2 - 3. For
other values of o7 this drop amounts to only 10 - 25%. It should be noted that for
the chosen parameters only few harmonics (about ten) grow significantly during

the calculations.
5. SIMPLIFIED MODELS FOR THE RESISTIVE INTERCHANGE INSTABILITY

For an explanation of our numerical results and for a prediction of the nonlinear
behaviour we discuss two simplified models. The first model is applied to the
fully developed turbulent case [6] (which we can not simulate directly) and the
second one to the small-parametric case [10] being relevant for our numerical
calculations with a few number of modes.

10



a) The Turbulent Model

Now we propose a qualitative explanation of the numerical results in the frame
of the strong turbulent model. Here it is more suitable to use instead of eq. (10) -
(11) the equations in physical normalisations, namely:

an

o2
e ~DyVii(¢ - n),

3 _
Pg(a—t +DgV, -V - ULALJDL(P -V

(22)
o —

_Te , _Cyp _Vi _ e _
where DB—EIi,Vg_ sPer, Dy = eVe]_,(p_ Ter M = n/ng,

VJ_ = [éZV(p].

The solution of (22) determines the structure of vorticity and particle fluxes:
(V,Q), Q = Aj¢ and (Vn). The obtained qualitative understanding of the
properties of (P,) and (I'y) can be obtained from quasilinear theory. For the

averaged variables we get from (22):

d

a( > + &(PX>ZO'
(23)

0 0 B

&<n> + &(Fx>_0'

where (Q) = (A1 ¢),
0
<Px> = DB<VXAL(P> —Uy &(AJ_(P%

(24)

(T} = Dg(V,n) - Dlaix(n).

From the linearized system we can express the perturbations of ¢ and n through

M and m

terms proportional to
prop X ox

11



(I)-f'iVQ -

~ik;?Dy

kyVg +ik/Dy | ¢ 1 Q)
Kipg ki ox
=kyDpo
O +ivy a M
ax

(25)

Inserting the solution of (25) into (24), one can get the following expressions for

the fluxes in the Fourier representation:

(Px)= Re|iDB%iky % <<Pk‘Pﬁ> (—ki )J — My $<Q>,

. A
(Tx)= Re[DBEIky Tn <<Pk(P§>i| -Dg &(n%

where
k,V, +ikj2 D
g - KaVat i D
kJ_ps
A= ; AQZkyDB
—kuz D“ O + ivn
O + iv 1 9()
Q ki ox
An=kyDB
d(n
-ky° Dy dn)
X

0 = 0-kyVy(x), Vo(x):—(P, vgzulki

1 Q) kyVg +ik{ Dy

ki ox kp?

a(n) - .

_— W+ 1v
ox ™n
k2 D

+=L Uy, =kiD, +k{Dy.
kJ_ps

To simplify this model we consider the fluid limit Dy — 0:

(Px> = _(HJ_ + u_Ltr)

Q)
ox

12

+b

o(n)
ox

’

(26)

(27)



where

’ kf,vg . 2 k‘;',vn +
Rigey=DB ¥ 5 <(Pk(Pk>/ Divw = DY 5 <<Pk(Pk>
ko @7 VG ko 07 +Vy

k§(va +Vn)VoVo(x)
b=-Dj¥ % B2 (oy0f)

ko (6)2+vé) ((1)2+v3,)

We remind that <(pk (pﬁ> is dimensionless. Note, that the cross gradient term is

zero in the density flux, but in the vorticity flux the cross term vanishes (b = 0)
only in the case of shearless flow, V = const, because of the symmetry of the

spectrum <(pk (pﬁ> in the frame moving wiht the velocity V. Obviously, for the

large scale modes the transition into the moving frame is impossible in the case
of shear flow V (x)= V' ox. Because the large scale modes play the main role in
the energy transfer dynamics (being the most unstable only they gain energy from
the nonequilibrium density distribution), the more adequate description is to
consider the amplitude of the most unstable mode as the control parameter. Due
to nonlinear mixing processes there are two ways of energy dissipation: by means
of a cascade towards the stable small scale modes and by means of shear flow
generation. Thus, two parameters arise: the averaged spectral intensity

I= 2<(pk (p§> and the characteristic velocity of the shear flow U. To provide an
kw

energy source for the instability, the average density gradient N = <n> must be
incorporated in the model. The following set of model equations can be obtained:

aa_[tj __ (L 4 _I_}U + BUIN, (28)

Tou T1U

N N I

O N i (N - Np) 29
ot T0N+11N( 0) @)
ol 2 1

—=— 1-U°)-—-DI[L. 30
ot (Yo( ) T1 ] ( )

13



Rough estimates have been used here, for example

Q
ai(uL +Hltr)¥ - (LWLLJ U, because (Q)=d?U/dx? ->U/a% This
X X Tou T1U

term represents the viscous damping of the shear flow due to ordinary and
turbulent viscosity. The last term in the velocity equation is responsible for the
flow generation. In the spectrum equation the first term describes both the linear
instability and the stabilising effect due to the shear flow, the second term yields
small linear damping and the last one corresponds to the nonlinear stabilisation.

The same type of equations was proposed recently by other authors [15], [16].

The proposed model demonstrates a variety of phenomena (regime with
saturation, periodic oscillations, doubling of period, etc.), which is in surprisingly
good agreement with the behaviour of the full set of equations. So we dare say,
we have got an insight into the phenomenon of shear flow generation on the
plasma periphery.

If we take an interest in only the L-H transitions itself, without any ELM activity,
then we can consider the case of N = 1 and use two equations for V and 1. This
system coincides with the recently proposed model for the L-H transition from
the paper [16]. The main deficiency of this model is that we do not know the exact
expressions for the coefficients in (22) - (24).

b) The Model With a Small Number of Harmonics (SM-model).

It follows from the numerical calculations for small viscosity n, and diffusivity
D) (n; ~ D) ~0.01 - 0.1) that there are a few dominant harmonics in the system,
typically 5 - 8. This allows us to construct the model with a small number of
harmonics (SM-model) taking into account only the amplitudes of the most
important harmonics. This approach with a reasonable choice for the harmonics
gives us the qualitatively correct description of the process. For example, the well-
known Lorentz model, describing the thermal convection in the gravity force
field, takes into account three parameters: the amplitude of the vortex, X, of the

mode ¢ = X*cos(ky*y)*sin(kx*x), the perturbation of the density of the vortex, Y,
of the mode 7 = Y*sin(ky*y)*cos(kx*x) and the distortion of the average radial

density profile, Z, of the mode i = Zxsin(2*k,*x). The Lorentz model does not

take into account the possibility of the sheared flow generation. Adding more
harmonics can account for this effect. First of all, we should take into account the
amplitude of the sheared flow ¢ ~ V*sin(kx*x), but this is not yet sufficient as the

14



square nonlinearity in the initial equations does not allow to interact with other
harmonics in the Lorentz model. Therefore, we should also take into account the
distortion of the vortex and the correction in the density perturbation.

In principal two functions, ¢ and n, can be described for our system of equations
using 2*6 = 12 amplitudes of the appropriate modes. Let us show that for every
fixed y the quantities ¢ and n can be represented as a sum of the even, ¢,, and the
odd, ¢_, modes. For every poloidal cross section there are particular functions ¢
and ¢_, but for this small-number approach it is sufficient to chose the same
functions ¢, ~sin(k,*x) and ¢_ ~sin(2*k,*x); we remind that the calculation is
performed in the square box 0<x<1, 0<y<1 and that ¢(0,y) = ¢(1,y) = 0).
We can repeat this argument for the amplitude ¢,(y) and ¢_(y) as functions of
y. For a small number of modes this can be chosen approximately as a sum of the
three terms: the even part consists of the average part, which does not depend on

y, the term proportional to cos(ky*y) and the odd part proportional to sin(ky*y).

Then, for example, the potential ¢ can be written as:

o = [q)w + 015 *sin(ky*y)+q>1c *cos(ky*y)]*sin(kx*x)+
(31)
[q)zo + g *sin(ky*y)+ Ooc *cos(ky*y)] +sin(2*k, *x),

where the six amplitudes ¢, are functions of time only. In the same fashion
another six amplitudes appear in the representation of n, npy. All these 12
amplitudes are connected by the nonlinearity. In conclusion, there are 12 coupled
equations but the subsequent analysis shows that only a few of them are

important.

We chose the minimal model, namely a five-mode model, where only
$10, P10, 925 and npy nyg, are taken into account:

o= [V + X*cos(ky*y)}*sin(kx*x)+ W*sin(ky*y) *sin(2%k, *x),
(32)

n= Y*sin(ky*y) #sin(ky*x)+ Z*sin(2%k, *x).

Here X, Y, Z, V, W denote the amplitudes of the harmonics. Inserting expressions
(32) into eqs. (6)-(7) and equating terms for equal harmonics, we can get the

15



following system of ordinary differential equations, where the terms inside the

box form the Lorentz system:.

33)
X (o ) (
== +u k X+ Y-V,
dy 1 2 (34)
—=—|—+Dky|-Y+ X+X-Z,
dt [Tn . L} Ve
9Z __42.D,.Z-X-Y, (35)
dt
i_vz_ulk)z(.V+x.w, (36)
1
dwW 3 kj

01 2,2
—_ +py (ks +ki ||| W+=—L—<-X-V, (37
dr [4k§+k§ afais Y)} 4(4K% +K3)

here ki:k>2(+k§ and new variables are introduced
X-oaX, Y=ayY, Zoa,Z, Voo, V, W-oa,W,
wherea, = Y2 o - XiVesv2 ki e __ K
- YT kekygn |7 kyk T 2 27
kyky xXy V8&n xKy Y8n kxky\/3kx+ky
2
2 \[ikl 2 ngnky
w=3 2, .2 '8 T2
kuky/3k2 +k2 i

System (33) - (37) describes the generation of sheared flow. This can be seen from
the equilibrium solution of the system. For the stationary state we have the

following non-trivial solution:

2
2_4 ki far2 12V
XO_3 ulki [:01+ll_L (4kx+ky) :|,
Yo=7v.-Xo/| L+D K2 + Xo
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Zg=-XoYo /(43D ),

Wo =i -k Vo /Xo,

2 2 2
ng é [01+HL(4kx+ky)] yg
3 k2 2
y X20 +L+Di(k§+k‘;‘,)
4kDp T
o1 2 12
- +u,; - kg +k . (38)
e b

It is not difficult to see from (38) that there exists a critical value for y:

2
2 XO I o) 2 01 2 2
V21 = =D (K2+12)| | =2 v, - (K2 4k (39)
gl LkiDl T L( ¥ y)l Liﬂ“ki H ( " y\)

For Yg <Ve1 only equilibria with V = 0 exists. But for y, >v,, there exist
equilibria with non-zero V, i.e. the generation of flow takes place. If this

threshold v is exceeded by a small amount, the corresponding equilibria are

stable and solutions of the system (33) - (37) approach asymptotically one of these.
Due to the possibility of a different sign for X¢ and V¢ there are four formal
equilibrium solutions. On Fig. (6a) typical solutions for this regime are plotted,
where

Z (40)

is the particle flux on the boundary for the small-parametric model.

Numerical calculations yield that there is another critical value of yg: vg >7vg2,

for which the previous equilibria become unstable. The typical behaviour for this
regime is shown on Fig. 6b. For v, =74, the system bifurcates into an ELM

regime. The evolution of X and V now look like the Volttera model.

17



It is interesting to compare the solutions of the system (33) - (37) with the results
of the numerical simulation. On Fig. 7 the dependence of the average flux

_lim 1
T T
Firstly the saturation of the flux with increasing Vg and, secondly, the fast drop in

T
J qx(t) dt is shown against y,. There are two distinctive features of Q:
0

Q when vy, approaches yg;. The first fact is easily explained by making use of the
solutions (38). For this equilibrium we have Zy /yg =1 if X3 > 4k§k§,Di (this is

usually satisfied, then Q = 3, as it follows from (40), and it agrees well with the
numerical simulation). For larger values of vy, when the equilibria become
unstable and do not exist anymore, this analysis still makes sense. In this case the
system moves along limiting cycles in phase space 'around’ unstable equilibria
and after averaging over time the average value of Z settles to a value close to,
but a little less than, Zy. The second phenomenon of our model, namely the drop
of qx for yg = Vg2 (see Fig. 7), also qualitatively agrees with the behaviour of the
full system. The value of this drop depends on 01 and the maximum equals 20%
(for o1 = 5) for the five-modes model.

Thus, the proposed small-parametric model reproduces many features of the
behaviour of a plasma near the separatrix: the generation of shear flow, the
appearance of ELMs, and the improvement of confinement (decrease of the
particle flux) with increasing Tg (temperature), i.e. the L-H transition. The model,
however, does not give a definite direction for the rotation of the plasma. There
are solutions with a positive and with a negative sign of V, as the equations do
not change under a transformation V—»-V, W—-W where the other
amplitudes do not change sign. The initial equations (10) - (11) have just the
same specific symmetry which does not allow to determine the direction of the
flow. From experiments it is known that the real sign of the velocity corresponds

to preferential losses of electrons; therefore the plasma is charged positively.

For the explanation of the sign of the velocity we should take into account
additional effects which destroy the symmetry of the system (33) - (37). The
simplest effect is the appearance of a small initial (seed) field due to preferential
losses of particles of definite sign. This effect can be taken into account by
introducing some source V,, i.e. an initial electrical field, in equation (36) for V:

%\iz_uL . ki* (V-V, )+ X+W. (41)
T

This term breaks the symmetry of the system. Naturally, it is not of interest to
introduce a term of order unity into this equation. But we can show that for a
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definite determination of the sign of the velocity it is sufficient to introduce a V,
in the order of the initial perturbation, i.e. when V, is more than two orders of
magnitude less than the final velocity.

The interpretation of this effect is as follows: For V, = 0 there are two equilibrium

solutions with opposite flow V :(f)VO. On the other hand, two limiting circles

occur to which the solutions should go. The boundary between these two regions
scales symmetrically (this is a property of the system (31) - (37)) around the origin
of the coordinates, i.e. through the point X =Y =Z =V = W = 0. If the initial
conditions spread homogeneously inside a small 'sphere’ around the zero point
then the probability for a trajectory near each cycle is the same. If V, # 0 then
three equilibria appear since now we have a cubic equation for Vg, and the third
root is far away from zero. But, more importantly, the boundary between these
cycles moves from zero to some small distance R,, being proportional to V..
Now the boundary divides the 'sphere’ of initial conditions into two, non-equal
parts. Therefore, the near-definite, limiting cycle becomes not probable. If V, is
equal or larger than the amplitude of the initial perturbation then a definite sign
of the velocity becomes inevitable. This implies that values of V, in the order of
the amplitude of the initial perturbations control the sign of the shear velocity. In
Fig. 8 (in the (X-R) plane, where R2 = X2 + Y2 + 72 + V2 + W2) the initial points of
the trajectories, which are going to the limit cycle with V*V, <0, are displayed.
There exists a minimal Rmin, depending on V,, such that for R > Rnin the
trajectory finds a definite cycle (or the system generates a definite sign of velocity).
In Fig. 9 the dependence of this Rnin on V. is displayed. Clearly Rmin is
proportional to Vg which confirm our previous conjecture.
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6. DISCUSSION

Experimental observations, together with the following considerations, support
the model based on resistive interchange perturbations at the plasma edge:

1. The thermal energy of the plasma Wi, = n*T is often comparable or larger
than the magnetic energy due to the current WJ=BE/8*T{; By ~ 1
Therefore it is difficult to understand why magnetic activities are easily

observed (kink, tearing, sawtooth instabilities) but why instabilities
connected with the pressure are not detected;

2. There are very long (L ~ 10m) and narrow (d ~ 0.0lm) filaments at the
edge (ASDEX [3], TFIR [2]);

3.  Fluctuations at the boundary are anti-drift: e*¢/ T, >>n/ng [17], this is a

typical relation for flute-type perturbations;

4.  With increasing temperature ELMs at first appear and then disappear. This
fact supports the concept of resistive instabilities;

5. Outside the separatrix the fluctuations propagate in the ion diamagnetic
drift direction, which is very natural for flute-type perturbations. However,
drift-type fluctuations propagate usually in the electron drift direction.

From our model we can estimate the coefficient of the turbulent diffusion
DRI and the thickness of the SOL, if its extend is indeed determined by the

resistive interchange.

Using dimensional estimates for the coefficient of the turbulent diffusion

(or thermal conductivity) Drj we can write Dgy =vq / koz.

For our case:

2
DRI = ((l)g / k||CA) *DM. (42)
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From this expression it follows that Dr] < DM, as for the ideally flute-stable
2
plasma ((og /k”CA) <1 The expression (42) can be rewritten in the

following form:
Dgi = (L‘izx / XOR)*Vei*pg/ (43)

where ky=1/Ly, peis the electron Larmor radius, vei the electron-ion

collision frequency and xg = (1/ Py*dPy /dx)_l.

The expression (43) is correct for the volume conductivity. For the influence
of the end plate we should change Ve to Vef = (Ve / L")*(M/m)l/z. In this

case Eq. (43) can be brought into a form very close to the gyro-Bohm value
[14]:

Dgi = (Ly / R}*Ce*pf, / X, (44)
where Cg = (Te/M)1/2 is the sound velocity, p;s = Cs / WE;.

In order to obtain an estimate on the width of the SOL, xg, related to the

resistive interchange instabilities one should use the continuity equation:

2
Dg+ 320 - Mo, (45)
dx§ T

supposing that longitudinal losses scale with the sound velocity
1 =Ly /C; where Dg; =yo/k(2). From (45) we then can get the following

approximation for xp: (ko*x0)2 =v0*T- Using the expressions for Y, and ko

the dependence of xp and DRy on the plasma parameters is established.

For the volume conductivity we obtain
x§ = 0.24%(Ting + Ter) *Lym *ni/ 3+ T2/34R V3482 3cm, (46)
here T19 = Tev/10, ng13 = ng (cm-3) /1013 cm=3, By = Bg/104.

Inserting the expressions for xp into Dg| we get
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2/3 - -
Dity = 1.85%(Tiz0 + Ter0 ) * Ly *na 3+ T-3/ 6 4R 2+B Y 3m? /5. (47)
For the end plate conductivity we arrive at the ASDEX scaling [13] (for the
comparison with the original ASDEX scaling we take into account the
possible difference between electron and ion temperatures):

X =1.0%(Ti10 + Te1o) >+ L7/ 3+R 1/3+B 3 Sem (48)
2/3 +1/2,¢1 -2 —4 2
Dfy = 0.7%(Tizg + Tero)” ~*Tegg L/ 2R 2348 3m? / 5. (49)

The dependence of xg and Drj on Tj for Te = 0.3*T; and for ASDEX
parameters are plotted in Fig. 10. Here R = 1m, By = 3T, Z =1, ng13 = 1, we
also suppose that L ~txq*R.

The main difference between the two scalings results from the dependence
of the volume conductivity on the density and the inverse dependence on
the temperature. But for an edge temperature greater than 100eV the effect
of the end-plate conductivity exceeds (neglecting impurities) the volume
effects.

In [12] it has been found that the thickness of the layer where large gradients
appear is inversely proportional to the magnetic field generated by the
current. The same scaling follows from both expressions (46) and (47) if we
apply the natural relation Ly ~qg*R.

Another experimental evidence for this class of resistive interchange
instabilities is given by the plasma rotation in the ion diamagnetic direction
[13]. More details are given in the Appendix.

Let us now consider the condition for the appearance of sheared flow and,
hence, the condition for the L-H transition in our model. For this purpose it
is suitable to use the small harmonic equations (33) -(37). First of all, from

these equations the condition for instability follows: (1— (kzﬂu))/ n, >0y,

(we suppose that D) =p, Jwhich for small p; can be written simply as:

op*u; <1 (50)
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This criterion has the form of
B>(X0R/L|2|)*(MJ_ /Dpm). (1)

It can be rewritten in the following way: Dry > p;, i.e. in the small
parameter model the factor DRy appears in spite of the absence of fully
developed turbulence and in the absence of a turbulent diffusion coefficient
of the order of Dg;.

From the condition for the appearance of velocity (39) we obtain after some
manipulations the following condition for the L-H transition:

or*p, <0.1, (52)

or
B>10%(xoR / Lf J*(1 / Dy (53)

This indicates that the difference between the appearance of the instability,
(50) and the condition of the L-H transition, (52) is quantitative rather than
qualitative. The numerical factor 0.1 in (52) reflects only the properties of
our model and should be obtained from experiments.

The condition (53) strongly depends on the unknown coefficient of the
viscosity p,. We propose here the form for pu, and hence for the L-H
transition which includes properties made in earlier, different models for
the L-H transition. We suppose that the effective viscosity p, is connected
with the losses of particles on banana orbits near the separatrix. In that case
the expression for p, can be estimated as:

loss __

1
u's = (e) 2 viipexo. (54)

Here vj; is the ion-ion collision frequency and pg the poloidal ion Larmor
radius. Suppose also that Dy is defined mainly by the volume collisions i.e.
by the usual Spitzer conductivity, we have finally the following condition
for the L-H transition:
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7.

pe > (M/m)"/?x3 / (Re¥2), (55)

where the constant ¢ has a value of 0.1 or less. The tendency of this result is
reasonable: Increasing the poloidal Larmor radius on the edge (pg) and
steepening the density and temperature profiles (smaller xg) makes the
transition into the H phase easier. This is equivalent to the statement that

the ratio pg / x% should be constant.
CONCLUSION

Our model explains the basic phenomena seen in tokamak experiments,

namely the edge fluctuations and the L-H transition.

1. In this model the ELMs appear naturally with increasing pressure and
disappear with increasing temperature. These perturbations of density
or temperature have a small diameter but are very long and occur at
the periphery of the plasma. The diameter of these perturbations is in
the order (or a little less) of one centimetre and its characteristic period

is in the order of a few milliseconds.

2. The shear flow is generated spontaneously and quite effectively. In the
simplest case the direction of this flow is accidental but the inclusion of
a small difference between the fluxes of the electrons and ions gives a

specific direction of the flow.

3.  The effect of charge losses on the end plates gives us, unexpectedly, a
picture similar to the L-H transition. Namely with increasing pressure
(or temperature) the flux of particles (or energy) initially increases but
is subsequently suppressed by a factor of 2-3.

Nevertheless, the proposed model has also some unclear points.

1.  The classical conductivity is a little too high for the quantitative
comparison of the theoretical results with the experiments. If we take
into account the end plate conductivity [14] the situation becomes better
but now we have to deal with the problem that the physics near the
end plate is quite complex.
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It is very difficult to provide a definite estimate on p, and D;. The
question, whether p, and D, are selfconsistantly determined by
resistive interchanges or whether these are defined by

microinstabilities is still unanswered.

In this context the proposed theory may help to derive p;, and D; from
experiments as the period of the ELMs depends on them.

Additional investigations are required to clarify the influence of the
core plasma and to understand the role of non-electrostatic
perturbations, especially the significance of flutter to establish the

connection between inner- and outer-separatrix plasmas.
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APPENDIX

If we take into account the ion and electron diamagnetic effects we can get
the following generalization of the dispersion relation Eq. (12):

2
(m+ikiuL +w*)+i 1+k3p2- w* . ki N Wg
’ W+ lkiDJ_ + lkﬁD” kipg o+ lk?LDJ_ + lk%D“

where Tj - Te, w«= - (ckyT/eB)*dIn(np(x))/dx denotes the drift
frequency, ¥ = v%e / vei,wé = (Cgk‘;})/(xoka_ ) Dispersion curves for the

drift instability and for the resistive interchange are plotted on Fig. 11. It is
shown that the branch of oscillations, which was unstable and rotated in
the electron diamagnetic direction (Fig. 11(a), curve 'e’) begins to rotate, for
some k|, in the ion diamagnetic direction (Fig. 11 (b), curve 'e') under the
influence of the curvature. This result can explain the experiment on
ASDEX [13].
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Fig. 1 Typical tokamak divertor geometry.
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Fig. 2 Temporal evolution of the poloidally averaged particle flux, c_lx, and of the

amplitude of the poloidal shear flow, Vmax, at the plasma boundary.



J6936*1!82

Tt Z vMAX

Fig. 3 Dependence of the spike period, Ty, of the spike amplitude, A, and of the
amplitude of the poloidal shear velocity, Vmax, on the generalised conductivity
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Fig. 4 Dependence of the spike period, Ty, of the spike amplitude, A, and of the
amplitude of the poloidal shear velocity, Vmax, on the viscosity u; (or D).
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Fig. 5 Dependence of the time averaged particle flux of the boundary, Q, on the
parameter gp (labelling the curvature of the field) for different values of o7.
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Fig. 6 Typical temporal evolution of the amplitude of the shear velocity, V, of the

vortex, X, and of the particle flux at the boundary, qx, for the case where
Yg < Vg, for the SM-model.
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Fig. 6b Typical temporal evolution of the amplitude of the poloidal shear
velocity, V, and of the density, Z, for an unstable case where Yg > Vg, for the

SM-model.



4- a,=0.1

(@)
—
<J.’JGQIS.SHI'IZ

%

Fig. 7 Dependence of the time averaged particle flux at the boundary, Q, on the
growth-rate for three different values of oy.for the SM-model.
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Fig. 8 Initial points of the trajectory in the R-X plane which lead to definite cycles

in phase-space.
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Fig. 9 Radius of the sphere of the initial conditions, Ryin, which leads to a
definite sign of the velocity in dependence of the seed velocity V,.

5 X5, Xg
£ T,=0.3T,
1 1 ] | |
Dy, D&
5 // Ri» UR|
//
Df“/ ~
:?I //
@ > < T,=0.3T,
£ e
n -
///
B ed 2
e 5
0 l I | | 3
10 200
T,(eV)

Fig. 10 Dependence of the SOL width and of the diffusion coefficients on the
temperature for volume and end-plate conductivity.
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